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ABSTRACT. In this paper we deal with a question proposed by Mittas and
Konstantinidou concerning strong superlattices.

The notion of superlattice was introduced by Mittas and Konstanti-
nidou [11]. A superlattice is defined to be a partially ordered set with two
binary multioperations V and A satisfying certain axioms; the resulting struc-
ture is a generalization of the notion of lattice.

An alternative (equivalent) definition of superlattice given in [11] uses only
properties of multioperations V and A without assuming that the underlying
set is partially ordered.

Other generalizations of lattices constructed by means of multioperations are
multilattices (Benado [1]) and hyperlattices (Konstanti nidou and
Mittas [7]). Hyperlattices were studied also in [8] and [9]; for multilattices,
see e.g. [2] and [3].

Hyperlattices can be considered as to be “near” to superlattices. The notions
of superlattice and multilattice essentially differ with regard to the associativity
condition. Namely, one of the axioms for superlattices requires both the opera-
tions V and A to be associative.

On the other hand, Benado [1] constructed an example of a multilattice
M (containing 15 elements) such that neither V nor A was associative in M .
In this paper, Benado proposed the question whether there exist associative
multilattices which fail to be lattices.

AMS Subject Classification (1991): Primary G6A99.
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The author [6] proved that (i) the answer is positive. and (i) i 1/ i~ «
multilattice such that Al is not a lattice and a v b # 0 £ a N b lor cach
a.b e M then neither V nor A is associative in /.

[n the present paper, a question proposed by Mittas and Konstaunti-
nidou [L1] on strong superlattices is dealt with (a superlattice is said to he
strong if the corresponding partially ordered set is a lattice).

Next we investigate congruence relations on a superlattice 8. It will he ~hown
that if p is a congruence relation on 8§, then the factor strmcture 87p need not
be a superlattice. Consequently. the class of all superlattices fails to he a variery,

Analogous results are valid tor quasigroups and for existence algebras (the no-
tion of existence algebra was introduced in [5]). This can be proved by examples,
but in the case of quasigroups. it also follows from general results of Maltsev
[10] aud Trevisan [12] concerning permutable congruence relations [recall
that Trevisan’'s result in [12] solved Birkhoff's Problem 31 from
[11): ef. also [5].

1. Preliminaries

We recall some notations and definitions from [11].

For a set F we denote by P(E) the system of all subsets of E. Let v be
a binary multioperation on E'; i.e. for each a.b € . a Vb is an element of
P(I) . If no ambiguity can occur, the element a € E will be identified with the
corresponding singleton {a}. For A, B € P(FE) we put

AV B = U (aVb).

wEADED

If A is another binary multioperation on E', then AA B is defined analogously,

1.1. DEFINITION. A superlattice is a partially ordered sct S (the partial orde
being denoted by <) which is endowed with two binary multiopcrations v and
A such that the following conditions are satisfied for cach a.b.c € S :
(Sy) a€(avVa)n(aha);
(S2) avVb=bVa, aNb=bAa;
(S3) (avb)Ve=aVv(bVe), (anb)Ahec=aN(bANc):
(S1) a€ [(avb)Aaln[(anb)Val;
(S5) If a<b,thenbeaVb and a€anbd.
(S¢) If beaVvb oracanb, then a<h.

If for each a € S the element a is identified with {a}. then each lattice
turns out to be a superlattice.
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Now assume that S is a nonempty set with two binary multioperations Vv

. . .. / /! ! / !/ :

and A . Consider the following conditions S| - S}, Sg, 57, Sy for these multi-
operations (where a, b and ¢ run through S):

@ o @ oG
51:517 522527 53:53, S :b"lv

(S;) beavb<=acaNlb;

(S4) ab€aVvb=a=b;

(Sy) beavband cebVe=c€caVe.
1

S
‘hen we have (cf. [11; p. 64]):
1.2. PROPOSITION. Let (S;5,V,A) be a superlattice. Then the conditions
ST oSSy, Shoand Sy are satisfied.

1.3. PROPOSITION. Let S be a nonempty set, and let vV, A be binary mulli-
operations on S satisfying the conditions S|~ S}, Sg, St and Sk . For a,b e S
we pul a £ b if b€ avb. Then (S;2) is a partially ordered set, and (S; <, V,N\)
is a superlattice.

In view of 1.2 and 1.3, we can consider a superlattice S to be a nonempty set
. . . . . N ) . . ) .. / ]
S with two binary multioperations V and A satisfying the conditions S} - S},
1/ \U ) 1/
S o7 and Sg.

2. Strong superlattices
In this section we apply Definition 1.1 of the notion of superlattice.

2.1. DEFINITION. Let § = (S;%,V,A) be a superlattice. S is said to be
strong if for each a,b € S there exist sup{a,b} and inf{a,b} in S, ie., if
(S:2) is a lattice. If, moreover,

sup{a,b} €aVvd and inf{a,b} €anb

for cach a,b € S, then S is called strictly strong.

In [11; p. 70] it was remarked that examples of strong superlattices which fail
to be strictly strong are not known. In the present section we shall construct a
proper class of nonisomorphic types of such superlattices.

Let P be a lattice as in Fig. 1, and let ) be a chain which has no least
element, PNQ = 0. Put S = Q & P, where @ denotes the ordinal sum (i.c.
S=PuUQ;for p;,ps € P, q1,92 € Q the relations p; < py and q; gy in S
have the original meaning inherited from P and @, respectively; next, ¢ < p
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for each p € P, g € Q). Then S is a lattice. We define binary multioperations
V and A on S as follows.

1) aAb=inf{a,b} for each a,b€ S;

2) aVa=S foreach a € S;

3) avb=bVva=S-{a} if a,b€ S and a < b;

4) zVy=yVz=S-{z,yv}.

u
Figure 1.
2.2. LEMMA. (S;<,V,A) is a superlattice.

Proof. The verification of the conditions Sy, So, Sy, S5 and Sg is easy.
Also, the relation (a Ab) Ac=aA (bAc) is obviously valid. Thus we have only
to verify that the relation

(avb)Ve=aV (bVc) (%)

holds.
In view of the definition of the multioperation V, a Vb equals to some of the
following sets:

S, S —{a}, S —{b}, S —{a,b,v}.

Let F' be a finite subset of S, and let t € S. Then there exist by,b; € Q
such that b;,b2 ¢ F, b; <t (i=1,2), and b; # by. Hence

(S—=F)Vt2obVvt=S~—{b},

and similarly, (S — F)Vt 2 S — {by}. Thus (S — F) vVt = S. Therefore
(avb)Ve=S for each a,b,c € S. Analogously, aV (bVc) = S. Hence (*) is
valid. O

134



ON STRONG SUPERLATTICES

2.3. LEMMA. The superlatiice S = (S;<,V,A) is strong, but it fails to be
strictly strong.

Proof. We already observed above that (S;<) is a lattice, hence S is
strong. Since v = sup{z,y} and v ¢ =z V y, the superlattice S fails to be
strictly strong. O

Since any linearly ordered set which is dual to some infinite ordinal can be
taken in the place of @, we obtain
2.4. THEOREM. There exists a proper class C of superlattices such that:

(i) if Se€C, then S is strong and fails to be strictly strong;
(i1) if Sy and Sy are distinct elements of C, then they are not isomorphic.

3. Congruences on superlattices

In this section we consider a superlattice S to be a nonempty set S with

. . . . . sy 1/ !/ N !

two binary multioperations V and A satisfying the conditions S| - S}, S¢, S%
and S§.

Let p be an equivalence on the set S. For x € S we denote
™ ={yeS: zpy}.

I A CS, then we put

A’ ={a": ae A}.
3.1. DEFINITION. Let § = (S;<,V,A) be a superlattice. An equivalence p

on S will be called a congruence on S if, whenever x;,y; € S (1 = 1,2) and
-—_) —f) —-— —
o=Th, gl =75, then

VY =1 Vi and T Ay =22 Ay’

- . . . aP .
In such a case, we define a binary multioperations V and A on S° by putting

VY =1 Vy’, PANY =AY’
for each z°, 5P € 5. We denote (?p; V, /\) =S/p.

It is clear that the multioperations V and A on S” are correctly defined.
If no ambiguity can occur, then we write T and A instead of ¥ and A’
The natural question arises whether S/p is a superlattice (i.e., whether it

satisfies the conditions S]—S} and Sg-Sg) for each congruence p on S. The
following example shows that the answer is “No”.
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3.2. Example. Let R be the set of all reals with the natural linear order.
Further, let S be the set of all pairs (z,y) with x,y € R. For (xy,y;) and
(z2,y2) in S we put (z1,y1) < (w2,y2) if either (z1,y1) = (22,y2) or y1 < ya.
Thus (S; <) is a partially ordered set. We define binary multioperations V and
A on S as follows.

Let a,b € S. We denote by aAb the set of all lower bounds of the set {a.b}.
Next we put

S if a=»b,
aVb=bVva=<¢ S—{a} if a <b,

S —{a,b} if a and b are incomparable.

Then (S;V,A) =S satisfies the conditions S}~ S} and Sg- Sy (for the verifi-
cation of Sj, we can apply the fact that (a VvV b) Ve =S for each a,b.c € 9).
Thus S is a superlattice.

For (z,y) and (2/,y’) in S we put (z,y)p(a',y') if x = 2'. Let (x;,y,) € 5.
i =1,2,3. There are y,y’ € R such that ¢y’ <y; <y” for i = 1,2,3. Then

(z3,y3) € [(x1,9") V (z2,9)] N [(z1,y") A (22,9")]

whence

(z3,y3) € [(z1,91) V (22,52) ] O [ (21,91) A (22,92) ]

Therefore (z1,y1) V (22,y2) = (x1,y1) A (x2,y2) = S. Hence p is a congruence
on S and we can construct the structure S/p. The condition S’ fails to be
valid for §/p.

By defining the notion of variety for systems with multioperations we apply
the analogy to systems with operations. Namely, a class C of systems with
multioperations of the same type will be called a variety if C is closed with
respect to homomorphic images, subalgebras and direct products.

Therefore in view of 3.2 we have
3.3. PROPOSITION. The class of all superlattices fails to be a variety.

3.4. PROPOSITION. Let p be a congruence on a superlattice S. Then the
factor structure S/p satisfies the conditions S} -S .

Proof. Since p is fixed, for each = € S we write T instead of 7.
a) Let a € S. Then a € aVa, whence acaVa=aVva.

b) Let a,b€ S. Then avb=aVb=bVa=bVa.
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c) Let a,b,ce S.Put X =aVb, Y =>bVc. Hence

(avb)Ve=XVe= U(:c\/c),

reX

aV(bVe)=aVY = U(aVy).
yey

Analogously, we have
@vb)ve=J@vo,
av(bve)=J@vy),
where T runs over @V b and ¥ runs over bV ¢. Therefore
@ve)ve= |J zve
TEaVbh

for x € T. There exists ' € S with 2/ =T and 2’ € aVb. Let z € 2’ V.
Since (aVb)Ve=aV (bVc), there exists y € Y with z € aV y. Hence

U G@ve)= U (@ve)c U (avy)

TEaVb z'€aVvb yEbVe
= U @vy)=av (bve).
FEDbVE

Thus (E vV B) ve C
(avb)ve.

d) For each a,b€ S we have a € (aVb) Aa=J(z Aa), where = runs over
aVbh.

Next,

|

v (bvV E) . Analogously, we can verify that @V (5 \v E) -

@vb)rna=|Jznra),

where T runs over aVb=a V b. Foreach T € aV b thereis 2’ € S with #’ =7
and 2’ € a Vv b. This yields that

@ve)re= |J (2"Aa).
z’€aVvb

There exists xg € a V b such that a € xo A a, whence @ € zg A a. We conclude
that a e (@vb) Aa.
The corresponding dual conditions can be verified analogously. O

OPEN QUESTION. Let p be a congruence relation on a superlattice S. Does
S/p satisfy the conditions S and Sg?
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