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CONSTRUCTIVE APPROXIMATION 

OF A BALL BY POLYTOPES 

MARTIN K O C H O L 1 

(Communicated by Martin Skoviera) 

ABSTRACT. In this paper, we give an explicit construction of m unit vectors 

in the n -dimensional Euc lidean space such t h a t the convex hull of them contains 

a ball of radius const \Jn~x log(ra/n) , where 2n < m < cn . This construction 

is asymptot ic optimal. Finally we discuss some algorithmical consequences of our 

result. 

1. Introduction 

Approximation of a ball by polytopes is a well-studied subject in convexity 
theory. Let 

max{vol (conv{x i , . . . ,x m } ) ;x i , . . . , : r m e S n ( l ) } 
V(n, m) = - T^-T , 

k ^ vo l (S n ( l ) ) 

where Sn(6) denotes the n-dimensional ball of radius 6 with centre at the 

origin, and conv(K) denotes the convex hull of K . The behavior of V(n, m ) 1 / / n 

has been investigated in [2] (see also [1], [3], [4]). It was proved that, if m is a 

function of n (linear, polynomial, exponential) and n —* oo, then 

log (m/n) ^ л r l ч l / n ^ _ /log (m/n) 
CiV n ^ ( n ' m ) ^ C 2 V ^ r ^ ' (1 ) 

wdiere Cj_ , c«2 are constants. For further details and information on approxima­
tion, see [2]. 

A similar question is to determine p(n, m), the maximal radius of a ball (with 
centre at the origin) which is contained in the convex hull of m points chosen 
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from Sn(l). Clearly, p(n,ra) < l / (n , ra ) 1 / / n , and one would expect asymptotic 
equality here. For this it is enough to show that 

\oe(m/n) 
c3\ <p(n,m). (2) 

In the second paragraph, we shall give an explicit construction that proves (2) 
for any n > 1 and 2n <m <cn (c > 1 is a constant). This result is asymptotic 
optimal because the upper bound of (1) holds in fact for any m > n and n 
sufficiently large (it remains to set k = log(n/d) in [2; Theorem 3]). In the 
third paragraph, we shall apply this result and sketch how it can be used for an 
improvement of some algorithms from computational geometry. 

2. The construction 

Let 11fi|| denote the Euclidean norm for u G Ur and Sr~x = {x e W : 
||x|| = 1} . By a 1-net Nr in Sr'~1, we mean a subset of 5 ' r~1 such that for any 
x G S1"'1 there exists a v G Nr satisfying ||x - v|| < 1. We shall frequently 
use the following well-known fact: 

r 

If x = ( x i , . . . , x r ) G Sr'\ then ] T | x i | < \ / r . (3) 
2 = 1 

LEMMA 1. If Nr is a 1-net, then S r ( l /2 ) C conv(Nr) . 

P r o o f . If z G S r ( l /2 ) does not belong to conv(N r), then separating z 
from conv(N r) by a hyperplane pz we get a cap of 5 r ( l ) which is disjoint from 
Nr and its "top" t ( t is one of the unit vectors perpendicular to pz ) satisfies 
\\t - v\\ > 1 for any v G Nr - a contradiction. Thus S r ( l / 2 ) C conv(N r) . • 

In the sequel, we shall need a 1-net in Sr'1 of cardinality at most dr for 
any integer r . The existence of such 1-nets can be proved in several ways: By 
random construction, or by greedy algorithm, or just choosing a subset X which 
is maximal with respect to the property that two distinct elements of X are at 
least 1 apart. Explicit constructions are, as usual, of greatest interest. This will 
be done in the following lemma. 

LEMMA 2. Let r be a positive integer and 

A r • = Z r n S r ( 3 V
/ r : ) , Br := {b = a/| |a| | ; a G Ar , ||a|| / ()} . 
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Then Br is a 1-net in 5 ' r _ 1 of cardinality at most d r, where d is a constant 
independent on r . 

r 

P r o o f . Let x = ( z i , . . . , xr) G S ' r " 1 , then, by (3), Yl \xi\ — V^ • De-
2 = 1 

note Ui := [S^/rXiJ for any i G { 1 , . . . , r} , and u = (H i , . . . , ur) G W . Let 

v = ( D ! , . . . , ^ ) := ii/| |fi | |. Then 

3^/rXj — 1 < Ui < 3y/rxi, 

9rx 2 - 6y/rxi + 1 < H2 < 9rx 2 , 

X 2 

•^г ? 
9r]Tx 2 - 6Vr^ N + r < XI w i - 9 r _C 

i = l ? i = l i = l z = l 

9r - 6r + r < | | u | | 2 < 9r , 

2\/r < ||ii| | < 3y/r. 

Thus u G Ar and v £ Br . Furthermore, if x2 > 0, then —^frxi < 2y /rx2 -

|_3v/r^lJ < ||«i||-Ci - [3-v/rx^J < 3v
/rx2- - ^A/TXZJ < 1. Thus 

|||u||x2- — Ui\ = |||ii||xi — |_3\/rxij | < V^l^l + 1 • 

This inequality holds also if x2- < 0 because then 1 —>/rxz- > 2A/TX2— [3-y/r~#iJ > 

||u||x2 - [Sv/rx^J > 3y/rxi - |_3>/rx^J > 0. 

Let y = (H i , . . . , yr) := x - v . Then 

\Xi - V І \ = 

\U\\Xi - m ^Jř\xj\ + 1 
~ 2^/r 

r ( í>?)+2 . / ? (Ê |x i ľ )+r 
ІІУІІ- = V y.f < Л ^ ± _ _ 1 І = Î — _ — < _I = i 
11.7 II Z _ / У ' - 4 r - 4 r 

Thus ||y|| < 1, and therefore Br is a 1-net. 

NOWT we show that \Br\ is bounded by an exponential function of r . Let 
Hr denote the cube in W whose vertices have all coordinates equal to ± 1 / 2 . 
Hr has centre at the origin, and its volume is 1. Let Hr + a denote the image 
of Hr under the translation by a G W . If a = (O i , . . . , a r ) G Ar , then we 

r 

show that Hr + a C Sr(7y/r/2) . Really, since a G Ar , then J ] a2 < 9r, 
i = l 
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and, by (3 ) , £ \at\ < y/ř\\a\\ < 3r and 
ѓ = l 

^ ( O 2 ± 1/2)2 < Y^ al + Y2 \ai i + r/4 - 4 9 r / 4 ' 
2 = 1 2 = 1 2 = 1 

i.e. all vertices of Hr ± a are from Sr(7y/r/2) , therefore, if a E A r . t h e n 

I7r±aC Sr(7y/f/2). 

Clearly, if a, b G Z r and a ^ b , t h e n t h e set (Hr ± a) n (IYr ± b) is 

not full-dimensional, i.e. its volume is 0 . T h e n \Ar\ = Yl vol( iI r ± a) < 
aeAr 

v o l ( 5 r ( 7 v

/ f / 2 ) ) = ( 7 / 2 ) r r r / 2 v o l ( S r ( l ) ) • It is known t h a t 

v o l ( 5 r ( l ) ) = 7T r / 2 /V(r/2 ± 1 ) , 

oc 

where T(x) = J e _ t f _ 1 dt ( x > 0 ) is t h e gamma-function. By t h e Stirling 
o 

formula, 

T ( r / 2 ± 1) = ^r~{r/2 e)r'2 e0(r^ , 

where 0 < 9(x) < l /12x . Therefore \Br\ < \Ar\ < dr , where d is a constant 

i n d e p e n d e n t on r . D 

Now we can formulate t h e main theorem. 

T H E O R E M 1. Let n,m be integers, 2n < m < cn . where c > 1 is a constant. 

Then there exist m unit vectors in W1 such that the convex hull of them con­

tains a ball with centre at the origin and of radius C 3 \ / n _ 1 l o g ( m / n ) . where the 

constant c^ does not depend on n . 

P r o o f . Let m , n be integers such t h a t 2n < m < c11. We also suppose 

t h a t n>2. By L e m m a 2, for any integer r there exists a 1-net Br in Sr~[ 

of cardinal i ty at most dr , where d > 1 is a constant . If 2n < rn < d2n . take 

Cn : = {±e z -; i = 1 , . . . , n } . T h e n \Cn\ = 2n < m , and, by (3), Sn(l/y/n) C 

c o n v ( C n ) , w h a t proves (2) in this special case. If m > d2n, t h e n choose 

r : = L i o s d ( m / n ) j > -s :== rrVH • 

Clearly, r > 2 . If n = r s , t h e n take s copies of Br in pairwise or thogonal 

r-dimensional subspaces of IRn , t h e set we o b t a i n is denoted by C1} . T h e n 

\Cn\ < sdr < (— ± l ) — < — ± — < m because n, r > 2 . We show t h a t 
~ \ r J n ~ r n ~ ~ 

Sn(l/y~) C c o n v ( C n ) . 
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To prove this, let x £ Sn~l . Then x can be expressed as sum of its s pro­
jections Xj (i ~ {1, . . . , s} ) on the pairwise orthogonal r-dimensional subspaces 

of R" , i.e. x = ][>,;, 1 = ||x||2 = J2 IW!2> and> by (3)> E 11**11 < \fe. 
i=l i=l ' i=l 

By Lemma 1, Sr(l/2) C conv(Br), therefore for any i G { 1 , . . . , s} there exist 
nt 

v,A ViJlt ~ Cn and positive reals cr^i , . . . , a.i,ni such that ^ aij < 2 and 

n, s nt s nx 
xil\\xi\\ = E <*ijvij- T h e n x = E E I W I C ^ . J ^ J and ]T X) llx-ll«i,j < 

j = l 2 = 1 j = l 2 = 1 j = l 

2 y ^ . thus ( l / \ / 4 s ) x £ conv(Cn) . Since this is true for any x £ S'n _ 1 , then 

Sn(l/Vte) Cconv(C n ) . 
(1oncluding, C n has cardinality at most ra and contains a ball of radius 

l/\/Ts > O3\/n_1 log(m/n) , what proves (2). If n < rs, then take 5 copies of 
Bv or L?r_i in pairwise orthogonal r- or (r — 1)-dimensional subspaces of IR" 
and continue analogously as if n = rs . • 

Note that our construction gives in fact a constructive proof of the lower 
bound of (1) . 

Finally let us discuss the restriction 2n < m < cn . The upper bound is trivial 
because, if n —> 00, then the lower bounds given in (1), (2) are valid only if 
it) < c" . On the other hand, the optimal ratios V(n,n + 1) and p(n,n + 1) 
occur if we deal with regular simplex. Then V(n,n + l)1/77 « c o n s t \ / l / n , and 
(1) remains true also if m > n. It is known that any n-dimensional regular 
simplex with unit vertices contains a ball (with centre at the origin) of radius at 
most 1/n (see e.g. [7]). Thus p(n,n+ 1) = 1/n. But c%yjn~l log(l + n~x) ~ 

const \ / l / n > 1/n if n —* 00 . Therefore (2) is not true for any m > n though 
it holds for any m > 2n. It could be of some interest to study the behaviour of 
/;(//, m) if n < m < 2n. We show that, if r < n , then 

p(n,n + r + l) > \jyjr + (n - r)2 . (4) 

To prove this, take the set B\ = {±e7; ; i = 1 , . . . , r} of unit vectors in Rr and 
t he set 132 consisting of unit vertices of a regular simplex in IRn_r . Take copies of 
Hi and L32 in two mutually orthogonal r- and (n — r)-dimensional subspaces of 
R" , respectively. The set we obtain is denoted by B . Then \B\ = n + r + 1. Since 
max{O,r + b\/l — x2 ; x G (0, 1)} = \]a2 + b2 , then using the above methods we 
can check that S71 (l/ \Jr + (n — r ) 2 ) C conv(S), what proves (4). 

3. Algorithmical consequences of the construct ion 

Now we sketch an application of our result in computational geometry. From 
Theorem 1 it follows: 
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COROLLARY 1. There exist n2 unit vectors in W1 (n > 2) siich that tin 
convex hull of them contains the ball Sn(c^\/n~l\ogn) , where the constant r;; 

does not depend on n . 

Primarily, we suppose that any convex body K C Wl is given by a member­
ship oracle, i.e. we have an oracle that decides for any x £ Qn whether x £ A' 
or not. Furthermore, we suppose that K is contained in a ball with centre at the 
origin and of radius R, K contains a ball with centre a £ Qn and of radius r 
and the coordinates of a, R and 1/r are bounded by a polynomial of 2" . This 
model coincides with that of G r o t s c h e l , L o v a s z and S c h r i j v e r 
[7]-

It is well known (see [7], [5]) that every convex body K C IRn is contained in 
a unique ellipsoid E of minimal volume. This ellipsoid is called the Lowner-John 
ellipsoid of K. Moreover, K contains the ellipsoid (\/n)E (where (\/S)E will 
denote the ellipsoid obtained from E by shrinking it from its centre by a factor 
of 6). If K is centrally symmetric, then the component \/n can be improved 
on \/y/n (see [7] for more details). 

In general, the Lowner-John ellipsoid of a convex body is hard to compute. 
G r o t s c h e l , L o v a s z and S c h r i j v e r [7] (see also [6]) presented an 
algorithm bounded by a polynomial of n that approximate the Lowner-John 
ellipsoid. This algorithm finds an ellipsoid E such that ( c 4 /n 3 / 2 )A C A' C E 
for any convex set K C W1 . and, if K is centrally symmetric, then (c,\/n)E C 
A C E. Using Corollary 1 and the methods of [7; Theorems 4.6.1 and 4.6.3] 
(see also [7; Remark 4.6.2]) we can asymptotically improve this algorithm such 
that the components c^/n3'2 and c^/n are replaced by c5\/log n/n3/ 2 and 
c^yjlogn/n, respectively. 

It is easy to compare volumes of two concentrical ellipsoids. Thus, the algo­
rithm of G r o t s c h e l , L o v a s z and S c h r i j v e r for approximation 
of the Lowner-John ellipsoid gives in fact an upper bound vol (AT) and a lower 
bound vol (AT) for the volume of the convex set K such that vol (A')/vol (A') < 
(n/c 4 ) 3 n / / 2 in general case, and, if K is centrally symmetric, then vol (K)/ vol (A') 
< (n /c 4 ) n . Thus our improvement of the algorithm improves the ratio 

W(AT) / rrV2 

yo\(K) VOsVlogn, 

in general case, and, if K is centrally symmetric, then 

v d ( K ) / n 

YQi(K) ~ \cr0y/logn 
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B a r a n y and F ii r e d i [1] proved the following negative result. For any 
polynomial time algorithm which gives an upper bound vo\(K) and a lower 
bound yol(A") for the volume of a convex set K C Rn the ratio vol(K)/vo\(K) 
is at least ( c 6 n / logn ) n for some convex body K C Rn , where c6 is a constant 
independent of n. Thus our algorithm is very close to being asymptotically 
optimal for centrally symmetric convex bodies. 

Other results from 7; Section 4.6] can be improved similarly. 
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