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ERGODIC THEOREMS FOR LINEAR OPERATORS 

ON C(X) WITH STRICT TOPOLOGY 

JAROSLAV MOHAPL 

(Communicated by Michal Zajac) 

ABSTRACT. If X is a completely regular HausdorfT space and if C(X) is pro­
vided by a suitable locally convex topology T , then there is a 1 - 1 correspondence 
between the continuous linear operators on (C(X), T ) and the integral operators 
defined by kernels on X X MQ(X) , where 0 G {£, r, a} according to the selection 
of T . This fact is used for study of certain asymptotic properties of solutions of 
evolution equations and for comparison of the Statistical Ergodic Theorem with 
more recent results . 

In t roduc t i on 

Let X be a topological space determining the linear space C(X) of continu­
ous functions, C(X) be provided by any locally convex HausdorfT topology and 
let T: C(X) —• C(X) be a continuous linear operator. Then the Yoshida ver­
sion of the Statistical Ergodic Theorem (SET), [11], states, that if the sequence 

(— V Tkf) has a weakly convergent subsequence for a given / G C(X), 
V n £±x ) nGN 
then the sequence itself converges in the strong topology. In order to explore the 
information from this theorem as much as possible we may naturally ask. As 
long as we have C(X) and its dual determining the weak topology. What is the 
strongest topology in which C(X) has the a priori given dual? 

A theoretical answer to this question yields the known Mackey theorem [6]. 
Nevertheless, the practically most interesting duals are Mt(X), MT(X) and 
Ma(X), which evokes a new problem: How to describe the strong Mackey topol­
ogy by means of the better manageable uniformly tight, r-smooth and cx-smooth 
subsets of Mt(X), MT(X) and M(T(X), respectively? And is such a description 
possible at all? 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28D99, 47A35, 54H20. 
K e y w o r d s : Ergodic, Linear operator, Topology. 
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These and many related problems were broadly solved since the early 70's 
[1], [2], [3], [13], [14] and not always the above formulated questions have an af­
firmative solution. But if a measure theoretical description of the strong Mackey 
topology exists, then, as we are going to show, there is a 1-1 correspondence 
between the continuous linear operators on C(X) and the integral operators 
defined by kernels on X x MQ(X) , where 0 G {£, r, <r}, provided C(X) is 
equipped by the strict topology yielding as dual MQ(X) . 

Combination of the representation theorems for continuous linear opera­
tors with a modified version of the SET yields an interesting tool for study of 
asymptotic properties of solutions of evolution equations (compare with [5]) and 
allows to compare the SET with more recent results in [10], [8]. 

1. Preliminaries 

As to the terminology used below we refer the reader to [11], [12], [13]. In 
the whole paper X denotes a completely regular Hausdorff space, B(X) de­
notes the algebra of all Baire sets, C(X) denotes the set of all real, bounded, 
continuous functions on X and Mt(X), MT(X), Ma(X) denote the classes of 
all regular measures on B(X) with finite variation which are tight, r-smooth 
and cr-smooth, respectively. The non-negative parts of C(X) and MQ(X) are 
denoted by C+(X) and M^(X), 0 G {£,r,cr}, respectively. 

The bounded set M C Ma(X) (M C MT(X)) is called uniformly cr-smooth 
(r-smooth) if for each decreasing sequence (net) (fa) C C+(X) with | / a ( ^ ) | < c 
for all a and limfa(x) = 0 for all x G X lim sup | m / a | = 0. The bounded 

a <* mEM 

set M C Mt(X) is called uniformly tight if for each e > 0 there exists a 
compact if, K C X , such that |m|lfc < e for all m G M. Here and below 
mf = J f(x) m(dx) , |m| = m + — m~ , where m + and m~ are the positive and 
negative parts of m , respectively. 

The pairs (C(X), MQ(X)) , 0 G {t , r ,c r} , will be studied in duality by 
means of the bilinear form (•, •) defined by (/, m) = mf. If M C Ma(X), 
then we can define a seminorm || • | |M on C(X) by | | / | | M = sup | ( / , m ) | for 

m€M 
each / G C(X). The open balls {/ : | | / | | M < e, / G C(X)}, e > 0, define 
various topologies on C(X). Denoting by Sx the Dirac (point) measure with 
mass concentrated in x G l , one can describe these topologies: 

p - the topology of pointwise convergence which is generated by the semi-
norms {|| • | |M - M consists of a finite class of Dirac measures } , 

/C - the topology of uniform convergence on compact sets which is generated 
by the seminorms {|| • \\M - M — {Sx : x G K} , K C X, K is compact} , 

/?o - the topology which is generated by the seminorms {||-||M : M C Mt(X), 
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M is convex and uniformly tight } , 

/3 - generated by {|| • | |M : M C M T ( X ) , M is convex and uniformly 

r-smooth } , 

/?i - generated by {|| • | |M : M C Ma(X), M is convex and uniformly 

cr-smooth } , and 

u - the topology of uniform convergence, which is defined by the norm || • ||M , 
where M = {6X : x e. X}. This norm is simply denoted || • | |. 

In addition to the above mentioned we will use the usual weak and weak-
star topologies arising from the duality of (C(X), M&(X)) , 6 G {£,r, cr} and 
denoted by w and w* , respectively. The topologies /?n, /?, fli are also called 
strict topologies. Because of the 1-1 correspondence between the Dirac measures 
6X and x G X, the definitions of p, /C and u agree with the commonly used 
definitions. By the words M is bounded we mean that sup |m|X is a finite 

mGM 
number. 

Since X is a Hausdorff space, its one point sets are closed and compact, hence, 
6X G M+(X) for each x G X and therefore p C /C. If M = {6X : x G K}, 

{ n n 

m : m = Y^ ai^xt > 0 < ai < 1 > J2 ai = 1 > 
1 = 1 * 1 = 1 

Xi e K for all z, 0 < i < n, n G N , then M is uniformly tight, convex and 
M C M , hence, K C /30 . 

We are going to show that ft C /C on u-bounded sets. Let (/Q) C C(X) 
be a net such that /C — l i m / a = / G C ( X ) , | | / a | | < 1 for all a and let M 

be uniformly tight, with sup \m\X = c. Then to each e > 0 there exists 
mGM 

K C X, K compact, and an so that ImlIf0 < e/4 for all m G M and 
sup \f(x) — fa(x)\ < e/(2c) for all a > a0. Since 
x€K 

sup | ( / - / a , m) | < 2\m\Kc + sup | / (x) - fa(x)\c < e for all a > a0 , 
mEM i 6 K 

it is clear that {30- lim fa = f. 
a 

If M is uniformly tight, with sup \m\X = c, then for each decreasing net 
m£M 

(Fa) C -S(X) of closed sets with empty intersection lim sup |m |F a = 0 (note 
a meM 

that (Fc) is an open covering of each compact K C X and must contain a 
finite subcovering of K). Now if ( / a ) C C(X), | | / a | | < 1 and fa | 0, then if 
we put Fa = {x : /«(^) > ^} , 

lim sup | m / a | < lim sup | m | F a + ce < ce. 
a meM a meM 
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This shows that (30 C (3 and obviously (3 C /3i C u. 

Due to the known Mackey theorem [6] the strongest locally convex linear 
topology on C(X) yielding the dual M e ( X ) , G G { t , r , a } , agrees with the 
topology of uniform convergence on the convex w*-compact subsets of M&(X). 
This topology is called the strong Mackey topology. To prove that /3Q, (3, and /3i 
agree with the strong Mackey topology, it is necessary and sufficient that each 
relatively iu*-compact convex subset of M&(X) is bounded, uniformly tight, 
r-smooth and a-smooth, respectively. 

From Alaoglu's theorem and the representation theorems in [12] it is easy to 
derive, that the uniformly tight, r-smooth and cr-smooth subsets are relatively 
it/*-compact in Mt(X), MT(X) and Ma(X), respectively. But, the converse 
assertion is not always true. 

Immediately from Varadarjan's result [12, ch. 2, Thm. 28] it follows that /3i 
agrees always with the strong Mackey topology. In [13] it is shown that if X 
is a metric space, then (3 agrees with the strong Mackey topology. If X is a 
complete metric space or a locally compact space, then MT(X) = Mt(X) and 
Po = P (see [3]). If X is a separable space, then MT(X) = Ma(X) and (3 = f3x. 

Many ergodic theorems (cf. [10]) state that if Q is an ergodic probability 

kernel on 1 x 6 ( 1 ) , then p- lim — £ Qkf exists in C(X) for each / G C(X) 
n—юo 71 k=ì 

while the SET deals with the ^-compact classes of functions. This leads to 
the question about the agreement of p and w topologies, especially of their 
compact subsets. Using the relation 6X G M e ( X ) , © G {t , r , cY}, we can prove 
that p C w. In [14] the question what is the greatest subset Z C Ma(X) with 
the property C C C(X), C is uniformly bounded and relatively compact in p , 
then C is relatively compact in cr(C(X), Z) is in detail solved. If we restrict 
our attention only to the sequentially compact subsets, then we obtain from 
the bounded convergence theorem for integrals that p = w on the relatively 
sequentially compact sets. 

2. Ope rators and kernels 

A map Q defined on X x B(X) is called a kernel if Q(x, •) G Ma(X) for 
each x G X, Q(-, E) is measurable for each fixed E G B(X) and sup |Q|(x, X) 

xex 
< oo. We are going to write Qf(x) instead of J f(y)Q(x,dy) provided / is 
integrable and mQ is the measure relating to each E G B(X) J Q(x, E) m(dx) 
if m G Ma(X). We say that Q has the Feller property (FP) if Qf G C(X) for 
each / G C(X). The kernel Q is said to have the strong FP (shortly SFP) if 
Q(-, E) G C(X) for each E G B(X) and Q is said to have the SFP in restricted 
sense (shortly SFPR) if l imvar(Q(x a , •) — Q(x, •)) ---- 0 whenever (xa) C X , 
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x G X , and lim xa = x. 
a 

In the whole paper T is assumed to be a u -continuous linear map, 
T : C(X) -> C(X). We will call T positive if / G C+(X) implies T / G C+(X). 
If given T there exists a kernel Q such that Tf = Q / on C(X), then we will 
say that Q represents T . 

PROPOSITION 2 .1 . 7/ T is ^-continuous, then there exists a kernel Q with 
FP representing T . If in addition T is /3( /3n )-continuous, then Q(x, •) G MT(X) 
(Q(x, •) G M t ( X ) ) for each xeX. 

P r o o f . If T is fix (/3 )-continuous, then for each decreasing sequence (net) 
(fa) C C(X) with P-lim/a = 0 and | | / a | | < 1 for all a p-\imTfa = 0. 

a a 

This can be proved using the definition of /3i (/3), the continuity of T , and the 
fact that for each x G X Tf(x) = (Tf,6x) and (*,5X) is a continuous linear 
functional. 

Similarly if T is /3n-continuous and ( / a ) C C(X) is a net with K-\imfa = 0 
a 

and | | / a | | < 1 for all a , then, since /30 and K agree on the u-bounded sets, 
/30- lim fa = 0 and therefore p - lim T / a = 0. 

a a 

Applying the representation theorems for bounded linear functionals from 
[12] we obtain that to each x G X there exists a measure Q(x, •) G M e ( X ) , 
where 0 G {£, r, cr} according to the topology defining the continuity of T , such 
that Tf(x) = / f(y) Q(x, dy) for all / G C ( X ) . 

It remains to prove the measurability of Q with respect to x. If G G -5(X) 
is open, then there exists a sequence ( /n) C C+(X) such that XG = hm / n 

n—+oo 

pointwise on X. By the bounded convergence theorem Q(x,G) = lim Qfn(x) 
n—>oo 

for each x E l . A s (Q/n) C C ( X ) , Q(x,G) is measurable. But the open Baire 
sets generate B(X), which allows a simple completion of the proof. 
PROPOSITION 2.2. Let Q be a kernel and T be the strong Mackey topology, 
which is defined by MQ(X) , O G {t,r,a} . Then Q represents a T-continuous 
operator T if and only if Q has the FP and mQ G M&(X) for each 
meMe(X). 

P r o o f . If M c Me(X) is w*-compact, then each net (ma) C M has a 
subnet (ma(3) such that w*-\immaf3 = m G M. If Qf G C(X) and mQ G 

MQ(X) for each m G MQ(X) and / G C ( X ) , then w*-\imma0Q = m Q , 

which means that QM = {m : m = m Q , m G M } is iu*-compact. Hence, if T 
is represented by Q , then | | T / | | M = 11/llQM for each / G C(X). This proves 
continuity of T . 
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Conversely let T be continuous in T . Since (Tf,m) = (f,mQ) for each 
/ G C(X) and m G M e ( X ) , the linear functional (-,mQ) is continuous in 
the strong Mackey topology. But the dual of (C(X),T) agrees with MQ(X) , 
hence, mQ G MQ(X) . 

PROPOSITION 2.3 . T can be represented by a kernel Q with FP if and only 
if it is (3i-continuous. If (5 (/?o) agree with the strong Mackey topology, then T 
can be represented by a kernel with FP and Q(x, •) G MT(X) (Q(x, •) G Mt(X)) 
for each x G X if and only if T is (3 (/?o)-continuous. 

P r o o f . See Proposition 2.1, 2.2, and the Preliminaries. 

PROPOSITION 2.4. If (X,d) is a metric space, then T: (C(X),/30) - • 
(C(X),/3o) is a compact operator if and only if the kernel Q representing T 

has the SFPR. 

P r o o f . Let T be a compact operator represented by the kernel Q (by 
Proposition 2.3 Q always exists since T is f3\ continuous). We base our de­
cisions on the fact that /C = fto on the u -bounded sets. The unit ball B C 
(C(X),u) is by T mapped on a u-bounded set B'. For any compact set 
K C. X and / G C(X) we denote by fa the restriction of / to K. If B' 
is a relatively compact subset determined by /C, then {fx : / G B'} is rela­
tively compact in (C(K), || • \\x) . From Ascoli's theorem we can derive that to 
each e > 0 there exists 6 > 0 with the property x, y G K, d(x, y) < 6, then 
var(Q(x, •) — Q(y, •)) <e. Each convergent sequence in X can be considered as 
a compact set, hence the SFPR is proved. 

To verify the converse assertion we use the indirect proof, assuming that Q 
has the SFPR but B' is not relatively /C-compact. Then there exists a compact 
K, K C X , such that {fa : / G B'} is not compact and therefore does not 
satisfy Ascoli's theorem. Then there exists e > 0 such that to each natural n 

there exists a couple x n , y n G K for which d(xn,yn) < — and var(Q(xn , -) -

Q(yn , •)) < e. Since K is compact, we can find a subsequence (n^) and x G K 
such that xnk —> x and ynk —* x as fc —* oo. 

e < v a r ( Q ( x n f c , . ) - Q ( y n f c , . ) ) 

< var(Q(xnfc, •) - Q(x, •)) + var(Q(ynfc, •) - Q(x, •)) , 

and the SFPR allows to make the sum in the right arbitrarily small. This con­
tradiction completes the proof. 
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PROPOSITION 2.5. Let Xbe a separable space and let T be a positive oper-
ator. If Q is the kernel representing T, then Q has the SFP if and only if T 
maps the u -bounded subsets of C(X) onto the relatively p-compact subsets. 

P r o o f . Since p-compact and p-sequentially compact subsets of C(X) 
agree if X is separable, we can work only with bounded sequences. 

Let Q have the SFP. As X is separable, we can find a dense countable subset 
(xrl) C X and define the measure m by m = ]Г 2~nQ(xn). For each x Є X 

П>1 

Q(x,-) is absolutely continuous with respect to m, hence, due to the Radon-
Nikodým theorem Q(x,E) = f h(x,y)m(dy) for all E Є ß(X). Let ( / n) C 

E 

C(X), | | / n | | < 1 for all n. C(X) C L2(X, m), hence, we can find a subsequence 
(fПk) converging weakly (in L2(X,m)) to some / Є L2(X,m). If we define hp 

by hp = min(h,p), p natural, then hp(x,-) Є L2(X,m) for each p and x 
and therefore lim f fПkhp(x,-)m = f fhp(x,-)m while lim f hp(x,-)m = 

fc—>oo p—•oo 

f h(x,-)m by the monotone convergence theorem for each x Є X. As 

\Qf(x)-Qfnk(x)\ 

< 2 / (h(x, y) - hp(x, y)) m(áy) + / (f(y) - fПk (y))hp(x, y) m(áy), 

we can conclude that lim QfПk(
x) — Qf(x)- We knew that | | / n | | < 1. Con-

k—*oo 

sequently \f(x)\ < 1 a.s. m and we can consider \f(x)\ < 1 on the whole X. 
Now using the SFP it is easy to show that Qf Є C(X). 

Conversely, let T map the гi-bounded subsets of C(X) on the relatively se-
quentially p-compact ones. If G Є ß(X) is open, then there exists an increasing 
sequence ( / n) C C(X) such that lim fn = XG and therefore p - lim Qfn = 

n-->oo n—>oo 

Q(- ,G) Є C(X). Consequently Q(-,E) Є C(X) if E is open or closed. As 
Q(x, E) = sup Q(x, F) = inf Q(x, G), where G and F are open and closed 

FÇE G^E 

Baire sets, respectively, for each E Є ß(X), Q(-, E) is at the same time upper 
and lower semicontinuous, hence, continuous. 

3 . S tabi l i ty of so lu t ions of evo lu t ion equa t ions 

In this section we are going to work with a set (Tt)t>o of mappings with 
properties: 

i) Tt: C(X) —> C(X) is a linear operator for each t > 0, 
ii) TtoTs = Tt+S for all s, t > 0 and Tt = I (identity) for t = 0. 

585 



JAROSLAV MOHAPL 

If r is a locally convex Hausdorff topology on C(X), then 

iii) r - lim Ttf = Tff for all t' > 0 and / E C(X), 

iv) to each r-continuous seminorm q there exists a r-continuous semi-
norm q' such that 

q(Ttf)<q'(f) for all i > 0 , / € C(X). (*) 

In [11, ch. 9] (Tt)t>o is called a uniformly continuous (shortly uc) Go-semigroup. 
The linear operator A, Af = l imh~ l(Th - / ) / , is defined on V(A) C C(X), 

li|0 

where ©(A) consists of all / E C(X) for which the limit exists. The operator 
A is called the infinitesimal generator of (Tt)t>o and it has the properties: 

v) V(A) C C(X) is dense in (C(X),T) , 

vi) the operator (/ — n _ 1 A ) _ m exists for each n , m G N and to each 
r-continuous seminorm q there exists a r-continuous seminorm q' 
such that 

q((I-n-lA)-7nf) <q'(f) for all n , m E N, / E C ( X ) , (*') 

vii) the function u(t, x) = Ttf(x), where / E V(A), satisfies the evolution 
equation 

du 
— = -4?z and ^(0, x) = f(x) for all x E X . (**) 
at 

The famous result by Yosida [11, ch. 9] states that if A is a linear operator 
and if V(A) C C(X), then v) and vi) are sufficient for A to be an infinitesimal 
generator of a Co-semigroup provided the topology T is sequentially complete. 

Throughout this section we are going to assume that T denotes one of the 
topologies /?o , f3 and /?i, respectively. Under this assumption we can use Propo­
sition 2.1 and identify the uc Co-semigroup (Tt)t>o with a class (Ql)t>o C 
Me(X) of kernels with 0 E {t ,r , a} according to the choice of T. Obviously 
Qt+s = j Qt(y^.) Qsfa d y ) for aiu, 5 > 0, Q°(x, •) - 6X for all xeX, Qlf(x) 
is continuous in t > 0 and in x E X for each / E C(X) e t c 

The topologies fto , /3 and /?i are generally, not sequentially complete. The 
spaces X for which (C(X),/C) is sequentially complete are called fe^-spaces. 
These spaces are more general than the so-called fc-spaces. X is a fc-space if 
the condition that all intersections of F C X with compact subsets of X are 
closed sets implies that F itself is closed. To fc-spaces belong the locally compact 
spaces, spaces with the first axiom of countability, spaces complete in sense of 
Cech, e t c It can be proved that if X is a kn space, then (3o, (3 and /3i are 
sequentially complete, /3Q and /3 have the same convergent sequences, and if X 
is a D-space, then /?o, fl and /3i have the same convergent sequences (see [13] 
and references there). The introduced observations may be summarized: 
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THEOREM 3 .1 . Let T e {/30,/3,/3i} . If X is a kR-space and if A is a linear 
operator with /D(A) C C(X) and properties v), vi), then the solution u of the 
equation (**) exists for each f E V(A) and it can be expressed in the form 
u(t,x) = J f(y) Qt(x,dy), where (Ql)t>o is a class of kernels representing a uc 
C0-semigroup of linear operators on (C(X),T) . 

Now we are going to extend the SET from [11, ch. 8]. In connection with 
Theorem 3.1 it can be considered as a criterion for study of stability of the 
solutions of (**) provided A is an infinitesimal operator of a uc Co-semigroup. 

THEOREM 3.2. Let T e {/30,/3,/?i} and let (Tt)t>o be a uc C0-semigroup of 

( 1 n \ 

— zC Tkf) has a 
n £ _ ! /riGN 

w-convergent subsequence, then there exists a linear operator U, U: C(X) —» 
C(X), such that u, defined by u(t,x) = Ttf(x), satisfies 

1 l 

viii) T-lim — J u(s, •) ds = Uf for each f G V(A), 
1 o 

ix) U = U2 = TtU = UTt for all t>0, 
x) TZ(U) = Af(I - Tt), M(U) = Tl(I - Tty

A = Tl(I - U) for each t>0. 

P r o o f . (Tt)t>o is a Co-semigroup, hence, we can to each T-continuous 
seminorm q find a T-continuous seminorm q' such that 

q[\YJTkf\<q'(f) forall nGN, f€V(A). (*") 

Therefore we can apply the SET from [11, ch. 8] and show that there exists a 
continuous linear operator U0 on (C(X),T) with the property 

n 

T- lim - V " Tkf = U0f for all / E C(X). 
k=l 

By J u(s, •) ds , t > 0, we understand the function J u(s, x) ds with variable 
o o 

x e X and integral considered, say, in the Riemann sense. If (fn) C (C(X),T) 
converges to zero then to each continuous seminorm q we can find a seminorm 
qf such that 

q I JTtfn dt J < J q(Ttfn) dt < q'(fn), 
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and the last term converges to zero if n tends to infinity. This and linearity of 
Tt explain the relation 

n 1 n 1 

T-limi fTtfdt = T-\im f Tt(^f^Tk A dt = frtU0fdt. 
0 0 k = 1 0 

1 

If we put Uf = fTtUof dt, then for each continuous seminorm q 
o 

q(\JTafds-uA <q(^ J Taf ds-uA +^q J Taf ds 
^ 0 ' ^ 0 ' n 

for each n < t, and the last expression tends to zero if n tends to infinity. So 
viii) is proved, and the proof of ix) and x) can be done by the same arguments 
as in [11, ch. 8]. 

COROLLARY 3.3. Let X be a separable metric space, let T = /?n and let 
(Ql)t>o be a class of kernels representing a uc Co-semigroup (Tt)t>o of linear 
operators on (C(X),T) . If for some s > 0 Qs has the SFPR, then the assertion 
of Theorem 3.2 holds. 

P r o o f . By Proposition 2.4 Ts represented by a kernel with SFPR must be 
a compact operator, hence, Tn = Tn-soTs is compact for each n > s. Therefore 
for no > s 

-J2Tkf = Tno[- ^Tk_nof)+-J2Tkf 
k=l \ k=n0 / k=l 

if / G C(X) and holding / fixed we obtain that lim — J2 Tkf = 0. Since X 
n—>oo n fc=1 

is separable, the compact and sequentially compact subsets of (C(X), T) agree, 

and ( TnQ I — ^ Tk-no ) ) has a u>convergent subsequence. 
^ ^ n k=n0 7/nGN 

R e m a r k 3.4. If the operators in Corollary 3.3 are positive, then SFPR 
can be replaced by SFP and /3n by /3i . 

THEOREM 3.5. Let X be a separable coherent space, and let (Pl)t>o be a class 
of probability kernels representing a uc Co-semigroup (Tt)t>o of linear operators 
on (C (X) ,T ) . If for some s > 0 Ps has the SFP, and if for some r > 0 Pr 

is aperiodic, then there exists a unique probability measure n £ Ma(X) such 
that nP1 = 7r and 

xi) lim var(P*(x, •) — 7r) = 0 . 
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P r o o f . Pl is a probability kernel if it is non-negative and Pt(x^ X) = 1 
for all x G X. Due to the Remark 3.5 and Corollary 3.4 vi i i)-x) hold and for 
each x G X there exists a measure 7rx G M(7(X) such that Uf(x) = irxf. 
To show that TT is unique and independent of x, it suffices to verify that each 
PMnvariant function is constant almost sure with respect to n. Let B G B(X) 
be a P*-invariant set, i.e. let Pl(x,B) = XB(%) for all t > 0 and x G X. 
For some s > 0 Ps has the SFP, hence XB £ C(X). But X is coherent, 
and so or B = X or B — 0, i.e. XB -S constant. Because each PMnvariant 
function can be approximated by linear combinations of characteristic functions 
of PMnvariant sets, each such function is constant. Now n is unique by [11, 
ch. 13, §3]. 

Relation (*") and SET guarantee that Q, defined by Q = Pr, where P r 

is the aperiodic kernel, belongs to a positively recurrent Markov chain with 
invariant measure equal to n. By [10, Corollary 6.3], l imvar(Qn(x, •) — n) = 0 
for each x G X. Equations Pl = QnPt~nr , IT = n Pl~nr allow to complete the 
proof. 

We recall that a positive kernel Q is said to be irreducible if there exists 
a measure m G M+(X) such that for each x G X and E G B(X) with 
mE > 0 Yl Qn(x)E) > 0. If Q is irreducible, then there exists an integer 

n > l 

p, 0 < p < oo , called period of Q , and a collection of disjoint sets { £ i , . . . , Ep} 
C B(X) with the properties QxEi+1 = XE> and QpXEt = XE{ for all 1 < i < p 
(see [10, ch. 2]). 

If X is separable, then Ma(X) = MT(X), consequently /?i = /?o and the /3n-
and /3i-convergent sequences agree. As /C = /3Q on the bounded subsets of C(X) 
(see Section 1 and the remarks preceeding Theorem 3.1), the convergence in viii), 
which was proved under the assumptions of Theorem 3.2 and Corollary 3.3, is 
uniform on the compact sets. 

4. Discuss ion 

The two additional Feller properties SFP and SFPR were introduced in [4] 
and in connection with evolution equations they were studied in [5]. The study 
was restricted to locally compact separable metric spaces and among many re­
markable properties studied there one can find Proposition 2.4 and the question 
under which condition xi) in Theorem 3.5 holds. 

As an example let us consider X = E = (—00,00) with the Euclidean 
topology defining B(X) and the Lebesgue measure £ on B(X). If Qt(x1y) = 

(l/(2nt))1/2 exp{(x - y)2/(2t)} , then Pl, defined for t > 0 by P\x,E) = 

J Q\X, y) £(dy), have the SFPR. 
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It is well known, that the unique invariant measure for Pt is £. But £ is 
only cr-finite, hence (Pl)t>o does not define a uc Co-semigroup with respect to 
/3o (now flo = (3 = fi\). This means that assumption (*") cannot be excluded 
if we want viii) to hold. 

Let us replace E by R, the one-point compactification of E. If the new point 
added to E is A , then R = {A} U E. To each Pl we can define an extension 
P^ from JB(E) to B(R) by 

P~t(x,E) = Pi(x,Ef\E) for x E E , P*(A,£,) = 6AE, 

where E are taken from !3(R). Since the closed subsets of R agree with the 
compact subsets of E (except {A}) and lim Pl(x,K) = 0 for each x G l and 

t]oo 

compact K C E, we can use the Alexandrov theorem [12, ch. 2, Thm. 2] and 

prove that w* — lim P*(x, •) = <5/\. for each x G l . But the last equation implies 
ttco 

viii) with Uf = f f(x)6A(dx) = / ( A ) for each / E 

This convergence is remarkable for several reasons. First, Pl now has not the 
SFP, i.e. x" can hold even if Pl has not the SFP. Second, the tt;*-convergence 
cannot be replaced by the stronger setwise convergence (if (mn) C M(T(X), 
then (rnn) converges to rao setwise if and only if lim mnE = moE for each 

n—+ 00 

E E B(x)). Third, if we denote by M(E) the class of all regular measures on 
B(E) with finite variation (not necessarily a-additive) and by Co(E) the class of 
all / E C(E) with compact support, then the ut*-convergence arising from the 
duality (Co(E),M(E)) cannot be defined by a Hausdorff topology on M(E). 
By the way, the last fact explains why Pl has two invariant measures, the 
cr-additive and cr-finite measure £, and the purely additive probability measure 
8A. 

Comparing the SET [10, ch. 8] (its extended version is given by Theorem 3.2) 
with the approach in [9], [10] one can say that, speaking about seminorms gen­
erating /3o, /3, and /3i , the most limiting is the assumption (*") of uniform 
continuity of the averages. If (*") holds, then SET works for signed kernels 
with more than one invariant probability, while the recurrence approach in [10] 
works mainly for probability kernels admitting at most one invariant probability. 
Nevertheless, this problem can be eluded by restricting of the original kernel to 
suitable subsets of X. SET also does not require B(X) to be countably gener­
ated, while for [10] it is a substantial assumption. The power of the recurrence 
approach can be illustrated by 

PROPOSITION 4 . 1 . Let X be a coherent separable space and let P be a prob­
ability kernel with SFP. Then or P has a unique a-finite invariant measure, or 
for each positive bounded measurable function f ^ Pnf(x) < oo . 

n > l 

590 



ERGODIC THEOREMS FOR LINEAR OPERATORS ON C(X) WITH STRICT TOPOLOGY 

P r o o f . In the proof of Theorem 3.5 we have shown that under the given 
assumptions each P invariant function must be constant. Therefore by [10, 
Thm 3.8] the kernel is or dissipative or recurrent. If it is recurrent, then by [10, 
Corol. 5.2] the cr-finite measure exists. 

By uniqueness we mean uniqueness to a multiple by a constant. SET yields a 
valuable information about the quality of convergence of the averages 

1 n 

— zC Pkf(x) hi the x variable, while in [10] we can find criteria for uni-
71 k=i 

form convergence in / , | | / | | < 1. But if (and only if) there exists a constant 
c > 0 and a probability m so that P(x, E) > cmE for all E G B(X), then 
var(P n (x , - ) — 7r) < qnM for all n E N, x £ X and some positive constants 
M < oo , q < 1, i.e. the convergence is uniform both in x and / . Here / £ C(X) 
and 7T is the invariant probability for P. 
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