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A REMARK ON THE EXISTENCE OF SMALL
SOLUTIONS TO A FOURTH ORDER BOUNDARY
VALUE PROBLEM WITH LARGE NONLINEARITY

LUDOVIT PINDA
(Communicated by Milan Medved’)

ABSTRACT. The existence of small solutions to nonlinear boundary value prob-
lem for the fourth order is proved. The main technique used is obtaining a priori
bounds and applying Leray-Schauder degree arguments.

I this paper we show the existence of at least one small solution to the
nonlinear boundary value problem

Ly = Ly+ny* = y® + (m? + n®)y" + mPny + ny* = f,

0O<m<n,l>4,,mné€N, n =21 with periodic boundary conditions
yW(0) = y((27), i = 0,1,2,3, under the assumption that the function f is in
L'([0,27]), and that the norm || f||; is sufficiently small. We call the solution
of that problem small if it is lying inside a small ball in BC = {y € D(L)},
where D(L) = {y(t) € C*([0,27]), y® € L'([0,27]): y(0) = y(2n),

1 =0,1,2, 3} . L.Lefton in [5] has considered the existence of at least one
small solution of the second order ronlinear boundary value problem L;y+ny® =
y" + p(z)y' + q(z)y + ny® = f with the boundary conditions M,y = ayy(a) +
a2y(b) + azy'(a) + asy'(b) = 0, May = fry(a) + B2y(b) + A3y'(a) + Bay'(b) =0,
ai,fBi € R, 7 = 1,2. He supposed that the operator L; has a one-dimensional
null space spanned by i, and that ¢3 € R(L;) (the range of the operator
L, ). In this paper the null space of L is a four-dimensional space generated by
the functions cosmt, sinmt, cosnt, sinnt. The special form of these functions
enables easy calculations of a priori bounds. The form of the operator £ has been
taken from [7]. In this paper J. D . Schuur has considered the boundary value
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problem z*+ (m2+n?)z" + m®*n? z+h(z) = p(t), «'(0) = «*(27), © =0,1,2,3,
where he has assumed that the function h is |h(z)] < a1+ colz], 0< ey, 0 < e
and hence our result is not a consequence of the Schuur theorem. He has used
a modification of the Cesari method. However, we apply a modification of the
Mawhin method, proposed by L.Lefton in [5]. The main difference between
this paper and [5] consists in considering a four-dimensional null space of L
and in the other form of the nonlinearity. This has made difficulties in degree
calculations. S. H. Ding and J. Mawhin in [2] considered the more
general resonance problem Ly (u(t)) + g(u(t)) = s + e(t,u(t)), where L; is a
Fredholm operator of index zero. The order of L, is m > 3. They assumed that
the null space of L, is generated by the constant, | llim g(v) = 0o, s is the

parameter and e(t, u(t)) is the Caratheodory function.

1. Introduction

Consider the fourth order nonlinear differential operator Ly = Ly+ny?! =
y W 4+ (m? + n?)y" + m?n?y+ny?!, where 0<m <n, >4, ,m,neN. The
linear part of £ is Ly = y® + (m? + n?)y" 4+ m2n2y. The operator £ as well
as L is defined on the domain

D(£)={y(t) € C*((0,2x]), y*We L' ([0,27]): y'(0) = y(21), i =0,1,2,3}.
Hence £: D(L£) — L'([0,27]). We will study the existence of solutions of
Ly=f (1.1)
with periodic boundary conditions
y0)=yP@2r), i=0,1,2,3, (1.2)
and f € L'([0,27]). Define
BC = (D(L), ]l llo) »

where [|yllooc = sup |y(t)| for all y € D(L).
tefo,27]

Note the null space of L: BC — L'([0,27]) as NS(L). NS(L) is four-
dimensional and consists of the functions

NS(L) = {y € BC: y(t) = ¢c; cosmt + ¢z sinmt + c3 cosnt + ¢4 sinnt
ci €R,1=1,23,4}.

Let the range of the operator be denoted as R(L) and I be the identity operator
in BC'. First we study the operator L.
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A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS ...

LEMMA 1.1. Let the operator L be defined on BC'. Then NS(L)NR(L)={0}.

Proof. The problem L(z) =0, z()(0) = ((27), i = 0,1,2,3 is self-
adjoint and therefore the assertion of the lemma is true.

The functions () = cosmt, @a(t) = sinmt, p3(t) = cosnt, p4(t) = sinnt
form a fundamental system of solutions of the equation Ly = 0 and satisfy
the boundary conditions (1.2). It is obvious that zero is the eigenvalue of the
operator L. In this case the Green function does not exist. In the next lemma
we show that the operator L+ K - I has not the eigenvalue 0 for some K € R.

LEMMA 1.2. Let K > %(n2 -~ m?)?. Then 0 is not the eigenvalue of the
operator L+ K - I.

Proof. )\ is the eigenvalue of the problem Ly = Ay if and only if there
exists such a k € Z that ik is the root of the characteristic equation

4 (m? 4+ n?)r? +min® -\ =0.
This happens if and only if k satisfies the equation
Y — (m? 4+ n?)k* + m*n? — A =0.
Denote by g: R — R the function
g(k) = k* — (m? + n?)k + m*n?.

The eigenvalues of the problem Ly = Ay are the values of the function ¢ at
k € Z . The function g is an even function and ming(k) = —}(n*-m?)? k € R,

2 —m?)?. By the form of the function ¢

and hence all eigenvalues A; > —-%(n
it follows that all its eigenvalues form a sequence {A;} which approaches to
infinity as j — oo. If we add a constant K > $(n? —m?)? to the function g,
then g+ K will be positive for all k. The corresponding characteristic equation
will be
4 (m? 4t 4 mPn? + K =0,

and the corresponding differential operator will be Ly + Ky = 0, where
K > X(n? —m?)?.

From this lemma it follows that the equation (L + A - I)y = 0 has only the
trivial solution for K" > $(n? —m?)?. By [3, Lemma 4.3, p. 145] it follows that
the operator L+ K -1 is one-to-cne and maps BC' onto L' (][0, 271']) . Therefore
the operator (L + K - I)™! is completely continuous ([3, Lemma 4.4, p. 145]).
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COROLLARY 1.1. The operator L: BC C L'([0,27]) into L'([0,27]) is

(1) @ Fredholm operator of indez zero,
(i1) a closed operator.

Moreover,
(iii) L'([0,27]) = NS(L) & R(L), where @& is a topological direct sum.

Proof. The conditions of Theorem 1 [7, p. 555] are satisfied.

2. Construction of the operator Rp

Define a projection Py by

4 2m
Pt =1 Y [t dt-ot)  for yeBC.

=17

Note that Py maps BC onto NS(L) and that L'([0,2n]) = NS(L)$& NS(Pp)
holds, where NS(P,) is the null space of Py. The operator L is one-to-one on
BC but its restriction to BCp, = BC N NS(P,) is one-to-one and onto R(L).
Therefore there exists the inverse operator Kp: R(L) — BC N NS(P,) to the
operator L'BC NNS(Py)- Now we construct the operator Kp. The Cauchy

function for the equation L(z) =0 is

Ki(t,s) = [mn(n2 —m?)] - [nsinm(t +s) — msin(t + s)],
for 0<s<t<2r.

Let = € BCp, N NS(Py) be the solution of the equation Lz =y, y € R(L).
Then it has the form

4 ! ‘
z(t) = :z cipi(t) + [mn(n2 —mz)]_1 -/K,(t,s)y(s) ds, for 0<t<2r.

n=1 0

(2.1)
The function ¢ € BCp, and therefore it is true that for all ¢; € NS(L) we

have
2m

/z(t)-%(t)dt::o, i=1,2,3,4.

0
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A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS ...

For the constants ¢;, 1 =1, 2, 3, 4 we obtain

2m t

O=m-c;+ //Kl(t, s)y(s) pi(t) ds dt, 1=1,2,3,4. (2.2)
00

By (2.2) we see that the constants ¢;, ¢ = 1,2,3,4 are uniquely determined.
From periodic conditions it follows that y € R(L) if and only if

27 . i
/61‘%&-3,(3) ds=0, i=1,234, (2.3)
0

is true. Therefore R(L) consists of the functions which fulfil (2.3). By Fubini’s
theorem in (2.2) as well as by putting the constants ¢;, 1 = 1,2,3,4 in (2.3)
we get that

27 27
1
x(t) = - / /[cos mt + sinmt + cosnt + sinnt] - K(t,s) dt y(s) ds
0 s
t (2.4)
+/K1(t,s)y(s) ds, 0<t<2r.
0

Denote the inner integral by I(s) and compute
2w
I(s) = /[cos mt + sinmt + cosnt + sinnt] - Ki(t,s) ds

= [mn(n® — m?)] -1 .{%(2# — s)[n(sinms + cosms) — m(sinns + cosns)]

m . . : n . .
— ~— sinns(sin 2ns + cos 2ns| — 3, sin ms(sin 2ms + cos 2ms]
m

2n
4" gn (m—mn)s cos (3m —n)s sin (3m —n)s
n—m | ) 2
om (n—m)s cos (Bn—m)s sin (3n —m)s
n—m 2 i 2 2 ]
n . (m+n)s[. (Bn+m)s (3n +m)s|
+ ntm Sin 5 -sm D) — COS T_
n . (m+n)s[. (3m+n)s (3m +n)s|
~ g sin 5 -sm 5 —€os | .
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Putting it in (2.4) we obtain

t

27
2(t) = [~rmn(n® —m?)] 7 [ I(s)y(t) ds+ [ Ki(t,s)y(s) ds,
[romoas ]
for 0<t<2n.

Define the function K(t,s) in [0,2n] x [0, 27]

Ki(t,s), 0<s<t<2m,
K(t,s)_—.{ 1(ts) X 4 (2.5)

0, 0<t<s<2r.
Then we can write the function z(t) in the form

2w

z(t) = [-—7rmn(n2 - mz)]-1 /{I(s) — Tr[mn(n2 — m2)] K(t,s)}y(s) ds

0

-
I

2

= [=mmn(n® = m?)) _]/{I(s)—ﬂ'[n- sinm(t + s) — m-sinn(t + s)]}y(s)ds.
0

Denote by

K*(t,s)=I(s)— 7[n-sinm(t +s) —m-sinn(t + s)] . (2.6)

THEOREM 2.1. The form of the inverse operator Kp: R(L) — BC N NS(P,)
to Llgcn NS(Py)

2m
Kpy(t) = [-n mn(n? — m2)]_1 /K*(t,s) y(s) ds, 0<t<2m, (2.7)
' 0
y € R(L) and K*(t,s) is determined by (2.6).
Estimate the function K*(t,s) as
2 2 8
|[K*(t,s)] < 3m(n+m)+ nttm 5 mn 5 (2.8)
mn n? —m
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Using the estimate (2.8) we obtain that

27 2w
/|I\"“(t,s)|2 ds dt < 400,

0 0

and therefore Kp is the Hilbert-Schmidt operator. We have the following esti-
mate for the norm of the operator Kp in L%([0,27] x [0, 27])

2w 2w 3

| Kpll < // [r2m?n?(n? — mz)(‘)]_1 KXt s)|? dt ds
0 0
6

2(n? + m?) 16

“mn(n—m) m?n?(n?—-m?) n?-—m?

< +00.

By (2.6) it follows that Kp is a continuous operator on [0,27] and by [3,
Lemma 4.4, p. 145] we have that the operator Kp is a completely continuous
operator on R(L).

3. A priori bound for Ly
The next lemma is true.

LEMMA 3.1. Let a,b,c,d € R be arbitrary constants. Then (acosmt +
+ bsinmt + ccosnt + dsinnt)?' € R(L), i.e., there ezists such a w € BC,
w € NS(L)* that Lw = (acos mt + bsinmt + ccosnt + dsinnt)?'.

Proof. Denote by y(t) = (acosmt + bsinmt + ccosnt + dsinnt)?'. It
follows from the definition of the projection P, and Corollary 1.1 (iii) that
y € R(L) if and only if Pyy(t) = 0. We investigate the following integrals

2m 2m
I, = /cosi mt-cos’ kt dt, I, = /sini mtsin’ kt dt,
0 0

14+ =2l4+1, k=m,n,

2m 2m
I3 = /rosi mt - cos! ntsinkt dt | I = /sin’ mt sin’ nt cos kt dt

0 0
1+3=2, k=m,n,
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2m 27
Is = /sini kt - cos’ ptsinrt dt, Ig = /sini kt sin’ ptcosrt dt.
0 0

1+3=2l, k,p,r=m,n.

In the integrals I;, I, we have the functions cosmt, sinmt with an odd

exponent for k = m and therefore I; = I, = 0. If ¥ = n we first multi-

ply the trigonometric functions and then we integrate and get that I; = 0,

1=1,2,...,6. Similarly I; =0, 7 = 3.4,5,6 for k = m. Therefore Pyy(t) =0.

LEMMA 3.2. Let ||Cyk|: = o(“ykﬂgé) for some sequence {yr} C BC, yx — 0

uniformly. Then ||yk|loo = O( > (|Af|+|B;°|))‘, for k — oo, where A;‘.Bf
Jj=m,n

are the Fourier coefficients of the function yx for j =m,n.

Proof. We can write that
yr(t) = AX cosmt + BE sinmt + AX cosnt + B sinnt + wy(t),
where wi(t) € NS(L)L. Observe that
Lwy = Lyx — nyi'. (3.1)
Heuce Lyx — nyi' € R(L). Apply the operator Kp to (3.1) to get

wr = Kp(Lyr —nyil). Using the assumption of this lemma and the continuity
of Kp we find

leelloo < C WLkl + lwellF) < C U2 + o D) = O (lull )

(3.2
From the form of the function yp and (3.2) it follows that
P L \ l(v Ul . N ’
el <3 30 (1451+185) = 0 3 (1B ). for k-
j=m,n cj=m,n
(3.3)

This completes the proof.

Remark 3.1. The case that there exists such a subsequence of the se-
quence Y (|A7[ + |B]k[) which is a null sequence cannot happen. If it were

=m,n

true, then there would exist yx = wy and (3.2) would contradict to the assump-
tion on yi . Therefore there exists such a ko that for all & > &

> (1451 +1B5) > 0.

j=m,n
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Denote

ax = \JIAL I +BLI? + 1AL + B,
B = AL+ |B%] + |45 + B

As the ax > 0 for £ > ky we consider the sequences

k k k k
k Am bk _ Bm k __ An bk _ Bn (3 4)
Ay = —, m = ) a, = ) n . .
(6973 [e73 (93 (693

It is true that (ak)? + (%)% + (aX)? + (85)? = 1 for k > k. So there exists
such a subsequence of indices {k,} that

. . . . k
lim af,{’ =a,, lim bf,f = by, lim afl" =ap, lim b =b,,
p—o0 p—oo p—o0 p—oo
and
2 g2 2 2

a,, + b5, +a, +b,=1. (3.5)
From this it follows that at least cne of the numbers a,,, b,,, a,, b, is different
from zero.

PROPOSITION 3.1. If ||Cykli = o(||lyx]|2l) for some sequence {yx} C BC'.
Yk — 0 uniformly, then there exists such a subsequence {yx,} that the corre-

sponding sequences of coefficients {af,f}. {bf,{'}, {a,kl”}, {I)ﬁ”} have the limits

. k . k k . k o
m ayl =a,,, lim b =b,, Im a,” =«,, Lim b,” =b, . and these limits
p—ax p—ox p-—00 p-—00

satisfy (3.5).

LEMMA 3.3. Let the function w € BC be the solution of the equation
L = (a4, cos mt+b,, sinmt+ay, cos nt+by, sinnt)?*, w e NS(L)*t. Suppose fur-
ther that there is no solution v € BC of Lv = (a,, cosmi+b,, sinmt+a, cosnt+
by sinnt)?=Vw . Then there exist § >0, ¢ > 0, such that ||L]|, > ¢|ly||27" for
all y € BC' with |y}l < §.

Lew Lefton proved the same lemma for 4/ — 1 = 5 in [5, Lemma 1.4,
p. 179).
4. Degree calculation

In this section we show the existence of at least one small solution in BC
of the equation Ly = f for small enough f € L'([0,2x]). First we describe
the neighbourhood of the origin which will act as the domain of our compact
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operator. We will use the constants § and ¢ from Lemma 3.3. Let 0 < e < ¢
and A be a ball, centered at the origin in BC , defined by

a={yeBC: |yl < (2 Ilflll)wl'"d}'

c—E€

Note that the radius of A monotonically depended on ||f||1 - Therefore, if we
need to consider smaller functions y, we need only reduce || f||1 -

Consider the operator A¢: A — BC defined as
Ay =Py + Po(tf —ny*) + Kp-Pi(tf —ny*), 0<t<1,  (41)

where P;: L'([0,27]) — R(L) is a continuous projection onto R(L).
LEMMA 4.1. Ay =y if and only of Ly =1tf.

Proof. The proof of this lemma is similar as in [5, Lemma 2.1, p. 176].

We have shown that the solutions of the problem Ly = f are precisely the
fixed points of A;. The next step is to show that the Leray-Schauder degree
d(I— Ay, A, 0) # 0 and hence the equation Ly = f has at least one solution in
A. We construct the homotopy in two steps. Py: L°([0,27]) — L*°([0,27]) is
continues projection into the finite-dimensional space, Kp: L'([0,27]) — BC is
the completely continuous operator, therefore the operator A.: L>([0,27]) —
L>([0,27]) is a completely continuous operator too for all ¢ € [0,27]. Let K(A)

be the set of all compact mappings A: A — BC with the norm
|A|l = sup |Az||. Define h(t) = A; and note that h:[0,1] — A (A) is con-
€A

tinuous. This defines a homotopy of compact transformations.

LEMMA 4.2. The equation (I — Ay)y = 0 has no solution on OA for any
te[0,2n].

Proof. The proof of this lemma is the same as in [5, Lemma 2.2, p. 177]
for 21 -1=5.

By the homotopy invariance of the Leray-Schauder degree we get that
d(I — Ay, A, 0) is independent of t. In particular

d(I — Ay, A, 0) =d(I — Ay, A, 0).
For the second step of the homotopy we define
h(A)y = A%y
=Pyy — Po(ny*) = (1 =N Kp Py(ny*') — AP Kp Py (ny*).
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Here P, 1is the projection onto the space generated by the function w,
w € NS(L)* and Lw = (am cosmt + by, sinmt + a, cosnt + b, sinnt)?. It
follows immediately that iz(t) is a homotopy of compact transformations. It is
true that A% = A4y . So the homotopies can be combined appropriately. We need
to show that A*y = y has no solution on 6A.

LEMMA 4.3. Assume that the assumptions of Lemma 3.2 and Lemma 3.3 hold.
Then for an arbitrary € > 0 the equation Ay =y for X € [0,1] has no solution
y with the norm ||y||co < € ezcept y =0.

Proof. Suppose that there exists such a sequence of solutions {yx}g2,

that for all % >0 AMy, = yx with the norm ||yk|leo < % , Yk # 0. Then we

can write yx in the form
yk(t) = AX cosmt + BE sinmt + A% cosnt + B sinnt + z(t),
where zx € NS(L). Applying I — Py to yx = Ay, we obtain
z(t) = —(1 =N Kp Pi(ny}) = AP, Kp Py (nyd') .
By the continuity of the operator Kp and of the projections P, P, we get
lzilloo = (11 = 2) Kp Pr(nyi') = APuw Kp Pr(nyd) ||, < C - llurlise - (43)

Note that the constant C' does not depend on Ag. Similarly as in Lemma 3.2
in (3.2), (3.3) we get |lyk||lco = O(Bk). By the continuity of Py we obtain that
> (A;c cosjt+B}C sinjt) = O(||lyk|ls) - Using this fact we come to the equality

J=m,n

21
yil(t) = [ Z (A;C cosjt—i—stinjt)j, + O( ;21—1)7 (4.4)

Jj=m,n

and

21
y2(t) = [ > (A} cosjt + BY sinjt)'“]
j=m,n

- (4.5)
+21[ Z (Afcosjt+B;siujt)2'] 2k(t) + 0(B8?) .

Jj=m,n
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Apply Py to A My = yx tosee that Py(ny?') = 6. Therefore Py(nyd) =y yit.
Using this fact and (4.2) we get

KpPi(nyi') = Kp(nyi")

21
= nI\'p<[ Z (A",c cos]'t—{~B]'~c sinjt)] > + O( zl—]). k- oo

j=m,n

With this estimate, (4.2) can be written as
A (yr)(2)

21
= Po(yi)(t) — Po(nyi)(t) — (1 = A )nKp, ([ > (A cosjt + BY sinﬂ)} )

J=m,n

21
— APy o Kp, ([ Z (Ajc cos jt + Bf sinjt)] ) + O(Iﬁtl_l) (4.6)

j=m,n

Now apply I — Py to the equation y; = Ay, where AMyx is given by (4.6)
to obtain

21
zp(t) = — (1 = \)np, ([ Z (A;C cos Jt + stinjt)] )

J=mn

21
— AenPuo K, ([ (45 cos -+ B sino)| >+o(az"‘>.

Jj=m,n
(4.7
Using (4.7) in (4.5) we get

21 20-1
yrkl(yt) ::[ Z (A;c cosjt+B;Sin]’t)] ——21[ Z (4; cosjt+B]k sinjf)] x
1

J=m,n j=mmn

21
X [(I—Ak)n]\'pu<[ Z (Af cosjt—i—stinjt)] >

Jj=m,n

21
+ AP, 0 Kp, ([ Z (A} cos jt + BY sinjt)] ) + ()(/3;‘-‘)}

J=mn

+0(87%) . k- .
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Apply P, to (4.8) and by the Lemma 3.1 and fx — 0 as k — oo we see that
20-1
P, (7] 21[ Z (A;c cosjt—{'-B;c sinjt)] X

j=m,n
21
X [(1 — Ax) Kp, ([ Z (A;c cosjt + Bf sinjt)] )

Jj=mn

21
+AkP@o}ﬁ%<[ > ( famjt+£¢smjo] )])

j=m,n

=o(BY), k- oo. (4.9)

Divide (4.9) by ﬂ:l_l . From (3.4) and S = crar, 1 < ck < co, cog > 1 we have
3 (A;‘ cosjt + Bf sin jt) 2
21 J=m,n

Ut
Ci (e 73

P,

k . k - 21
Y. (A} cosjt+ Bjsinjt)

j=mn

X (1—’\’5)1\’1:’0 o

~ k . koo - 21
2~ (Aj cosjt + Bjsin jt)

j=m,n

+Ax Py o I&’po o

=o(1), k— oo. (4.10)

The sequence {ck}ze, is bounded. So there exists such a subsequence {Ck, }:‘;1

that lim ¢;, = ¢, 1 < ¢ < ¢p. In the sequence of the indices {k,,};o=1 there

p—oo
exists such a subsequence {kp, }oc., that Proposition 3.1 is valid. The sequence
{’\kpr }Zl is bounded, therefore there exists a subsequence which approaches
to Ag, where 0 < Ay < 1. The operators Py, Kp are continuous, therefore we

can do the passage to the limit in (4.10) and we obtain

j=m,n

21
+Xo Py o Kp, ([ Z (a_,'cosjt-}-b_,-sinjt)] )]) =0.

j=m,n

2(-1 21
Py (1] 2:1[ Z (aj cos jt +b; sinjt)] [(1 - Xo) Kp0<[ Z (aj cos jt + b; sinjt)] )

j=m,n
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It is true that L(w) = (am cos mt + b, sinmt + a, cos nt + b, sinnt)*' . Therefore

21
w-—Kpo<[ Z (aj cos gt + b; sm]t)] )

j=m,n

21
_—_PwoKpo<[ > (ajcosjt+bjksinjt)] )

j=m,n

We get

20-1
Po( 2l [ Z (aj cos jt + b; sinjt)] . w(t)) =0.

J=mn

This contradicts the hypothesis that

20-1
[ Z (a;C cosjt-}-afsinjt)] -w(t) ¢ R(L).

j=mn

Denote the linear span of the functions zi,...,z, as (z,...,2,). Now we
show that d(I—A', A, 0) # 0 for small A. Note that A! is already an operator
of finite rank; in fact R(A') C (¢1, v2, ¥3, ¢4, w). Hence we must compute
d(S, A. 0), where A = AN {py, p2, @3, P4, w) and

S = (I - AI)R‘PI»@% (,93,(,94,11)) - (I B PO)y + PO(U yzl) + PU.I{PPI(U yzl) '

y € (@1, 92, 3, Y4, w). We can write the function y in the form

4
y= tipit) +t5 - w(t).

1=1
Hence
[ 27 / 4 21 ]
'I’}; S (_Z tipi(t) + t5w( t)) prt dt
0 =1
1 2 4 21
t1 s1(th,t2,t3,t4,t5) = (E t*‘P'(t)+’5“’(”> p2t dt
0 1=1
t2 s2(ty,t2,t3,t4,t5) 20/ 4 2l
S: | ts | — | s3(t,ta,t3,ts,t5) | = 71;1; J (E ,so.(l)+t511(1)) pat dt
0 =1
ty sa(t1,t2,t3,t4,t5) or s 4 21
ts s5(t1,t2,t3,t4,t5) n% f( > tipi(t) + tsw( r)) pat dt
0 =1
21
ts + 1 Py K, P <l:z tipi(t) + ts wl f)] >J
L
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Note, ss(t1,t2,t3,%4,t5) is a scalar multiple of the function w. We replace the
assumption that there is no solution v € BC of the equation Lv(t) = (an,

cosmt + by, sinmt + a, cosnt + b, sinnt)?~1w(t) by the assumption that all
integrals

/[cl cosmt + ¢z sinmt + ¢3 cos nt + ¢4 sin nt]zl_lw(t)goj (t) dt #0,
0

7=1,2,3,4,if at least one of ¢; € R, ¢; # 0. From that assumption it follows
that there is no solution v € BC of the equation Lv(t) = (¢, cos mt+cy sinmt+

c3 cosnt + ¢4 sinnt)?'~1w(t). So Lemma 4.3 holds with new assumption. Make

the change of variables T(zy,...,z5) = (t1,...,t5), where t; = z;,1=1,2,3,4
5 s 4 2

and ts = (Z zf) “zs + (E :cf) . Thus if (z1,...,7z5) tend to zero and at
=1 =1

least one of z; #0, 7 =1,2,3,4 and z5 # 0, then

4 2n

=0+ {(Zz?)gz,s + (Zx?) ] n%/[gzigoi(t)]2l_]w(t)cpj(t) dt

([ AT )

=1

and

s5(T(x1,...,25)) = <Z$2>IS N (é“)z

=1

5

4 5 4 2 21
+nP,KpPy [ Tipilt) + ((zx> zs5 + ( :n,"-’) )w(t)]
1=1 1

- (;152)“ + (}3#)2 +nP,KpPy ([iz,«pi(t)rl)

=1 1=1

oS (55

5 5
=1

Again, using homotopy invariance, we simplify the operator S oT before calcu-
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lating its degree. Define

5 2 4 2 Ll 21-1
( 5:1 z?) zs5 + ( z:l z?) -2117; I = z.-cp,'(t)] w(t)er () dt
1= 1= 0 Li=
r 5 2] or T 21-1
( i -"/‘.2)7 z5 + (24: If) -2ind I _f: zi‘Pi(t)] w(t)p2(t) dt
z i=1 =1 ™o Li=1
z3 4 2] PO 21-1
Q: |z3| — (( i :c?) x5 + (i ::.2) .2117% f i z,"p,'(t)] w(t)ps(t) dt
T4 L =1 =1 ] 0 Li=1
zs [ 3 2] 2x [ 21-1
(2_531 z?) z5 + (,Ej:l I?) '2‘71% of “:1 -’”:“Pi(t)] w(t)pa(t) dt
) 5 3 ; 2 4 2
(£a1) mra-o [( S 2t) +nPukep (| £ st )]
| =1 1=1 1=1

In the next lemma we show that the equation Q;z = 0 has the trivial solution

for t € [0,1] which is separated, i.e., in its sufficient small neighbourhood there
is no other solution of the equation Q,z =0.

LEMMA 4.4. The equation Qux =0 has the trivial solution in A for t € [0,1]
which s separated.

Proof. If this were not the case, then for all § = % , n € N there would

exist such a vector (z1,,...,x5,) that 0 < |z; | < § = %, 1 =1,2,3,4,5
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and such a t, € [0,1] that Q,,z, =0, i.e,

[(ézl )%15,, + (gz?")z} .210%/[gx5ncpi(t)] 2l—lw(t)‘pj(t) dt
“a-wo( (S et ()] - (S2) ),
7=1,2,3,4,

(4.11)

(iz?ﬂ)%xsﬂ +(1- t,,)[(}i x?ﬁ)z + nPuK, P, ([

1==1

() e ()

i=1 =1

Consider the following cases.

1. Let there exist such a subsequence {z;,, } C {z;,} that
IIjOnJ = max{lzink [, 1=1,2,3,4,5} forall ny and j, €{1,2,3,4}.

Rewrite z;,, = zi,. Then there exists such z;, € R, |z;,| < 1 that z; =
5 s
1=1,2,3,4,5. Consider the expression ( ) :c?") 2

Zin ' Ijon ’ 4
1=1 =1

4 5 s 4 2
It is true that 22 < x?o' <y If (}j :c?")’.nn + (Z z? ) =0, then
Y=

1=1 =1

4 2 ‘4@, 2 4 2
£)  (£7) (£)
—zs 1=1 > 1=1 5 - - 1=1 1 _ 1
n = 5
5 3 5 s s T+2+1 1
Er?)2 (Zzg) (Ez?)+22x?ﬂz§"+z§
i=1 in i=1 " i=1 " i=1 "

This case cannot hold for z5, sufficiently small. Dividing (4.11) by
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[N

gL

s 2
( z?‘) x5, + ( :1:?") and letting j = jo we get
=~ =

1

2177% 7[iz.~ﬂcpi(t)] 2l_lw(t)spj(t) dt
0 1=1

zo([(iﬁ,);l”"' + (i;?ﬂ)z] : (Z;?ﬂ)l_2>, j=1,2,3,4.

i=1 i=1 =1
(4.13)
Writing z;, = 2;,zj, in (4.13) we have

5 % 4 2
20-1 4. _ Z 2 .6 E: 2 4
Tion A]"n— o ( Zin) |25"| xjo,.+ ( zin) Zjon
i=1

Dividing (4.14) by x%_l we get

A, = ([(X_j)ll +( Z)] (izz-"w(t))l_zlrml),

=1 =1
(4.15)
where
1 2m 4 21-1
Aj,,, = 2ln;/[w,~o(t)+ Zzinwf(t)} w(t)pj(t) dt.
0 il??]']o

Consider such a subsequence {zi, } of the sequence {z;,} that z;, — z, as
ng — oo . Then from the Lebesgue dominant convergence theorem it follows that

27 4 20-1
1
A, 2 [ [woaw ) :z.-m(t)] W(t)pj(t) dt £0.
0 l'l;]'lo

5
By the equation (4.15) we get the contradiction, therefore 21-2” is bounded.
~

T

2. Let there exist such a subsequence {z,, } € {z:,} that
|z5nk| = max{[zink |, 1=1,2,3,4,5 for all n; € N} .
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Rewrite z;, = zi,. Then there exists such z, € R, |zi,|] < 1 that

T, = z;, - Ts, . Using this fact in (4.12) we write

4 % 4 2 4 21
(Ez?ﬂ + 1) zgn +(1- tn)[( ‘ zfn) ;.;gn + ::gf‘r]PprPl ([z z.',,sp.'(t)] )]
i=1 i=1 i=1
4 3 4 2 5 1—-1
:o([( z,?" +1) zg" + (Ezfn) zg'_] (Zz?ﬂ) ;:In‘?).
i=1 i=1 i=1
(4.16)
The sequence {t,} is bounded and hence we can use the subsequence t,, — to
for ng — oo and t € [0,1]. Dividing (4.16) by z§_ we get

(Sa)so-al(Saf g o [Sm] )

=1 =1
4 % 4 2 5 -1
:0([<Zz?n 4—1) $§"+(ZZ?"):| (ZZ?") xéi“i).
=1 =1 i=1

4 4
It is true that 1 < Y 22 +1 <5, 0 < (1 —tn)(Zz?' )—%—— The other
T

1=1 =1 5n

expressions are sufficiently small and this gives the contradiction.

Using the homotopy invariance and Lemma 4.4 we obtain that d(Qq, A, 0) =
d(Q;. A, 0). Now we compute the degree of the mapping

1
) r

(£=) )
o fo | = | () wee (522) ]|
(5) )

Tq

Is
Ay

where

- 20—1
Aj = 217]—71? /[Zz,v,(f)] w(t)p,(t) dt, 7 =1,2,3,4.

o 1=l
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Using the Borsuk theorem in generalized form ([1, p. 46-47]), we compute the
. . Qi (z) h(-xz)
degree of the mapping ;. It is necessary to show that
’ ppine Y @] 7 ()
and it is equivalent with Q;(z) # k- Qi(—z), where k > 0 and k = % .
(=

By the fifth component of the mapping §2; we see that this condition is fulfilled.
Therefore d(§;, A, 0) # 0. We have shown that

d(SoT, A, 0)#0 for sufficiently small A. (4.17)

To return to the original operator S we can use the multiplication theorem for
the degree. Note the Jacobian

1 0 0 0 0
0 1 0 0 0 H 5
0 0 0 1 0 ; ;

pT1  pT2 pr3 Py p% [51:§+a]

5 3 4 5
where p denotes the sum 5( > x?)zzs +4 3 z? and o the sum Y z?, re-
i=1

i=1 =1
spectively. It is easily verified that T is a homeomorphism from R’ to R?®
which takes (0,0,0,0,0) to (0,0,0,0,0). By the definition of degree in finite-
dimensional normed space it follows that for any open subset
D C (¢1,92,¢3,94,w) and any p € T(D) is d(T, D, p) = 1. In particular

d(T, D,p)=1 forall peT(A). (4.18)

Let M be an open ball containing T(8A) and so that the equation Sy = 0
has no solutions in M except y = 0. By Lemma 4.4 and from the fact that T
is a homeomorphism with 7(0,0,0,0,0) = (0,0,0,0,0) it follows that such an
M exists. The multiplication theorem for the degree of mapping tells us that

d(SoT,A,0)=Y d(S, 4;0) dT, 4, 4,), (4.19)
4;

where A; are the components of M \ T(OZ). Since T is a homeomorphism,
M\T(8A) has only two components. Let A; be the component which does not
contain the origin and A, the complementary component. Observe that Sy =0
has no solutions in A, ; therefore d(S, A;, 0) = 0. By the definition of S and
(4.17), (4.18), (4.19) it follows that

0#£d(SoT, A, 0)=d(S, A2, 0) 1.
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Therefore d(I — A;, A, 0) # 0. We summarize our result in the next theorem.

THEOREM 4.1. Suppose that the integrals

2
] [c1 cosmt + ¢y sinmt + ¢3 cosnt + ¢4 sinnt]* ™! - w(t) w;(t) dt #0,
0

for 3 =1,2,3,4,

where ¢1,...,c4 are arbitrary constants such that at least one of ¢; # 0,
@1(t) = cosmt, po(t) = sinmt, p3(t) = cosnt, @4(t) =sinnt, w € NS(L)*
18 the solution of the equation

Lw(t) = (am cosmt + by, sinmt + ay, cosnt + b, sinnt)?! |

for arbitrary constants a;, b;, 1 = m,n, satisfying (3.5), n = +1,

A:{yEBC: ”Z’/”oo<( ! ”flll)“—l:l<6}’

cC—E€

and f is sufficiently small. Then the equation Ly(t) = Ly(t) + ny?'(t) = f(t),
1> 4 has at least one solution in A C BC'.
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