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A REMARK ON THE EXISTENCE OF SMALL 
SOLUTIONS TO A FOURTH ORDER BOUNDARY 

VALUE PROBLEM WITH LARGE NONLINEARITY 

L'UDOVIT PINDA 

(Communicated by Milan Medved') 

ABSTRACT. The existence of small solutions to nonlinear boundary value prob­
lem for the fourth order is proved. The main technique used is obtaining a priori 
bounds and applying Leray-Schauder degree arguments. 

In this paper we show the existence of at least one small solution to the 
nonlinear boundary value problem 

Cy = Ly+rjy21 = y ( 4 ) + (m 2 + n2)y" + m2n2y + ny21 = f, 

0 < m < n , / > 4 , /, m , n G N , n = ±1 with periodic boundary conditions 

y(*)(0) = y ( l)(27r), i = 0 , 1 , 2 , 3 , under the assumption tha t the function / is in 

^ ( [ O ^ - r ] ) , and that the norm | | / | | i is sufficiently small. We call the solution 

of tha t problem small if it is lying inside a small ball in BC = {y G D(C)} , 

where D(C) = {y(t) G C3([0,2*]), y(4> G V ( [0 ,2TT]) : y^(0) = y ( ' )(27r), 

i' = 0 , 1 , 2, 3} . L . L e f t o n in [5] has considered the existence of at least one 

small solution of the second order nonlinear boundary value problem Liy+r/y3 = 

ll" "+" p(x)y' + q(x)y + TO3 — / with the boundary conditions M\\j = a\y(a) + 

«2y(b) + a 3 y / ( a ) + a 4 y / ( b ) = 0 , M2y = (3\y(a) + f32y(b) + fay'(a) + /34y'(b) = 0 , 

cxnfli G R , i = 1,2. He supposed that the operator L\ has a one-dimensional 

null space spanned by <£>, and that tp3 G R(L\) ( the range of the opera tor 

L\ ). In this paper the null space of L is a four-dimensional space generated by 

the functions cos mt, sin mt, cos nt, sin nt. The special form of these functions 

enables easy calculations of a priori bounds. The form of the operator C has been 

taken from [7]. In this paper J . D . S c h u u r has considered the boundary value 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34B15. 
Key w o r d s : Cauchy function, completely continuous operator, Leray-Schauder degree. 
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problem x4 + (m2 + n2)x" + m2n2 x + h(x) = p(t), x\($) = xl(2n), i = 0 , 1 , 2 , 3 , 
where he has assumed that the function h is \h(x)\ < c\ + c2\x\ , 0 < c\ , 0 < c2 

and hence our result is not a consequence of the Schuur theorem. He has used 
a modification of the Cesari method. However, we apply a modification of the 
Mawhin method , proposed by L . L e f t o n in [5]. The main difference between 
this paper and [5] consists in considering a four-dimensional null space of L 
and in the other form of the nonlinearity. This has made difficulties in degree 
calculations . S . H . D i n g and J . M a w h i n in [2] considered the more 
genera] resonance problem L2(u(t)) + g(u(t)) = s + e(t,u(t)) , where L2 is a 
Fredholm operator of index zero. The order of L2 is m > 3 . They assumed tha t 
the null space of L2 is generated by the constant, lim g(v) = oo , s is the 

\v\—+oo 

paramete r and e(t,u(t)) is the Caratheodory function. 

1. I n t r o d u c t i o n 

Consider the fourth order nonlinear differential operator Cy = Ly+i]y21 = 

y ( 4 ) + (m2 + n2)y" + m2n2y + ny21, where 0 < ra < n , / > 4 , /, m, n E N . The 

linear par t of C is Ly = t / 4 ) + (m2 + n2)y" + m2n2y. The operator C as well 

as L is defined on the domain 

D(C)={y(t)eC3([0,2*}), y^eLl([0,2ir}): y^(0) = y^(2n), . = 0,1,2,3}. 

Hence C: D(C) —> Z ^ Q O ^ T T ] ) . We will s tudy the existence of solutions of 

£y = f ( l . i ) 

with periodic boundary conditions 

y ( 0 ( 0 ) = y ( l )(27r), i = 0 , l , 2 , 3 , (1.2) 

and / E ^ ( [ O ^ T T ] ) . Define 

B C = ( / ) ( £ ) , H-lloo), 

where ||y||oo = sup \y(t)\ for all y E D(C). 
te[0,2n] 

Note the null space of L: BC -> ^ ( [ 0 , 2 ^ ] ) as NS(L). NS(L) is four-
dimensional and consists of the functions 

NS(L) = | y E BC: y(t) = c\ cos mt + c2 s i n m t + c$ cos nt + c4 sin nt, 

c, E R , i = 1 , 2 , 3 , 4 } . 

Let the range of the operator be denoted as R(L) and I be the identi ty operator 
in BC. First we s tudy the operator L. 
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A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS . . . 

L E M M A 1 .1 . Let the operator L be defined on BC . Then NS(L)C\R(L) = {0} . 

P r o o f . The problem L(x) = 0 , x^(0) = X^(2TT), i = 0 , 1 , 2 , 3 is self-
adjoint and therefore the assertion of the lemma is t rue. 

The functions <fi(t) = cos m r , ^ 2 ( 0 — s i n m r , ^3(1) = c o s n r , <f4(t) = sin nt 
form a fundamental system of solutions of the equation Ly = 0 and satisfy 
the boundary conditions (1.2) . It is obvious tha t zero is the eigenvalue of the 
opera tor L. In this case the Green function does not exist. In the next l emma 
we show tha t the operator L + K • L has not the eigenvalue 0 for some K G R . 

L E M M A 1.2. Let K > \(n2 — m2)2 . Then 0 is not the eigenvalue of the 
operator L -f- K • L. 

P r o o f . A is the eigenvalue of the problem Ly = Xy if and only if there 
exists such a k G Z tha t ik is the root of the characteristic equation 

r 4 + (m 2 + n2)r2 + m2n2 - X = 0 . 

This happens if and only if k satisfies the equation 

k4 - (m 2 + n 2 )k 2 + m 2 n 2 - A = 0 . 

Denote by g: R —i• R the function 

g(k) = kA - (m2 + n2)k + m2n2 . 

The eigenvalues of the problem Ly = Xy are the values of the function g at 

k G Z . The function g is an even function and ming (k ) = —\(n2—m2)2 , k G R , 

and hence all eigenvalues Â  > —\(n2 — m 2 ) 2 . By the form of the function g 

it follows tha t all its eigenvalues form a sequence {Xj} which approaches to 

infinity as j —> 00. If we add a constant K > \(n2 — m2)2 to the function G, 

then g + K will be positive for all k . The corresponding characterist ic equat ion 

will be 

r4 + (m 2 + n2)r2 -f m2n2 + K = 0 , 

and the corresponding differential operator will be Ly + Ky = 0 , where 

K> \(n2-m2)2. 

From this lemma it follows that the eqiuition (L + K - L)y = 0 has only the 

trivial solution for I\ > \(n2 — m2)2 . By [3, Lemma 4.3, p . 145] it follows tha t 

the operator L + I\ • L is one-to-one and maps BC onto L1 ([0, 27r]) . Therefore 

the opera tor (L + K • I)-1 is completely continuous ([3, Lemma 4.4, p . 145]). 
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COROLLARY 1.1. The operator L: BC C Ll([0,2n]) into Ll([0,2ir]) is 

(i) a Fredholm operator of index zero, 
(ii) a closed operator. 

Moreover, 

(iii) La([0, 27r]) = NS(L) 0 R(L), where 0 is a topological direct sum. 

P r o o f . The conditions of Theorem 1 [7, p. 555] are satisfied. 

2. Construction of the operator Kp 

Define a projection P0 by 

4 *•* 

•=1 n 

A y(t) = - > / y(0v.-(0 d l • ¥>.(*) for y Є B C . 

Note that Fo maps B C onto N5(F) and that L1 ([0,2TT]) = NS(F) ® A r S(P 0 ) 
holds, where NS(Po) is the null space of Fo • The operator L is one-to-one on 
BC but its restriction to BCp0 = BC fl NS(Po) is one-to-one and onto It(F). 
Therefore there exists the inverse operator Kp: R(L) —* HC fl NS(Po) to the 
operator L\jin p> MQ(P ) ' Now w e construct the operator Ivp . The Cauchy 
function for the equation L(x) = 0 is 

K\(t, s) = [mn(n2 — m2)] • [ns'mm(t + s) — ms'm(t -f- «s)j, 

for 0 < s < t < 2TT . 

Let x £ BCp0 fl NS(Po) be the solution of the equation Lx — y, ye R(L). 
Then it has the form 

*(*) = ^ c , v , ( j ) + [ m n ( n 2 - m 2 ) ] X • Ki(t,s)y(s) ds , for 0 < < < 2w . 
n = l 0 

(2A) 
The function x G BCp0 and therefore it is true that for all <pt G NS(L) we 
have 

27T 

[x(t)-ipг(t) dr = 0, г = 1,2,3,4. 
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A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS 

For the constants c t , i = 1, 2, 3, 4 we obtain 

Z7Г I 

0 = т г - c . + / I Ki{t,s)y(s)ipi{t)ásàt, ѓ = 1,2,3,4. (2.2) 

By (2.2) we see t h a t the constants c,, z = 1,2,3,4 are uniquely determined. 

From periodic conditions it follows t h a t y £ R(L) if and only if 

2тг 

/ 

д'K"i(2тг,s) 

~дV 
y(s)ds=0, i = 1 ,2,3,4, (2.3) 

is t rue. Therefore R(L) consists of the functions which fulfil (2 .3) . By* Fubini ' s 

theorem in (2.2) as well as by put t ing the constants c , , i = 1,2,3,4 in (2.3) 

we get t h a t 

2тr 2тг 

x(t) = / / [cosmt + s'mmt + cosnt + sinnt] • K\(t, s) dt y(s) ds 

(2.4) 

+ / A^ (t, s) y(s) ds, 0 < t < 2ir. 

o 

Denote the inner integral by I(.s) and compute 

2TT 

I(s) = I [cosmf + s'mmt + cosnt + s innt] • K\(t,s) ds 

r,.,., r { i„..„ r,„,-„, ,..,„ 
— -r— sin nsfsin 2ns + cos 2ns] sin m.s [sin 2ms + cos 2m,s] 

2n 2m 
n . (m -n)s 

m . (n - m)s 
sm ^ 

(Зm — n)s . (Зm — n)s 
cos ^ - sm - -r — 

(Зn — m)s . (Зn — m)s 

n . (m + n)s 
H - sm -ц 

n + m 2 

n . (m + n)s 
s in -?-

(Зn + m)s (Зn + m)s 
cos 

n + m 

. (Зm + n)s (Зm + n)s 
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P u t t i n g it in (2.4) we obtain 

Z7Г I 

x(t)= [-тг mn(n2 - m 2 ) ] " 1 í I(s)y(t) ds + [ Kг(t,s)y(s) ds , 

0 0 

for 0 < r < 2тг. 

Define the function K(t,s) in [0, 27r] X [0,27T] 

K(t,s)=lKlK""" " - — - - > ( 2 5 ) 

Ki(M), 0 < 5 < t < 2TT, 

0, 0 < t 

T h e n we can write the function x(t) in the form 

2TT 

x(t) = [—7rmn(n2 — m 2 ) ] / {l(s) — 7r[mn(n 2 — m 2 ) ] K ( t , s)}y(s) ds 

o 
2TT 

- [ —7rnn/(n2— m 2 ) ] l{l(s) — ir[n' s i n m ( t + s) — m- s i n n ( t + 5)]} 1/(5) ds . 

0 

Denote by 

K*(t,s) = I(s) — 7r[n • sinm(t* + 5) — m • s'mn(t + s)] . (2.6) 

T H E O R E M 2 . 1 . The form of the inverse operator KP : R(L) —> BC D NS{P0) 

i o L\BCHNS(P0)
 l s 

2TT 

KV t/(r) = [-7T m n ( n 2 - m 2 ) ] _ 1 / K*(t, s) y(s) ds , 0 < t < 2TT , (2.7) 

0 

g £ R(L) and K*(t,s) is determined by (2 .6) . 

Es t imate the function K*(t,s) as 

,T-*/ / x n2 + m2 8mn 
A'*(*, ^ ) | < 3TT n + m) + - — + — . (2.8) 

mn nz — ml 
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A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS 

Using the es t imate (2.8) we obtain that 

2тг 27Г 

/ / • ' ' 
\K*(t,s)\z ds dt< + 0 0 , 

o o 

a n d therefore Kp is the Hilbert -Schmidt operator. We have the following esti­

m a t e for the n o r m of the operator Kp in L2([0,27r] x [0,27r]) 

\KP\\ < 

2ҡ 2ҡ 

í I {K2m2n2(n2 - m2)2]"1 • \K*(t,s)\2 át ás 
0 o 

6 2(n2 + m 2 ) 16 
— mn(n — m) m2n2(n2 — m 2 ) n 2 — m 2 

By (2.6) it follows that Kp is a continuous operator on [0,27r] and by [3, 

Lemma 4.4, p . 145] we have that the operator Kp is a completely continuous 

operator on R(L). 

3 . A priori b o u n d for Cy 

The next lemma is t rue. 

L E M M A 3 . 1 . Let a,b,c,d G R be arbitrary constants. Then (acosmt + 

+ bsin mt + ccosnt + c?sinnr)2f G R(L), i.e., there exists such a w G BC, 

w G NS(L)1- that Lw = (a cos mt + b sin mi + c cos nt + d sin nt)21. 

P r o o f . Denote by y(t) = (a cos mt + b sin mt + c cos nt + <i sin nt)21. It 

follows from the definition of the projection P 0 and Corollary 1.1 (iii) tha t 

y G I^(L) if and only if Fo y(i) == 0 . We investigate the following integrals 

2TT 2TT 

I1 = / cos1 m i • cos-7 kr; d£ , I2 = / sin1 m i sin-7 k/ dt;, 

b 0 

i + j = 2l + 1 , k = t7z, n , 

27T 27T 

I3 = / cos* mt • cos-7 nt sin kt d t , I4 = / sin2 77?/: sin-7 nt: cos kt dr , 

0 0 

i + j ' = 2 / , k = 7n, n , 
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2TT 2TT 

J5 — / sin1 kt • cosJ pt sin rt dt, I6 = / sin1 kt sin7 pt cos r t ctt , 

o o 

i + j = 2 l , k, p, r = ra, n . 

In the integrals Ji , I2 we have the functions cos mt, sin mt with an odd 
exponent for k = m and therefore Ij = I2 = 0 . If k = n we first mult i­
ply the t r igonometr ic functions and then we integrate and get tha t Lt = 0 , 
i = 1, 2 , . . . , 6 . Similarly Lt = 0 , i = 3,4, 5,6 for k = ra . Therefore F0y(O = 0 -

LEMMA 3 . 2 . Let ||£yfc||i = ^(||yfc||^,) for some sequence {yk} C BC , y* —> 0 

uniformly. Then \\yk\\QO = o( £ ( |A*| + | £ * | )Y, /o r k -» oo , where A*. B* 
x j=m,n 

are the Fourier coefficients of the function yk for j = ra,n . 

P r o o f . We can write that 

yk(t) = A ^ cosmt + Bm sin rat + An cos nt + H* sin nt + wk(t), 

where u>fc(t) G NS(L)1- . Observe that 

Lw* = Cyk - 7]yll. (3.1) 

Hence /Cy^ — r/yj^ E R(L). Apply the operator Ivp to (3.1) to get 

Wk = Kp(Cyk — mj\l) • Using the assumption of this lemma and the continuity 

of Kp we find 

M o o < C ( | |£y*| | , + | | r f ) < C (o(\\yk\\» ) + ( 2 ^ ) 2 / | | ^ | | ^ ) - 0 ( | | y , ! | ^ ) 

(3.2) 
From the form of the function yk and (3.2) it follows that 

| | y * I U < M £ ( |A*| + | ^ * | ) = o ( Y, (IA^I + 1 ^ ! ) ) , for k->x;. 

(3.3) 
This completes the proof. 

R e m a r k 3.1. The case that there exists such a subsequence of the se­

quence Y2 ( l^vl + l-^jl) which is a null sequence cannot happen . If it were 
j = m ,n 

t rue , then there would exist yk = Wk and (3.2) would contradict to the assump 
tion on y* . Therefore there exists such a k0 that for all k > k0 

52 ( |4| + |Б*|)>0. 
j = m,n 
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Denote 

°k = yJWnF + \BW + \AW + \BW, 

0k = \Ak
m\ + \B^\ + \Ak

n\ + \Bt\. 

As the ak > 0 for k > k0 we consider the sequences 

Ak r>k Ak r>k 
k J^m ik - ° m k ^ n ik D n (1 A\ 

am = . K = , an = , bn = . (3.4) 
&k Otk Oik oik 

It is t rue that ( a m ) 2 + (b m ) 2 + ( a n ) 2 + (b n ) 2 = 1 for k > k0 . So there exists 
such a subsequence of indices {kp} that 

lim a% = am , lim b^ = bm , lim an
p = an , lim bn

p = bn , 
p—• oo p—• oo p—+00 /)—• oo 

and 
«m + ^ + «n + 62

n = 1 • (3.5) 

From this it follows tha t at least one of the numbers a m , brn, a n , bn is different 
from zero. 

P R O P O S I T I O N 3 . 1 . If \\Cyk\\\ --= o(||y*;||oo) for some sequence {yk} C BC , 

Vk ~> 0 uniformly, then there exists such a subsequence {yk } ^-a^ ^ c corre­

sponding sequences of coefficients {am} , {bm } , {an } , {bn} have the limits 

bn , and these limits lim am = am , 
/»—• o o 

lim bm 
p—•oo 

= om , l:.m an
p = 

p—• o o 
= ö n , lim 6n 

/ ) — • o o 

satгsfy (3.5). 

L E M M A 3 . 3 . Let the famction ^u G BC be the solution of the equation 

Lw = (am cos mt-\-brn s'mmt-\-an cosnt~\-bn s'mnt)21 , !<> G NS(L)L . Suppose fur­

ther that there is no solution v E BC of Lv —- (am cos?ni + bm sin m l + a n cosnr + 

bu sin nt)2l-^v . Then there exist 0 >Q, c. > 0, such that \\C\\{ > c | | y | | ^ _ 1 for 

all y G BC with \\y\\c^ < 6. 

L e w L e f t o 11 proved the same lemma for 4/ — 1 = 5 in [5, L e m m a 1.4, 
p. 175]. 

4. D e g r e e ca lcu lat ion 

In this section we show the existence of at least one small solution in BC 

of the equation Cy = / for small enough / 6 L1([0,27r]) . First we describe 

the neighbourhood of the origin which will act as the domain of our compact 
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opera tor . We will use the constants 6 and c from Lemma 3 .3 . Let 0 < e < c 

and A be a ball, centered at the origin in BC, defined by 

A={yeBC: ||-/||«> < (737II/II1) ^ < 4 

Note tha t the radius of A monotonically depended on | | / | | i • Therefore, if we 

need to consider smaller functions y, we need only reduce | | / | | i . 

Consider the operator At: A —> BC defined as 

Aty = P0y + P0(tf - r, y21) + KP • Px (tf - rj y21), 0 < r < 1 , (4.1) 

where Pi: F1([0,27r]) —> R(L) is a continuous projection onto R(L). 

LEMMA 4 . 1 . Aty — y if and only if Cy = tf. 

P r o o f . The proof of this lemma is similar as in [5, Lemma 2.1 , p . 176]. 

We have shown tha t the solutions of the problem Cy — f are precisely the 

fixed points of A\ . The next step is to show that the Leray-Schauder degree 

d(I — A i , _d, 0) 7-- 0 and hence the equation Cy = / has at least one solution in 

A . We construct the homotopy in two steps. P0 : F°°([0, 2TT]) - • L°° ([0, 2TT]) is 

continues projection into the finite-dimensional space, Kp: ^ ( [ O ^ T T ] ) —• BC is 

the completely continuous operator, therefore the operator At: L°°([0,27r]) — -> 

L°°([0, 27r]) is a completely continuous operator too for all t £ [0, 27r] . Let K(A) 

be the set of all compact mappings A: A —> BC with the norm 

= sup | |A ; r | | . Define h(t) = At and note that h: [0,1] —> K(A) is con-

t inuous. This defines a homotopy of compact transformations . 

LEMMA 4 . 2 . The equation (I — At)y = 0 has no solution on DA for any 
r e [0,2TT]. 

P r o o f . The proof of this lemma is the same as in [5, Lemma 2.2, p . 177] 
for 2/ - 1 = 5 . 

By the homotopy invariance of the Leray-Schauder degree we get tha t 
d(I — At, Z\, 0) is independent of t. In particular 

d(I - A!, Z_, 0) = d(I - A0 , -4, 0 ) . 

For the second step of the homotopy we define 

h(X)y = Axy 

= P0y - PQ{T, y2') - (1 - A) A > />, (r, y2') - A Pw KP Px (,, ?/2') . 
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A REMARK ON THE EXISTENCE OF SMALL SOLUTIONS ... 

Here Pw is the projection onto the space generated by the function w, 
w G NS(L)1- and Lw = (am cos mt + bm sin mt + an cos nt + bn sin nt)21. It 
follows immediately that h(t) is a homotopy of compact transformations. It is 
true that A0 = Ao . So the homotopies can be combined appropriately. We need 
to show that Axy = y has no solution on dA. 

LEMMA 4.3 . Assume that the assumptions of Lemma 3.2 and Lemma 3.3 hold. 
Then for an arbitrary e > 0 the equation Axy = y for A G [0,1] has no solution 
y with the norm \\y\\oo < £ except y = 0. 

P r o o f . Suppose that there exists such a sequence of solutions {yk)kLi 

that for all -j- > 0 AXkyk = yk with the norm ||2/jt||oo < ~r , yk ^ 0. Then we 

can write y^ in the form 

yk(t) = Am cos mt + Bm sin mt + An cos nt + Bk sin nt + Zk(t), 

where Zk G NS(L). Applying I - PQ to yk = AXk yk , we obtain 

zk(t) = - ( 1 - A) KP P, (r, y\l) - X Pw KP Px (V y\l) . 

By the continuity of the operator Kp and of the projections P\ , Pw we get 

Halloo = \\(l- X)KpP(Vyf) - XPwKpP1(Vy2
k
l)\\oo < C • \\ykC • (4-3) 

Note that the constant C does not depend on A* . Similarly as in Lemma 3.2 

in (3.2), (3.3) we get ||yjt||oo = O(ftk)- By the continuity of P0 we obtain that 
]T (Ak cos jt + Bk sin jt) = O(||2/*||oo) • Using this fact we come to the equality 

УІV) = ^2 (Aк cosjt + Bкsinjt) 
-.2/ 

j = m,n 

+ o(ßtl~l), (4.4) 

УÎ'(*) = 
-.2/ 

У^ (A*cosj* + Б*sinj*)' 
г 

+ 2/| V^ (A) cosjt + B) sin jt)21 
П 2 / - 1 

j = m , r J 

г,W + o(/?Г2) 
(4.5) 
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Apply P 0 to AXkyk = yk to see that Po{rjy2
k

l) = 0. Therefore Pi(r/yf) = rj y 
Using this fact and (4.2) we get 

KpPl(T]yl') = Kp(T1yll) 

2/ 

Ki ^ (Ak cos jt +Bk sinjt) 
j = m,n 

2/ 

+ ö ( / 3 4 ' - 1 ) , k-+OC, 

With this estimate, (4.2) can be written as 

AXk(Vk)(t) 

= Po(yk)(t) ~ Po(r, yV)(t) - (1 - A, )T,KPB 
Y, (Ak

}cosjt + B^smjt) 
j = m, n 

\k V PIL, O Kp0 | VJ ( ^ c o s j ť + jB^sinjť] 
1 2 / 

j = m,n 

+ o(ß: 
4 Í - P 

T2I 

(4.6) 

Now apply I — P 0 to the equation yk = AXkyk , where AXkyk is given by (4.6) 
to obtain 

zk{t) = -{\-Xk)r)KpA 

- \krjPw o KPo ( 

Using (4.7) in (4.5) we get 

У^ (Aţcosjt + Bţsinjt) 
j=m,n 

Y^ (Ahcosjt + Bj sinjt 

l2Г 

j = m, 

2/N 

+ o(øt'-ì) 

(4.71 

vl'(t) J2 (Ak cosjt+ Bk sinjt) 

(1 - Xk)rjKp0 

XkvPw ° A>0 

2/ 

2/ 
- 2 / - 1 

^ ( ^ c o s j l + P f s m j t ) 
= m,n 

J2 (Aţcosjt + Bţsinjt) 
j = m,n 

V^ (A* cos jt + B* sin ji) 
•j=m,n 

+ O(0«'-2), Á - ^ o c . 

2/ 

+ 0(/i4 /-1 

(4 .8 ) 
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Apply P0 to (4.8) and by the Lemma 3.1 and /?* —> 0 as k —> oo we see t h a t 

P o [ » 7 2 / f " _ ^ (Aj cos jt + Bj sin jt) 

( l - A * ) A ' P o Y^ (Aţcosjt + Bţsinjt) 
j=r> 

2/> 

+ XkPwo KPo I ] Г (Aţcosjt + Bţsinjt) 
- ,2/N 

j= m,n 

^o(ßl'-1), k-yoo. (4.9) 

Divide (4.9) by (3%l l . From (3.4) and /?* = CkOik , 1 < Ck < c0 , c 0 > 1 we have 

/ 
Po 

21 
41-1 

_ ( . 4 } c - j ť + B*8Ín i í ) 
j=m,n 

-, 2/-1 

Ö f c 

( 1 - A * ) A > 0 

/ 

V -

_ ( A j c o s j í + B^sinjť)' 

<** 

2/\ 

+\k Pw o KPo 

_ (A* cosjt+ B1* sin jt) 
j=m,n 

Oik 

= o ( l ) , k —• o o . 

2/\ 

(4-10) 

T h e sequence {ck}°<L1 is bounded. So there exists such a subsequence {ckp } _1 

t h a t lim c* = c, 1 < c < c 0 . In the sequence of the indices {kp}°_l there 

exists such a subsequence {kPr}r=l tha t Proposit ion 3.1 is valid. T h e sequence 

{Afcpr } is bounded, therefore there exists a subsequence which approaches 

to A0 , where 0 < A0 < 1. T h e operators P0 , Kp are continuous, therefore we 
can do the passage to the limit in (4.10) and we obtain 

P ° r ; ~ ~ - C (»j c o s Jt+ bj sin jt)\ ( l - A o ) K p J ^ (aj cos jt + b, sin jt)\ J 
V C lj = m,n J L \lj = m,n J / 

+A 0 Pu<o/ŕp 0 í VJ (aj cos jt + Ь,sin jt) I 1 
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It is t rue t h a t L(w) = (am cos mt + bm sin raf + an cos nt + bn sin nt)21. Therefore 

= K» 2_] (dj cosjt + Ьj sin jt) 

j = m,n 

2/N 

Pw o KPo I У ( a ; cosjt + bjk sin jt) 

2/> 

We get 

n i 2. 2_] («> cos j f + Ьj sin jt) 

• j=m,n 

This contradicts the hypothesis that 

2/-1 

w(t) = 0 . 

(ć COSjt + Ö SIП jt) 

j = m,n 

2/-1 

Ц f ) <£ R(L). 

Denote the linear span of the functions x\,. . . , xp as (x\,. . . , xp) . Now wc 

show tha t d(I — A1, A 0) 7̂  0 for small A . Note that A1 is already an operator 

of finite rank; in fact R(A1) C ( ^ 1 , ^2? <f°3, ^ 4 , ^ } . Hence we must compute 

d(S, A, 0 ) , where A = A D ((^1, v?2, c^3, ^ 4 , ^ ) and 

V £ (^ i i V-)2- ^3? ^ 4 , ^ ) • We c a n write the function y in the form 

4 

y = ^ f l V » ( * ) + *5 -w(t). 
1=1 

Hence 

27T / 4 

« 5 l ( ^ l , f 2 , f з , f 4 , f 5 ) 

• S 2 ( f l , f 2 , Г з , f 4 , f 5 ) 

• $ 3 ( ^ 1 , ^ 2 , ^ 3 , f 4 , f 5 ) 

^ 4 ( ^ 1 , ^ 2 , ^ 3 , ^ 4 , ^ 5 ) 

_s5(t 1,^2, ^З Î -U, f ) 

2тг / 4 \ - ' 
^/- / £ * w ( 0 + *5™(*) ^ i t d t 

*" 0 \ i = l / 

2тг / 4 \ 2 / 

ЧL I ]€ti >i{t) + t5w(ł)) >2tdt 
ҡ 0 \ .'=i / 

2тг / 4 

Ą I £ «.¥>. 
^ 0 \ . = 1 

f/1 / Í £ * . ^ ) + *5w(f)) 
ҡ 0 \ . = i / 

(O + tsWO >зt dt 

2?r / 4 

J 
0 

ts +rjPwKPP\ 

) + t5w(t)) ?At dt 

Y; u>i?i(t) +15 w(t) 
1=1 
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Note, 5 5 ( t ! , t 2 7 t 3 , t 4 , t 5 ) is a scalar multiple of t h e function w . We replace the 

as sumpt ion t h a t there is no solution v 6 BC of the equat ion Lv(t) = (am + 

cos m i + bm s i n m t + an cos nt + bn sm nt)2l~lw(t) by t h e as sumpt ion t h a t all 

integrals 

27Г 

/ [ci cos mt + C2 sin mt + Cз cos nt + c 4 sin nt]2 l w(t)(fj (t) dt ф 0 , 

j = 1,2 ,3 , 4 , if at least one of a; E R , C{ ^ 0 . From t h a t a s sumpt ion it follows 

t h a t there is no solution v G BC of the equation Lv(t) = (c\ cos rat + c 2 s i n m t + 

c 3 cos n i + c\ sinnt)2l~lw(t). So Lemma 4.3 holds-with new as sumpt ion . Make 

the change of variables T ( x a , . . . , x 5 ) = ( t i , . . . , t5) , where tj = xj , i = 1 , 2 , 3 ,4 

/ 5 \f / 4 \2 

and t 5 = ( 52 x ? ) x 5 + ( X) x2 ) . T h u s if ( x i , . . . , x 5 ) t e n d to zero a n d at 

least one of x j ^ 0 , j = 1,2 , 3 ,4 and x 5 ^ 0 , t h e n 

5 i ( T ( x 1 , . . . , x 5 ) ) 

- 0 + 
/ 5 v § / 4 \ 21 i 7 r 4 i 2 ' " 1 

( 5 > 2 ) x* + ( I > ? ) 2/^-/ £*-*•(*) ^ )ww 
Л i = l ^ V i=l ' J o í = 1 

dť 

and 

5(T(i1,...,i5)) = (52xf) * 5 + ( Ş > ? 

+ ríP^AVPl 

І = l 

4 

4 Ҳ 2 
„2 

. = 1 

5 

^xW(t)+((E^y.5+($:x?) jцí) 

= (5>?)"*5 + ( 5 > ? ) +nPwкPp1\\j2x,<Pi(t)\2l\ 

2Г 

5 ч I — 1 ^ 
2 

J X 2 = 1 

Again, using homotopy invariance, we simplify the operator S o T before calcu-
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lat ing its degree . Define 

üt. 

xi 

X2 

xз 

X± 

«5 J 

( E X ? ) 2 X 5 + ( Ž X ? 

( E x ? ) ! - + ( E x ? 

(Ex?) f x 5 + (Ex? 

(£.?)* •. + (!*? 
5 

( . E x ? ) 2 x 5 + (l-ť) 

•2/ЧÌJ 
^ 0 

-. 271 

• 2 / , ! / 
^ 0 

1 2 * 

• 2 / r , ! / 
^ 0 

27, 

•2 / - ÌJ 

£ *i ¥>•(*) 
1 = 1 

£ xцpi(t) 
ť = l 

£ xnpi(t) 
o Lť=i 

w(t)<pi(ť) d t 

w(t)cp2(t) dt 

w(t)ipз(t) dt 

£ *w(t) 
1 = 1 

F ^ F ^ K p F ! 

+ 

(1 - ť ) o 

(1 - ť ) o 

(1 - t ) o 

(1 - ť ) o 

(- -t)° 

4 \ -

ExП 
ť = l / 

( E X ? ) 2 | X 5 | + ( E = 

( . E x ? ) 2 | x 5 | + ( E x f 

( . E X ? ) 2 | X 5 | + ( E X ^ 

( E X ? ) 2 Ы + ( E Д 

ti)(ť)<ŕ 4(ť) dť 

f [ £ *iч>i(ţ) 
\L;=i 

)T(,5'0 
УJtè-O 
ľ]'(.5-0 
)І'(.5-0 
)1(5/0 

1-2 

1-2 

1-2 

In the next l e m m a we show that the equation fltx = 0 has the trivial solution 

for t e [0,1] which is separated, i.e., in its sufficient small neighbourhood there 

is no other solution of the equation £ltx = 0 . 

L E M M A 4 . 4 . The equation £ltx = 0 has the trivial solution in A for t G [0,1] 
which is separated. 

P r o o f . If this were not the case, then for all S = — , n £ N there would 
n 

exist such a vector ( . r l n , . . . , x 5 n ) tha t 0 < | x l n | < S = — , i = 1, 2, 3, 4, 5 
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and such a < n G [0,1] tha t fttnXn = 0 , i.e., 

2 / - 1 

w(t)(fj(t) dt ïxľ*». + (ľ£X)1 -^l flżwv 
i=l ' V t = l ^ J o L t = l 1 

= (i-g0([(t4) ! |,d+(E<)2[-(E<) 
j = 1,2,3,4, 

and 
(4.11) 

( ^ < ) 2 х 5 п + ( 1 - < „ ) ( $ Х - ) +ЧР«,КРР1(\^Х. 
^ . = 1 ' | _ ^ » = 1 ' \ ' - » = 1 

4 - 2 / 4 

a-*»)*( ( ż ^ ł | я 5 - l + (è< 5 Ч / - F 

£4 
t = l 

Consider the following cases. 

1. Let there exist such a subsequence {xin } C {xin} t ha t 

(4-12) 

\xJonk\ = max{\xink\, i = 1 ,2 ,3 ,4 ,5} for all nk and j 0 e { 1 , 2 , 3 , 4 } . 

Rewrite #,• = £,n . Then there exists such Zin G R , |z.;n | < 1 tha t X{ = 

*-„ " x>o , z ^ 1 ,2 ,3 ,4 ,5 . Consider the expression ( Yl xf ) 2-r5n + ( £ a,? ) 
V t = i n / n ^,=i , n / 

It is true that x\n < x) < £ x\ . If ( £ *? n )*s 5 n + ( £ ^ V = 0, then 
t=i v t = i 7 v t = i 7 

_ a ľ 5 n = 
(#,<ľ (#,<)' ( # , < / 1 1 

(£*)' tè-0 ( # < ) « # « + < ~1+2+l < 

This case cannot hold for x5n sufficiently small. Dividing (4.11) by 
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/ 5 ч§ / 4 ч2 

( "C XЬ ) X5n + ( "C *ľn ) a i l d lettІПg j = 10 WЄ get 
ч t = l ' v t = l ' 

2\ (t)\ w(i)Vj(t)dt 

= 0 

V 

0 , _ 1 

(E<) !NJ+(E<)T(E*0 
4 1=1 7 v 1=1 ' J v 1=1 ' 

/I"/ 5 

j = 1 ,2,3,4 . 

(4.13) 
Writ ing x,n = ZinXj0n in (4.13) we have 

* r • AÄ»-a=o([(è* ľ-) ł | ж в-Һ í r s-+(è* ľ-)"x^] (éл r ť") l"a^-4) 
4 Ч 2 

2 

4 i = l ' 

(4.14) 

= °([(XX)Vi-4. + (£*.? 

Dividing (4.14) by £ j 0
/ _ 1 we get 

E ^ ) ^ ^ J - < + ( E < ) T £ Z , " ^ 0 ' " 2 | ^ J ) ' Л І 0 „ = 0 

(4.15) 
wher 

_,7Г -

Л i - = 2 Z ^ / | ' 
o -

- , 2 / - l 

w.(0+£*-.-?.(<) 
t = l 

»^Іo 

ЧOv^o (0 <**• 

Consider such a subsequence {.r,n } of the sequence {x,n} that z%n —> zlQ as 

njt —> oo . T h e n from the Lebesgue dominant convergence theorem it follows t h a t 

x J o n 

ZҠ 

2"ï/ 
- , 2 / - l 

<ЃІorø+ "C^o^1^) 
t = l 

Î ^ І O 

«;(ť)Vj.(<)dťҙ-0. 

By the equation (4.15) we get the contradiction, therefore ^ zfn is b o u n d e d . 
t = i n * 

2. Let there exist such a subsequence {%in } C {#t n } t h a t 

| x 5 n J = m a x { | x . | , 1 = 1,2,3,4,5 for all nk G N} . 
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Rewrite Xin = Xin . Then there exists such Zin E -R, \zin\ < 1 tha t 

xln = Zin - x5n . Using this fact in (4.12) we write 

(XX+1)*4.+(1-'-) ( E < ) 2 < + < ^ / ^ ^ ( [ E 2 - " ^ W ] 2 ' ) 

--{[(pl^<-(pl)2<}(plT<-} 
(4.16) 

The sequence {tn} is bounded and hence we can use the subsequence tnk —> ro 

for rifc —> oo and to E [0,1] . Dividing (4.16) by x\ we get 

(XX + I)+(I-M[(£<T^+<^^^ 

І = I 
£ < + * < + E*? 

4 ч 2 
2 

Ï = 1 

/ - l 

E< <"4 • 

ther It is t rue that 1 < X > - + 1 < 5 , 0 < (1 - tn)( £ zln) ~Y~ - T h e ° 
t = l ^ 1 = 1 " ' x5n 

expressions are sufficiently small and this gives the contradiction. 

Using the homotopy invariance and Lemma 4.4 we obtain tha t <1(O0, -4, 0) = 

d(Q,\, A, 0 ) . Now we compute the degree of the mapping 

(i.*0*- + (M 

Qт 

x2 

xз 
x4 

x5 

лĄ 

(à-rf"+(å-tf 
(è'tf-i+(Ř-tf 
(ś-O^ЧI-O' 

(,è/0f-
where 

2тr 

Ä, =2lr,^- / J > W ( ŕ 
2/-1 

u.(ť)v>(ť)dť, j = 1,2,3,4. 
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Using the Borsuk theorem in generalized form ([1, p . 46-47]), we compute the 

íli(-x) 
| f i , ( - x ) | 
lfil(*)l 

degree of the mapping SI\ . It is necessary to show tha t . ) !. ^ 
\il\(x)\ 

and it is equivalent with Q\(x) ^ k • Sl\(—x), where k > 0 and k = 
\il\(-x)\ 

By the fifth component of the mapping Sl\ we see tha t this condition is fulfilled. 

Therefore d(Sl\, A, 0) ^ 0 . We have shown that 

d(S o T , Z l , 0 ) / 0 for sufficiently small A . (4.17) 

To re tu rn to the original operator S we can use the multiplication theorem for 
the degree. Note the Jacobian 

Jт 

1 

0 
0 
0 

pXï 

0 
1 
0 
0 

0 
0 
1 

0 

0 
0 
0 
1 

0 
0 
0 
0 

px2 px3 pxi pг [бxf + eг] 

5*2+ £ ; >o. 

/ 5 \f 4 5 
where p denotes the sum 5( ^ xl) x$ + 4 S xl a n ( ^ a the s u m 1C xl > r e " 

spectively. It is easily verified that T is a homeomorphism from R 5 to R 5 

which takes ( 0 , 0 , 0 , 0 , 0 ) to (0 ,0 ,0 ,0 , 0 ) . By the definition of degree in finite-

dimensional normed space it follows that for any open subset 

D C (<f\ ,</?2, <r°3, <^4-w) and any p G T(D) is d(T, D, p) = 1. In par t icular 

d(T, D,p) = l for all p є Г ( 4 ) . (4.18) 

Let M be an open ball containing T(dA) and so t h a t the equat ion Sy — 0 

has no solutions in M except y = 0. By Lemma 4.4 and from the fact t h a t T 

is a homeomorphism with T(0, 0, 0, 0, 0) = (0, 0, 0, 0, 0) it follows t h a t such an 

M exists. T h e multiplication theorem for the degree of m a p p i n g tells us t h a t 

d(S oT,Л,0) = Y^ d(S, Л}, 0) • d(T, Л, Л,), (4.19) 

where Aj are the components of M \ T(dA ) . Since T is a homeomorphism, 

M\T(dA ) has only two components. Let A\ be the component which does not 

contain the origin and A2 the complementary component. Observe t h a t Sy = 0 

has no solutions in A\ ; therefore d(S, A\, 0) = 0. By the definition of 5 and 

(4.17), (4.18), (4.19) it follows that 

0^d(SoT, A, 0) = d ( 5 , _42, 0 ) - l . 
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Therefore d(I — A\, A, 0) ^ 0 . We summarize our result in the next theorem. 

T H E O R E M 4 . 1 . Suppose that the integrals 

I [c\ cos mt + C2 sin mt + C3 cos nt + C4 sin nt] ~ • w(t) ipj(t) dt ^ 0 , 

0 

for j = 1 ,2 ,3 ,4 , 

where c i , . . . , C 4 are arbitrary constants such that at least one of c t 7̂  0 , 

ipi(t) = c o s m r , V"2(0 = sin m i , ip$(t) = cosnt, ^^(t) = s i n n r , tv E NS(L)1-

is the solution of the equation 

Lw(t) = (am cos mt + bm sin mt + a n cos n t + bn sin nr) , 

for arbitrary constants a{, bj, i = m,n, satisfying (3 .5) , 77 = ± 1 , 

Zi = [y e BC : MvMoc, < ( ^ ll/Hi) ^ < S), 

and f is sufficiently small. Then the equation Cy(t) = Ly(t) + rfy2l(t) = f(t), 

I > 4 has at least one solution in A C BC. 
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