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MINIMAL GENERICS OF SOME
REGULAR VARIETIES

HILDA DRASKOVICOVA—JERZY PLONKA

ABSTRACT. Given a variety K denote by K, the variety of all algebras satisfy-
ing all regular identities which hold in X . Let m4(K) be the minimal cardinal of
an algebra generating K . We find under some assumptions that the sum S(2) of
the direct system @A of pairwise disjoint minimal generics A; of the non-trivial
independent varieties K;, j = 1,2,...,n, is a minimal generic of the regular
variety K,, where X =K1V K3V .--VK;, and my(K,) = z;.'=1 mg(K;j).

In [10; Theorem 2] the following was proved (for the definitions see below).

Theorem A. If K; and K2 are two incomparable independent varieties, A;
and A, are carrierwise disjoint minimal generics of K1 and Ko respectively,
m(K;) = |Ai| = my(K;) (i = 1,2), there ezists a homomorphism h? of A, into
Az and K = K1V K, then S(2) is a minimal generic of K, and my(K,) =
mg(K1) +my(K2).

The aim of the present paper is to generalize this theorem to the case of
finitely many independent varieties (Theorem 1 below). The condition (1) in
Theorem 1 is not suitable for the induction argument (see Remark 2 below)
hence we give here a straight proof. Moreover we replace the condition on a
homomorphism h? in Theorem A with the weaker condition (2).

In this paper we consider only algebras of a given type 7: FF — N, where F'
is a set of fundamental operation symbols and N is a set of positive integers (i.e.
there are no nullary symbols in F'). Further we assume that 7(F)—{0,1} #0.

An identity ¢ = ¢ is called regular (see [8]) if the sets of variables in ¢ and
¥ coincide. A variety K is called regular if all identities in Id(K) are regular. X
is called non-regular if a non-regular identity belongs to Id(X) . Regular varieties
were studied by many authors (see e.g. [9], [10], [8], [2], [7], [6])-

For a variety K (of algebras of type 7) we denote by K, the variety of
algebras of type 7 defined by all regular identities from Id(K). Due to A.
Tarski it is well known that for every variety K there exists an algebra
A generating K by means of direct products, subalgebras and homomorphic
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images, i.e. K = HSP(A). Such algebras A are called generics of K (see [3]).
A generic A of K will be called a minimal generic of K if for every generic B
of K we have |A| < |B| (where |A| denotes card A). Finding minimal generics
of a variety K is important because the smaller a finite generic is, the easier it
is to decide if a given identity ¢ = 1 belongs to Id(K) or not.

For an algebra A we denote by R(A) the set of all regular identities of type
T from Id(A). For a variety K let R(K) be the set of all reqular identities from
Id(K).

The variety K is strongly non-regular (see [2]) if there exists a binary term
¢(z,y) containing the variable y such that the identity ¢(z,y) = = belongs to
I4(K).

For a variety K of algebras of type 7 let m' be the cardinality of a free
algebra with R, free generators over K. We define the number m(K) putting

m(K) =1 if K is trivial,
m(K) =min{m: 1 <m <m' and Jaex(|4| =m)} if K is nontrivial.

Let my(K) denote the cardinality of ¢ minimal generic of K. Obviously for
every variety K we have my(K) > m(K). It is known ( ee [10] or cf. [6]) that if
K is a non-regular variety of type 7, then my(K,) <my(K) + 1.

Varieties Ky, ..,K, of the same type are said to be indepe dent (for n =2
see [4]) if there is an n-ary term p such that the identity p(zi,...,z,) = 7,
holdsin K;, i =1,2,...,n. K;VKV---V K, will denote the smallest variety
containing all K,; K; x Ky x --- x K, will d note the cla s of all algebras
A which are isomorphic to the direct product A; X Ay x -+ A, of algebras
Aiek,,1=12,...,n.

The pro f of the following Lemma can be found in [4], [5], [1].

Lemma 1. If Ky,...,K,, are independent varieties, then K1 AKa A AK,
consists of one-elem nt lg bras only and each lgeba A € K1V K2V -+ VK,
has, up to isomorphism a unique Tepresentati n A ~ A; x 4, x - x A,
AiekK;,i=1,2,. .,n. Hence K1VKaV...VK, =K, x K, - XK.

The next Lemma can be proved analogou ly to th Theor m 3 in [1].

Lemma 2. Varietie K;,K2,.. ,K, are independent if and only if for ach
1€1,2 ... n, K, and K, =\(Kj:j#1, ) —1,2,. .,n) are indep ndent

Remarkl. If K{,K; aie non-trivial indep ndent variet: s then they are
incompnirable (by Lemma 1) and the variety X{VK; 1sstron ly non-regular, sin e
if p(z,y) is the term establishing the independence of K ,K;, then ¢(z,y) =
P(P(x,y),x) is the desired term for strong non-regularity (i.e. ¢(z,y) = = in

K1V Ky).
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Now we recall the definition of a direct system of algebras (see‘[3; Chap.3]).

(1) I 1is a directed poset (partially ordered set) whose ordering relation is
denoted by <.

(ii) For each i € I an algebra A; = (Ai; (ft(i))teT) 13 given, all algebras
A; being of the same type.

(ili) For each pair i,j of elements of I with ¢ < j a homomorphism
hl: A; — Aj 1s given. The resulting set of homomorphisms satisfies
the following conditions :

(a) i <j <k implies h% o h] = h¥ and
(b) h! is the identity map for each i € I.

The system (I,(Ai)iel,(h{)igj;i,jel) is called a direct system of algebras A;,
rel.

Let A = (I,(Ai)ier,(h)i<j;ijer) be a direct system of similar algebras,
without nullary fundamental operations, indexed by a poset I with the least
upper bound property. Let (fi)ier be the set of fundamental operations of the
algebras in A. The sum of the direct system 2 (see [8]) is an algebra S(A) =
(A; (f)ter), where A is a disjoint sum of the carriers A; (i € I) and the
fundamental operations f; are defined by fi(a1,az2,...,a.) = fi (hfl(al), ...

.., h¥ (an)), where aj € Aj; and k is the least upper bound of iy,iz,...,%n.

Theorem 1. Let K;,...,K, be non-trivial independent varieties, and
Ai1,..., A, be pairwise disjoint minimal generics of Ki,...,K, respectively.
Let the following conditions hold:

(1) m(K;) = |Aj| = my(K;) for j=1,2,...,n,
(2) the algebras Ay, Az,...,A, form a direct system A
in which (I,<) i3 a semilattice, I ={1,2,...,n}.

Then S(2A) is a minimal generic of K,, where K = K3VK2V...VK, and
mg(Kr) = my(K1) + mg(K2) + -+ - + mg(Ka).

Proof. S(%) isa generic of K, since by [8; Theorem 1] we have Id(S(2)) =
R(A)NR(A2)N---NR(A,) = R(K7)NR(K2)N---NR(K,) = R(K) =1d(K,).
Obviously [S(A)| = |A1]+[A2]|+- - +|An| = mg(K1)+mg(K2)+- - - +my(Ky).

Let B be a generic of K,. According to Lemma 2 and Remark 1, K is a
strongly non-regular variety (since K; and K} are independent and K;V K} =
K), hence by [9; Theorem 1] B is the sum of a direct system of algebras C; € X,
1 € I. Since B is a generic of X, there must be |I| > 2. By Lemma 1 for each
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i€l C;=2ClxClx---xCpP, Cl-jEICj, j=1,2,...,n. Hence

3) Cil =1CH 1€ -+ +|C7| and
(4) 1Bl = Y ICil.
i€l

We assert that
(5) toany l€{1,2,...,n} thereis i(l)€ I such that IC:(,)I >1.

Suppose that there is | € {1,2,...,n} such that |C/| = 1 for each i € I.
Then for each i € I C; € V(Kj:j5 #1, j € {1,2,...,n}) = K C K, hence
B € (K}), and K, = HSP(B) C (K}), € K. By Lemma 2 K}, K, are non-
trivial independent varieties, X = K}V K; is strongly non-regular and K; # K
(see Remark 1). So by [2] (K}), # K+ - a contradiction. Thus (5) holds.

Now we choose for each | € {1,2,...,n} an i(l) € I such |C,-'(,)| > 1.

According to (3) |Cip| = |C!(l)|. Using (4) we get

1Bl > Y ICpl = ) Clyl = D 1Al = IS()].
=1 =1 =1

Examplel. Let K, (where p(i), ¢ = 1,2,...,n, are distinct primes)
denote the equational classes of Abelian groups with exactly one binary fun-
damental operation (and without nullary operations) satisfying z?( = yP()
It is easy to check that X,), ¢ = 1,2,...,n are independent. For each i the
variety Kp;) is equationally complete and cyclic group A, of order p(z) is a
minimal generic of K, (m (ICp(i)) =my ()Cp(i)) = p(i)) . The groups Apy s
i =1,2,...,n form a suitable direct system (since we can take for the poset I
an n-element chain 1 <2 <-.- <n and the trivial homomorphisms h! (i,j €
{1,2,...,n}, i < j) given by the rule h! = ida,,, and hf(:z:) = b0 (i <y,
r € Apy, b € Ap(y)). Hence by Theorem 1 m, (}CP(I)V Kpy)V ...V Kpmy) =
p(1) +p(2) + -+ p(n) = m, (K:p(l)) +myg (’Cp(2)) +otmy (K:p(n)) :

Example2. The following example shows that the condition (1) in The-
orem 1 is not necessary. Nevertheless the condition (2) is essential. Take the
independent varieties Kp(1), Kp(2), Kp(3) described in Example 1. By Lemma 2
IC;,(:,) = K1)V Kp2y and K,(3) are independent. According to Example 1 we

get that mg (Kp1)V Kp(2)V Kpa) = mg (Kp1)) +my (Kpe)) +my (Kps)) =
my (Khay) + 1m0 (Kpy) (since mg (KpyV Kpny) = mg (Kpy) + 115 (Kp2) ).
Neverthfless my (KpyV Kpz)) > m (Kp)V Kpzy) (since A,y X Apay| >
IAP(,)I, 1= 1,2).
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Remark2. Onewould think that Theorem 1 can be obtained by induction
using Lemma 2 and Theorem A. But the trouble is that the condition (1) of
Theorem 1 is not transferable from the varieties K; and K; to the variety
K1V K2 as the Example 2 shows.

Example3. Minimal generics of independent varieties need not form a
direct system. Consider e.g. two independent varieties K;, K2 of the type
(2,1,1). Suppose K; (i = 1, 2) is generated by a two-element algebra A; =
({ai, bi}; fia gi, h ) . Let fl(z, y) =1z, fZ(I, y) = y. Assume that

9 (a1) =a1, h'(ay)=b,
gl(bl) =by, hl(bx) =a,
g*(az) = by, h*(az)=az,
g’(b2) = az, h%*(b) =bs.

There are no homomorphisms between the algebras 4;, 1 =1,2.

Remark3. Theorem 1 gives a better estimation for my (K,) (in special
cases) than that given by the relation my (K,) < my(K) + 1 mentioned in the
introduction. E.g. a minimal generic of the variety K3V KXsV K7 from Example 1
is the cyclic group of order 105, however, by Theorem 1 my((K3V K5V K7),) =
3+5+7=15.
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