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M a t h . Slovaca 40, 1990. No. 4, 389—400 

RATIONALS WITH EXOTIC CONVERGENCES II 

ROMAN FRIC 

ABSTRACT. We study the process of enlarging the metric convergence for rational 
numbers to a compatible group and ring convergences. We show how these enlarge­
ments are related to some basic algebraic characteristics of the field of rational 
numbers and their extensions. 

We continue our investigations of rational numbers equipped with compat­
ible group and ring convergences coarser than the usual metric one ([4]). We 
concentrate on the process of enlarging the metric convergence and show how 
it is related to some basic algebraic characteristics of the field of rational 
numbers and its extensions. 

In notation and terminology we follow [4]. We start with some definitions 
and general remarks concerning the process of enlarging a convergence within 
a given class of convergences. Section 2 is devoted to group convergences of 
bounded sequences of rational numbers and the role, of a Hamel basis (of the 
vector space of real numbers over the scalar field of rational numbers) in the 
process of enlarging the metric convergence. In Section 3 also unbounded group 
convergences for rational numbers are considered. In Section 4 we investigate 
ring convergences and in particular ring convergences on the field of algebraic 
numbers in connection with its transcendental extensions. 

By a sequential convergence we usually understand a FLUSH-convergence 
(L stands for the compatibility of the group or ring structure, U for the Urysohn 
axiom and H for the uniqueness of limits) but we shall work with FUSH-, FLS-, 
or FLSH-convergences as well. 

By R, A, Q, Z and N we denote the real numbers, the algebraic numbers, the 
rational numbers, the integers and the natural numbers (i.e. positive integers), 
respectively. By MON we denote the monotone mappings of N into N, by 
S = <5(n)>GXN a sequence of points of X and by S0$, 8 6 MON, the corres­
ponding subsequence <S(s(n))>. If .Xis equipped with an algebraic operation, 
then the operation in XN is defined pointwise. 

AMS subject c lassif icat ion (1985): Primary 12J99, 13J99, 22A99, Secondary 54H13 
Key words: Convergence, Group, Ring, Field, Urysohn axiom 
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0. R e m a r k . To make the paper more self-contained, recall that a com­
patible convergence in a group, resp. ring, is determined via its neutral sequen­
ces, i.e. sequences converging to its neutral element e, resp. 0. Given an FLS-
convergence fi for X, fi" (e) ( = {SeX N ; (S, e)e£}) is a distinguished subgroup, 
resp. fi"(0) is a distinguished subring o f I N . It is, e.g., closed with respect to 
subsequences, i.e. enclosed, where for s/ cz XN we define 8s/ to be the set of all 
SoS with Ses/ and s e M O N ; fi satisfies axiom (H) iff iT(e ) , resp. £T(0), does 
not contain constant sequences except <e>, resp. <0>, axiom (U) iff fi"(e), resp. 
fi"(0), is ^-closed, where for s/ cz XN we define £s / by 5eXN belongs to t^s/ 
whenever for each s e MON there is t e MON such that S o s o / e s/. On the other 
hand, given s/ cz XN, we can construct the minimal suitable subgroup, resp. 
subring, of XN (as the intersection of all suitable subgroups, resp. subrings, 
containing s/) and this will be fi^(e), resp. fi.^(0), of the smallest FLS-conver-
gencefiv for X such that (S, e)efiv, resp. (5, OJefi^, for each Ses/; axiom (H) 
is satisfied iff fi.^(e), resp. fi.^(0), does not contain constants except <e>, resp. 
<0>, and axiom (U) holds iff fi^(e), resp. fi.^(0), is f-closed. Note that (5, x)e2^ 
iff S(x~l}e2^(e) resp. (S — < x » e f i ^ ( 0 ) . For details the reader is referred to 
[7] and [8], respectively. 

1. Enlargements of a convergence 

1.1. Definition. Let X be a set and let A be a class of convergences for X. If 2, 
fi'e/1 and 2 cz fi', then fi' is said to be an e n l a r g e m e n t of 2 in A. 7/"2l is 
a subset of XN x X and 21 cz fi'\fi, then fi' is said to be an 2 l - e n l a r g e m e n t 
offi in A. We say that 2X cz XN x X is 2-free in A if there is an ^-enlarge­
ment of 2. If S is a subset of XN and x a point of X, then S is said to be 
fi-free a t x in A if S x {x} is 2-free. We say that <f czXN is t o t a l l y 
fi-free in A if for each mapping f of S into X the set {(5, f(S)); S eS} is 
2-free in A. If 2 has no proper enlargement in A, then 2 is said to be c o a r s e 
in A. IfSH is 2-free and each ^-extension of 2 in A is coarse in /I , then 21 is 
said to be fi-saturated in A. If^il is 2-free in A and for each 25 cz 21 there 
exists a ^-extension fi' of 2 in A such that 2l\23 is 2'-free in /I , then 21 is said 

to be fi-independent in A. If the class A is fixed, then the phrase "in A" 
will be omitted. 

1.2. R e m a r k . If A is the class of all FSH-convergences for X, then fi is 
coarse in A iff it is sequentially compact. If fi is an FSH-convergence for Z a n d 
A is the class of all FSH-convergences for X inducing the same sequential 
closure operator for X as fi, then fi is coarse in A iff it satisfies the Urysohn 
axiom. If fi does not satisfy the Urysohn axiom, then the Urysohn modification 
fi* of fi is a proper enlargement of fi in A. As shown in [6] (Example 5), if 9JJ 
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is the metric convergence for Q and A is the class of all group FLUSH-conver-
gences for Q and Se QN is a sequence converging in the real line to any irrational 
number, then {S} is 50i-free at 0 (in fact at any q e Q, and hence totally 9Ji-free) 
in A. On the other hand (cf. [4]), if A is the class of all ring FLUSH-convergences 
for Q and Se QN is a sequence converging in the real line to an algebraic number, 
then {S} fails to be 9Ji-free at any q e Q in A. In the present paper we continue 
our investigations of the metric convergence 9Ji for Q in terms of the notions 
introduced in Definition 1. 

There is a natural way how to enlarge a compatible convergence in a group. 
The idea has been communicated to the author by D. D ik ran j an and also 
appeared in [1]. 

Let H be a group equipped with a FLUSH-convergence §. Let G and F be 
subgroups of H and let gFg ~] cz F for each g e G. Put s/ = {S e GN; (S, x) e § , 
xeF} and © = {(S, x)eGN x G; S(x~]}es/}. The proof of the next lemma is 
a straightforward consequence of Theorem 3.3 in [7] (see Remark 0) and is 
omitted. 

1.3. Lemma, (i) s/ is a subgroup ofGN. 
(ii) IfSes/, then Soses/ for each seMON. 

(hi) <g> srf(g~]s) cz si for each geG. 
(iv) © is an FLS-convergence for G and § \ G cz ©. 
(v) GnF = {e} iff s/ contains no constant sequence except <e>. 

(vi) S f G = © iff{9)-c\G)nF={e}. 

1.4. Proposition and definition. Let H be a group equipped with a FLUSH-
converg'ence 9). Let G andFbe subgroups of H, let gFg~] cz Ffor each geG, let 
GnF = {e}, let (§-clG)n F#= {e}, let s/ and © be as defined above. Then © ls 
an FLSH-convergence for G strictly coarser than § \ G. Let ©* be the Urysohn 
modification of©. Then ©* ls said to be the (§> P)-er-largement of 9) \ G. 

A compatible convergence in a ring can be enlarged in a similar way. Indeed, 
let K be a commutative ring equipped with a FLUSH-convergence Si. Let L and 
M be subrings of K and let LM a M. Put st = {Se LN; (5, x)e ft, xe M} and 
£ = {(£, i ) e L N x L;S — <x> e <*/}. A straightforward proof of the next lemma 
is omitted. 

1.5. Lemma, (i) s/ is a subring ofLN. 
(ii) IfSes/, then Sosesrf for each seMON. 

(hi) <x><*/ cz si for each xeL. 
(iv) £ is an FLS-convergence for L and ft \ L cz £. 
(v) LnM = {0} ljrf-s/ contains no constant sequence except <0>. 

(vi) ft \L = fl i^(ft-clL)nM = {0}. 

1.6. Proposition and definition. Let K be a commutative ring equipped with a 
FLUSH-colwergence ft. Let L and M be subrings of K, let LM cz M 'i>t 
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Lr\M = {0}, let (ft-cl L) n M 4= {0}, let srf and 2 be as defined above. Then 2 is 
an FLSH-convergence for L strictly coarser than ft \ L. Let 2* be the Urysohn 
modification of 2. Then £* is said to be the (ft, M)-enlargement offt \ L. 

1.7. Remark . Let L be a group and let £ be a FLUSH-convergence for 
L. If (5, x)eLN x L and £ ' is an {(5, x)}-enlargement of £ in the class of all 
FLUSH-convergences for L, then (T, x)e£' whenever (ST~\ e)e2. Since 
(ST~\ e)e2 defines an equivalence relation ~ on L, every enlargement £ ' of 
£ matches nicely with the equivalence classes induced by £. 

2. Bounded group enlargements 

Denote by SWR the usual metric convergence for R and let SR = 9WR \ Q be its 
restriction to Q. Let © be a coarse group FLUSH-convergence for Q such that 
Wl c ©. Then (cf. [4]), the sequence <2"> is SK-free at 0 and there are unbounded 
sequences ill Q which ©-converge to 0. Let ©A be the bounded part of©, i.e., 
(5, x) e © belongs to ©/, iff S is a bounded sequence of rational numbers. 

2.1. Remark . It follows immediately that Q equipped with ©,, inherits 
many properties of Q equipped with ©. In particular, it is complete and no two 
points of Q can be separated by disjoint neighborhoods (cf. [3]), its sequential 
order is co, (cf. [5]) and if (5, 0)e (Sh9 then «q> S, 0)e (Sh for each qe Q (cf. [4]). 

2.2. Theorem. There is a set B of irrational numbers such that { I } u 5 is a 
Hamel basis of R over Q and if F is the subspace of R generated by B, then ©^ 
is the 
(2RR, FYenlargement ofSR. 

Proof. Define 7czR\{0} as follows: ye Y iff there exists T G Q N such 
that (T, y) e SRR and (T, 0) e ©/,. Let B be a maximal linearly independent subset 
of Y. 

First, we shall prove that the set { I } u 5 is linearly independent. Suppose 
that aeQ, keN, a(/)eQ, y(i)eB, y(i) -# y(j) for /#=j, ij = 1, ..., k, and 
a + a(l)y(l) + ... + a(k)y(k) = 0. Choose T(/)eQN such that (7X0, y(0)e3WR 

and (7X0, 0)6©^, / = 1, ..., k. Consider the sequence <a> + <a(l)> R(l) + ... 
... + <a(k)> T(k). By Remark 2.1 we have «a(i)> T(i), 0) e ©*, / = 1,..., k. Thus 
a = 0 and hence, by the assumption on 5, a(i) = 0 for all /, / = 1, ..., k. 

Second, let yeR\Q and let T G Q N , (T, y)eWlR. Then 7 is ©,,-Cauchy and 
hence, by Remark 2.1, (T, x)e©^ for some xeQ. Since (T — <x>, y — x)e$RR 

and ( 7 - <x>, 0)6©/,, we havex - y e K Ify - xeB, theny = x + (y - x). If 
y - x£5, then there are aeQ\{0}, keN, a(/)eQ\{0}, y(/)e£, y(/)£y(j) for 
i + j , / , j = l , ..., k, such that a(y-x) = a(\)y(\)+...+a(k)y(k). Thus 
j ; = JC + b(l)y(l) + ... + b(k)y(k), where b(i) = a(i)/a, i = 1, ..., k. 

Third, let 2 be the (9WR, ^-enlargement of M. Let SeQN , xeF\{0} and 
(5, x)e2RR. Hence (5,0)e£. Also, there are keN, a(/)eQ\{0}, S(/)eQN, y(/)e,B, 
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yCO * y(j) for i 4= J', i,j = 1, ..., k, such that x = a(\)y(\) + ... + a(k)y(k), 
5 = <a(l)> 5(1) + ... + <a(k)> 5(k) and (5(0, y(0)e9MR for all /, i = 1, ..., k. 
Then, by the definition of B, we have (5(0, 0) e (5b and, by Remark 2.1, we have 
also ((a(i)} S(i), 0)e(5b, i= 1, ..., k. Thus (5, 0)e(5b. Since ©6 satisfies the 
Urysohn axiom (U), we have 2 c: (5b. Now, let (5, 0)e©£. To prove that 
(&b cz 2, it suffices to find s e MON such that (5° s, 0) e £. Since 5 is a bounded 
sequence of rational numbers, there are x e R and s e MON such that (5 o s, x) e 
eSRR. If x = 0, then (SoS, 0)e(£>b. So, let x 4= 0. Clearly xeR\Q. Since {1} u B 
is a Hamel basis of R over Q, there are keN, aeQ, a(i)eQ\{0}, T(i)eQN, 
y(i)eB, y(i) 4= y(J) for / #=j, i,j = 1, ..., k, such that x = a + a(l)y(l) + ... 
... + a(k)y(k), Sos = {a} + <a(l)> F(l) + ... + <a(k)> F(k) and (T(i), y(i))e 
e$RR for each i, i = 1, ..., k. By the definition of J5, we have (7X0, 0)e©^ and 
hence, by Remark 2.1, also «a(0> T(i), 0)e($>b. Thus a = 0 and (S°s, 0)e2. 
This completes the proof of Theorem 2.2. 

2.3. Definition. Let 2 be an enlargement ofWl in the class of all group FLUSH-
convergences for Q. We say that 2 is bounded if (5, x)e2 for no unboun­
ded sequence 5 of rational numbers. I/r«q> 5, 0)e2for each qeQ whenever (5, 
0)e2, then 2 is said to be Q-product ive . 

2.4. Theorem. Let 2 be a proper enlargement of SD1 in the class of all group 
FLUSH-convergences for Q. Then the following are equivalent: 

(i) 2 is bounded and Q-productive; 
(ii) TTzere w 5 c R \ Q , such that { 1 } U 5 / 5 Q-linearly independent in R, F is 

the linear subspace ofR over Q generated by B and 2 is the (WlR, F)-enlargement 
ofm. 

Proof. "(0 implies (ii)" can be proved in a similar way as Theorem 2.2. 
We omit details. The converse implication is obvious. 

2.5. Example . Choose 5eQ N such that (5, V2)e2ttR. Then (cf. Exam­
ple 5 in [6]) (5, 0) is SR-free. Put s/ = {5}u9rT(0). Let 2^ be the generated 
convergence in the class of all group FLUSH-convergenes for Q (see Remark 0). 
It can be easily verified that for each se MON we have «1/2> 5, 0)<£ .2^. Hence 
2^ fails to be Q-productive. 

2.6. Theorem. Let {1} u B be a Hamel basis for R over Q. Let F be the linear 
subspace ofR generated by B and let 2 be the (2RR, F)-enlargement of^Sl. Then 
2 is coarse in the class of all bounded group FLUSH-convergences for Q. 

Proof. Let © be a coarse FLUSH-convergence for Q coarser than 2 and 
let ©6 be its bounded part. Virtually in the same way as in the last part of the 
proof of Theorem 2.2 it can be proved that ©^ cz 2. Thus 2 is bounded coarse. 

2.7. Theorem. Let X be a group, resp. ring, equipped with a group, resp. ring, 
FUSH-convergetfce 2. Let $ a XN be totally 2-free in the class A of all group, 
resp. ring, FLUSH-co/wergences for X. Let f be a mapping of $ into X. Then 
91 = {(5,f(5,f(5)); SeS) is 2-independent in A. 
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Proof. We shall prove the assertion for groups. The proof for rings is 
analogous and is omitted. Let 9 a g and let 95 = {{SJ{S))\ SeQ)}. Let £ ' be 
the smallest group FLUSH-convergence for X such that £ e £' and 93 c. £ ' \ £. 
By Remark 0 (see Theorem 3.3 in [7]), £ ' is generated by the group of £'-neutral 
sequences (the subgroup of XN of all sequences £'-converging to the neutral 
element of X). Let SeS\2) and seMON. then S°s does not £'-converge in X. 
This follows from the fact that $ is totally £-free. Indeed, changing fat S we 
can construct a suitable subgroup of XN not containing S o s and being the group 
of all £'-neutral sequences. Clearly, £' can be enlarged in A to £" such that 
2 l \ B d ( £ " \ f l / ) . 

2.8. Theorem. Let {1} u B be a Hamel basis ofR over Q. For each yeB choose 
a sequence S{y) e QN such that (5(y), y) e 2RR. Then {S{y) \yeB} is totally Wi-free 
in the class of all group FLUSH-convergences for Q and it is maximal totally 
Wl-free in the class of all bounded group FLUSH-convergences for Q. 

Proof. The first assertion follows from the fact that for each mapping f 
of B into Q the set {1} u {y + f(y); yeB} is a Hamel basis as well. The second 
assertion follows directly from Theorem 2.7. 

2.9. Example . Let £ be a bounded enlargement of 901. Consider the 
sequence S = <2">. Then {S} is £-free at 0, but fails to be £-free at any point 
x =f= 0. The latter follows easily from (2S{n + 1)> = (S{n)}. Similarly for each 
<q">,qEQ,q > 1. Consequently if{S(y); ye B} is as in Theorem 2.8, then it fails 
to be saturated. Observe that it is Sfl-independent but there are 9Ji-independent 
sets which are not totally 931-free. 

3. Unbounded group enlargements 

It follows from example 2.9 that no coarse enlargement of 931 in the class of 
all group convergences for Q is bounded. In this section we present some simple 
observations about the unbounded enlargement of Wl. 

Let G be a group, let A be the class of all group FLUSH-convergences for 
G and let S e A . 

3.1. Lemma. Let {s/a; a el} be a chain of subsets ofQN ©-free at e in A. 

Then \^J stf a is (5-free at e in A. 
as 

Proof. The assertion follows from Theorem 3.3 in [7] (cf. Remark 0). 
3.2. Theorem, (i) Each si a GN ©-free at e in A is contained in a maximal set 

%-free at e in A. 
(ii) Each s/ cz GN totally (5-free in A is contained in a maximal set totally 

(5-free in A. 
Proof. The proof is a straightforward application of the Kuratowski-

Zorn lemma, the details are omitted. 
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3.3. Lemma. Let © be a coarse enlargement of 901 in the class of all group 
FLLSSH-convergences for Q and let 23̂  be the bounded part of ©. Let T G Q N be 
a sequence with no bounded subsequence. Then there exists /eMON such that 
{Tot} is totally (5h-free. 

P r o o f For each qeQ and each seMON the sequence Tos — <q> is un­
bounded and hence does not ©^-converge. Hence, according to the group 
coarseness criterion (C) (cf. [4]), it suffices to find /eMON such that for each 
qeQ no sequence S(q) = Tos — <q> satisfies condition 

(C2) There are keN, z(/)eZ, s(/)eMON, 

/ = 1, ..., k, xeQ, x 4= 0, such that 

X z(i)S(q)os(i),x)e<bh. 
= i 

k 

Thus, it suffices to guarantee that each such sequence U(q) = £ z(i) S(y) o s(i) 
;= 1 

contains a subsequence which is either unbounded or constantly 0. Choose 
/ G M O N in such a way that \T(t(n + 1))| > nn(\ + \T(t(n))\). Indeed, then for 
each fixed U(q) and for all sufficiently large n e N we have either U(q, n) = 0 or 
for some /, / = 1, ..., Ac, z(i)S(q, n)os(U n) is much greater than the rest of the 
summands. 

3.4. Corollary. Let {\}u B be a Hamel basis for R over Q. For each ye B 
choose a sequence S(y)eQN such that (S(y), y)eWlR. Then the set {S(y); yeB} 
is totally Wl-free and is properly contained in a maximal totally Wl-free subset of 
QN in the class of all group FLUSH-convergences for Q. 

3.5. Remark . Consider the vector space QN over the scalar field Q and 
its quotient space P of all equivalence classes [S], 5 G Q N , where S, TeQN are 
defined to be equivalent whenever (S — T, 0)eSR. Then R is a subspace of P. 
For Xcz P define 5X={[SoS]eP; [S]eX, seMON}, define £Xby: [S]e£Xif 
for each seMON there exists leMON such that [Sosot]eX and define 
sX = {[S] eP;[Sos]eX;se MON}. Let © be a coarse group enlargement of SR 
and let (£>h be the bounded part of (5. Let { l } u 5 b e a Hamel basis of R over 
Q such that B defines (5h via ©^ (0). Notice that B is not a Hamel basis of 
X = {[S]eP; 5 G © ^ ( 0 ) } . In fact, if Y is the subspace generated by J5, then 
X = £Y. To enlarge 9Ji to a group FLSH-convergence £ for Q it suffices to find 
a subspace P' of P not containing 1 and such that SP' = P'. Then 
£-(0) = {Se QN; [S] e P'} and {Se QN; [S] e t^P'} is the set of all neutral sequen­
ces of the Urysohn modification £* of £. 

3.6. Problem. Is there a nice relationship between Hamel bases ofP and coarse 
group enlargements of^Jll 

3.7. Remark . Answering Question 2 from [6] in [9] a coarse commutative 
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group has been constructed (under CH) which cannot be embedded into a 
sequentially compact group; as shown in [2], the group in question is complete. 
Recall here the following problem concerning the relationship between the 
coarseness and the sequential compactness. 

3.8. Problem. Let (5 be a coarse group enlargement of 93?. Is Q equipped with 
© sequentially compact (i.e. P = s{[S]eP; (5, x)e©, xeQ})? 

3.9. Remark . It follows from Theorem 2. and Theorem 2.6 that if SeQ™ 
converges in the real line to a real number, then S converges in Q in each coarse 
group enlargement of 931. In this sense R is a common ^-closed subspace of P 
representing equivalence classes [S] of sequences S converging in all such coarse 
group enlargements. Are there larger enclosed nice subspaces of P representing 
sequences converging in all coarse group enlargements of 93?? In particular, we 
have the following problem, 

3.10. Problem. Characterize the set of all [S] e P such that S (ar%d hence each 
Te[S]) converges in Q in each coarse group enlargement of 93?. Is it R? 

3.11. Remark . As observed in Example 2.9, sequences <q">, qeQ, q > 1, 
are £-free at 0 in each bounded group enlargement £ of 93?. It might be 
interesting to find out more about subspaces of P related to coarse group 
enlargements of 93? and containing [<q">] (and similar equivalence classes of 
"strange" unbounded sequences). 

4. Ring enlargements 

Basic properties of coarse ring enlargements of the metric convergences 93? 
for Q have been established in [4]. Recall that 93? is not ring coarse and, using 
the Kuratowski—Zorn lemma, 93? can be enlarged to a coarse ring FLUSH-
convergence. Further, if 9? is a coarse ring enlargement of 9ft, then no unboun­
ded sequence SeQ N is 9?-Cauchy and if SeQN 9J?R-converges (in the real line) 
to an algebraic number which is not rational, then no subsequence S © s of S can 
9t-converge in Q (note that no S °s converges in any ring enlargement of 93?). 
This in turn implies that Q equipped with 9? fails to be complete. Since a coarse 
ring convergence is a field convergence whenever the underlying ring is a field 
(cf. [8]), convergence properties established for Q equipped with 9? are interest­
ing from the viewpoint of the field convergence theory. E.g., since Q equipped 
with 9? has no ring completion (cf. Corollary 2 in [4]), there are also convergence 
fields having no completion. 

4.1. Remark . Let A" be a commutative ring, let A be the class of all ring 
FLUSH-convergences for X and let £ G A. Then £ is coarse in A iff £ satisfies 
the following ring coarseness criterion (cf. [8], [4]): 
(CR) For each SeX" either 
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(CR 1) For some seMON we have (S^s, 0 )e£; 

or 

(CR 2) There are peX,p^ 0, m, k(j) e N, 

T(iJ)eQ^(0)u{(x)SoS; xeX, seMON}, 

j = 1, ..., m, i = 1, ..., k(j), such that 
m 

</>> = Z r(fl)...F(j,k(j)); 
7 = 1 

/zo/ds true. 

Further, for Se XN, {5} is £-free at 0 iff S satisfies neither (CI? 1) nor (CR 2), and 
{S} is totally £-free iff for each xeX the sequence S(x) = S — <x> satisfies 
neither (CI?1) nor (CI? 2). 

The next theorem generalizes Proposition 5 in [4]. 
4.2. Theorem. Let yeR\Q be a transcendental number and let SeQ N be a 

sequence such that (S, y)e$JlR. Then {S} is totally ^Si-free in the class of all ring 
FLUSH-convergences for Q. 

P r o o f Fix qeQ. We have to prove that for £ = 9JI the sequence 
S(q) = S — <q> satisfies neither (CR 1) nor (CR 2). Clearly, S(q) does not satisfy 
(CR 1). But S(q) cannot satisfy (CI? 2) either. For, otherwise, passing in (CI? 2) 
to 9JiR-limits (in the real line), we would get a polynomial P(x) = a(n)xn + ... 
... + a(\)x + a(0) over Q, a(n) -# 0, n > 0, such that P(y) = peQ, contradict­
ing the assumption that y is transcendental. 

In a similar way as for groups we can prove that if a ring convergence £ 
admits an £-free set or a totally £-free set, then the set is contained in a maximal 
£-free set or in a maximal totally fl-free set, respectively. The proof is omitted. 

4.3. Theorem. Let X be a commutative ring, let A be the class of all ring 
FLUSH-convergences for X and let QeA. Then 

(i) Each stf c= XN Q-free at 0 in A is contained in a maximal set Si-free at 0 
in A\ 

(ii) Each srf a XN totally Q-free in A is contained in a maximal set totally 
Q-free in A. 

Taking into account that ring enlargements of $)? discriminate algebraic 
numbers, instead of Q we shall investigate the field A of all algebraic numbers 
and ring enlargements of the metric convergence 9JlA = 9JlR \ A. Each assertion 
of the next theorem can be proved virtually in the same way as the correspond­
ing assertion for Q (viz. Theorem 4.2 of the present paper, Proposition 2, 
Proposition 7 and Corollary 2 in [4]) and we omit the proofs. Throughout the 
rest of the paper A denotes the class of all ring FLUSH convergences for A. 

4.4. Theorem. Let 9? be a coarse enlargement of9KA in A. 
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(i) Let ye R \ A and let Se AN be a sequence ^JiK-converging to y. Then {S} 
is totally yjlA-free in A. 

(ii) If Se AN is %1-Cauchy, then it is bounded. 
(iii) Let (T, 0 )G91\9J I A . Then there is teMON such that (To t)~] is a totally 

divergent W-Cauchy sequence. 
(iv) A equipped with 9? cannot be embedded into a complete FLUSH-confer-

gence ring. 
According to Theorem 4.4, there is a totally 9JiA-free in A sequence Se AN 

ax\d,\>^ Theorem 4 3 , there is a maximal totally 5CRA-free in A set Sf containing 
S. Moreover, by Theorem 2.7, for every mapping/: Sf -> A, the set {(S, f(S)); 
S e Sf} is independent in A. 

Recall ([10]) that xeR is a lgebra ica l ly d e p e n d e n t on B cz R over A 
whenever there are a finite subset {b(l), ..., b(n)} <= B and polynomials P(0), 
P(l),..., P(n) in variables b(l),..., b(n) with coefficients from A, at least onep(i) 
being nonzero, such that P(n)x" + ... + P(l)x + P(0) = 0. Further, a subset B 
of R is a lgebra ica l ly i n d e p e n d e n t over A if no element beB is alge­
braically dependent on B\{b} and, if B = {b}, beR, then B is algebraically 
independent over A provided b is transcendental over A. 

Our final goal is to characterize certain maximal totally 2RA-free (in A) sets. 
We show that there is a nice correspondence between such sets and maximal sets 
of algebraically independent transcendental elements of R considered as a field 
extension of A. In particular, all such maximal totally 9J?A-free sets have the 
same cardinality, viz. the degree of transcendence of R over A. 

Let B c: R, B + 0, be algebraically independent over A. Let M(B) be the 
smallest subset of R containing all elements of the form ab, a eh, beB, and 
closed with respect to sums and products. It is easy to verify that KM cz M, 
A n M = {0} and (SK-cl A)n M 4= {0}. Hence (cf. Proposition and defini­
tion 1.4), M(B) defines the (A, M(i?))-enlargement of 9JlA; denote it by QB. 
Clearly fi5\2RA 4= 0. For each beB, let Sb be a sequence in A converging in the 
real line to b. Put SfB = {Sb; beB}. Let xeR\ A be algebraically dependent on 
B and let Sx be a sequence in A converging in the real line to x. Put 
sr = {Sx}v&B. 

4.5. Theorem, (i) SfB is totally WlA-free. 
(ii) Let f be a mapping of SfB into A. Then {(Sb,f(Sb)); beB} is WlA-indepen-

dent. 
Proof, (i) Let H e a mapping of B into A. Observe that for b, b'eB we 

have b - h(b) * b' - h(b') whenever b + b'; further B(h) = {b - h(b); beB} is 
algebraically independent over A. Let /be a mapping of SfB into A. We have to 
prove that {(SbJ(Sb)); beB} is 2KA-free or, equivalently, that {(Sb - </(5,)>, 0); 
beB} is SRA-free. For beB put h(b) =f(Sb). Now, the (A, /z(£))-enlargement 
QhiB) of 5RA has the property that (Sb,f(Sb))e2h(B). 
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(ii) follows from (i) and Theorem 2.7. 
4.6. Theorem. Sf fails to be totally yJlA-free. 
Proof. Suppose, on the contrary, that Sf is totally 9WA-free. According to 

Theorem 2.7, for each mappingg of Sf into A, the set {(Sx9 g(Sx))} u {(Sb9 g(Sb))'9 

beB} is 9.JiA-independent. Hence we can first construct an {(Sb9 g(Sb)); beB}-
enlargement of 9WA and then continue with its {(Sx, g^J^-enlargement. 

Denote byfthe restriction of g to SfB. For each beB9 putf(b) = h(Sb) = 1. 
As shown in the proof of (i) of Theorem 4.5, the (A, /*(2?))-enlargement Qh(B) of 
WlA has the property that (Sb91) e 2h(B). Since x e R \ A is algebraically dependent 
on B9 there are a nonempty finite set {b(l), ..., b(ri)} a B and polynomials P(0), 
P(\)9 ..., P(n) in variables b(l), ..., b(n) with coefficients from A such that at 
least one P(f) is nonzero and 0>(x) = P(ri)xn + ... + P(\)x + P(0) = 0. If in 
0>(x) we replace x by Sx9 b(i) by Sb(i)9 i= 1,..., n9 and each constant a e A by <<z>, 
the resulting sequence &(SX) converges in the real line and hence in Qh(B) to 0. 
Since for each aeA and keN the sequence (a} Sb Qh(B)-convQrges to a9 the 
sequence corresponding to the polynomial P(i) (it is a sum of sequences of the 
form {a} Sb%... Sb^)9 fi^-converges to some a(i)e A, i = 0, 1, ..., n. Clearly, 
at least one a(i) is nonzero. Hence the sequence Sx can converge in any enlarge­
ment of 2h(B) only to such a ye A, for which we have a(ri)yn + ... + a(l)y + 
+ a(\) = 0. Thus Sx fails to be totally fi^-free. Consequently, Sf fails to be 
totally 9KA-free. 

4.7. Corollary. Let B cz R \ A, B =f= 0. For each beB9 let Sb be a sequence in A 
converging in the real line to b. Then 

(i) The set {Sb; beB} is totally WA-free (in A) iff B is algebraically indepen­
dent over A; 

(ii) The set {Sb; beB} is a maximal totally $JlA-free (in A) iff B is a maximal 
algebraically independent set over A of transcendental elements of R. 
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