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Math . Slovaca 40 , 1990, No. 3, 303—320 

TIME-OPTIMAL CONTROL OF TWO-DIMENSIONAL 
SYSTEMS AND REGULAR SYNTHESIS 

JAROMIR KUBEN 

ABSTRACT. A time-optimal control of a system u' = v — F(u). v' = —g(u) + W(t), 
|u| < K, F, ge C](R) is studied. Pontryagin's maximum principle is used to prove that 
optimal controls are piecewise constant. An optimal feedback control is studied and 
a construction of a locus of switching is described. Then a regular synthesis in 
Boltyanskifs sense is defined and its existence is proved in special cases. In the last 
part the obtained results are compared with those of Boltyanskii and Lee and Markus. 

1. Introduction 

In [13—17] Lee and Markus studied the time-optimal control of the second 
order differential equation 

x"+f(x,x') = \\\ \w\^ 1. (1) 

Their results are applicable to the controlled generalized Lienard equation 

x"+f(x)x' + g(x) = \\\, k K 1. (2) 

Some other results concerning the control of the equation (2) and of the 
Van der Pol equation are in [1, 8, 9, 10, 18]. 
Boltyanskii [2—4] introduced the concept of regular synthesis and proved its 
existence for the equation 

.Y" = /?(.v, .v', ir), M ^ 1, (3) 

having some "oscillating" properties. The concept of regular synthesis was 
considerably developed by Brunovsky [5—7], 

The aim of this paper is to prove the existence of the regular synthesis for the 
first order two-dimensional systems (4) described below onto which the equa-

AMS Subject Class i f icat ion (1980): Primary 49B10. 
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tion (2) can be transformed. This approach allows us to assume less smoothness 
off in (2). 

In the first part of the paper besides some basic facts about optimal trajec­
tories which are an immediate consequence of Pontryagin's maximum principle, 
especially qualitative properties of solutions of the system (4) and its maximal 
trajectories are studied. Boltyanskii's approach (the use of polar coordinates) is 
not possible in the case of the system (4) and more complicated topological 
methods had to be used instead to obtain the need results concerning the 
properties of the locus of switching. Then the synthesis of (4) is constructed and 
its regularity verified. 

In the last part the obtained results are compared with those ones of 
Bol tyansk i i and Lee and M a r k u s . A class of special equations of the 
type (2) is presented (f(.v) = 0) which is not covered by the papers of the 
mentioned authors. Some deeper results on second order linear differential 
equations with a periodic coefficient had to be used there. Then it is observed 
that no nonlinear equation (1) which is "'oscillating" in Boltyanskii's sense 
exists. Finally, an assumption of Lee and Markus, which does not seem to be 
quite correct, is discussed and it is stated that no nonlinear equation of the 
special type (25) fulfilling this assumption exists. 

2. Formulation of the control problem 

Consider a control system 

u' = v — F(u) 
(4) 

r = -g(u) + u(i) , 

where (u. v)eR2 are state variables, w is a control and F, geC](R). 
Let K > 0 b fixed. We shall consider two kinds of admissible controls w: 
i) u -eL^(R). \w\ < K. where L{oc(R) is a set of all locally essentially bounded 

Lebesgue's measurable functions on /?. 
ii) we M. where \1 is a set of all piecewise continuous bang-bang functions, 

i.e. w = ± K. 
The response (u. v) will be a couple of absolutely continuous functions fulfilling 
(4) almost everywhere (a.e.). Denote (S^), (S_), (S0) the system (4), where 
u = -f K. u = —K. w = 0. respectively. 

The aim of the control is to steer an initial state (w0, r0) into a target state 
O = (0. 0) in a minimal possible time. Let D = L(oc(R) or D = M. Denote W(D) 
a set of controllability of (4) for ue /X i.e. (w0, r0)e W(D) iff there exists weD 
steering (i/„. r„) to O. and Wopt(D) a set of the states that can be steered optimally. 
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Theorem 1. Let F(0) = g(0). Then W(L{OQ(R)) is a region in R2. 
Proof . Consider the linearization of (4). Let 

-^(0) i \ R = (o 
-g'(0) 0)" * \\ 

As rg(B, AB) = 2 the assertion is a consequence of [13; p. 399; Th. 1]. Consider 
now the equation (2), where / geC°(R). This equation is equivalent to the 
system 

x' = y 

y' = -f(x)y -g(x) + w. 

It is easy to verify that the tranformation 

u = x, v = y + F(x), 

where F'(x) =/( .v) , transforms (2) into (4) with Fe C'(/?), ge C{)(R) so that (4) 
is more general than (2) (if Fe C°(/?), then the back transformation is imposs­
ible). 

In the sequel the following results concerning the qualitative behaviour of 
(S0) will t>e needed. For their proofs see [11] or [12]. 

Lemma L Let g(u)(u - a) > 0 for u ^ a, aeR. Denote c/(/), c7(//), c7(///), 
U(IV) the regions bounded in R2 with a line u = a and a graph of a function F(u). 
Let r be a trajectory corresponding to a nonstationary solution of(SQ). Then: 

i) Each connected arc of Tlying entire in some above defined region is a graph 
of a junction of the variable u\ this function is decreasing in U(I) and U(III) and 
increasing in U(II) and U(IV), 

ii) If F intersects the bounds of these regions, then it goes from U(I) to U(IV), 
from U(IV) to ( / ( / / / ) , from U(III) to U(II) and from U(II) to U(I) with 
increasing t. 

Let wf ((o ) be a right-hand (left-hand) end of the maximal interval of the 
existence of a considered solution. Let 0e((o , O)f). 

Lemma 2. Let (u(t), v(t)) be a noncontinuab/e solution of (S()) and 

g(u) > 0 for u > a, ae R . (5) 

Let //(()) ^ a, v(0) > F(u(0)). Then 
either there exists t] > 0 such that r(/,) = F(w(/,)), 
v(t)> F(u(t)l le<0, /,), 
or v(t) > F(u(t))< le<0, <y4) and lim u(t) = -foe. 

If moreover 
lim inf#(z/) > 0 and lim infF(u) > — x , (6) 

U * 4 / M -•• f / 

the first possibility holds. 
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Lemma 3. Let (//(/), r(/) he as in Lemma 2 and (5) holds. Let u(0) > a, 
v(0) > F(u(0)). Then 
either co = — oo and (//(/), v(t)) ~* U>- F(a)) for / -» — oo, 
v(t)> F(u(t)), / e ( - o c , 0), 
or there exists t-, < 0 such that //(/,) = a, v(t-,) > F(a) and v(t) > F(u(t)), 
/e</ : , 0). 
The first possibility can occur only if (a, F(a)) is a singular point of (S0). 

Similar assertions are available in U(II) — U(IV). 

Denote 

and 

The system 

3. Properties of optimal controls 

//(//,, //2, z/, r, w) = //,(r - F(u)) + //2(-g(u) + w) 

Л/(//,, //-», //, r) = max//(//,, //,, //, r, н ) . 
мг -< Л 

//; = ғҷu) /?, + g'(u) ц2 

г?2 = - //, 
(7) 

is called adjoint to (4). 
Definition 1. We shall say that a control w e L{oc(R) and its response (//(/), v(t)), 

l e < 0 , /,>, are maximal (satisfy Pontryagain's maximum principle) if 
i) there exists a nontrivial solution (//,, r/2) of (1) such that 

//[//,(/), //2(/), //(/), r(l), H (/)] = M[//,(/), //2(l), i/(0, y(/)] 

rv.e. on <0, /,>, 
ii) the function M(t) = ,V/[//,(/), /?2(/). //(/), r. (/)] /'v constant on <0, l,> and 

0 ^ M(0). 
It is well known that each optimal control and its response must be maximal 

— see, e.g., [13; p. 344]. 
Theorem 2. Let u(/), /6<0. l|> he a maximal control. Then 

\\(t) = A", sign //2(/) a.e. on <0, /,> . (8) 

Further, ^2(t) has only a finite number of roots on <(), /,> and these ones are single, 
i.e. we can suppose that weM. 

P r o o f . Evidently, (//,, 7]2)eC]. If /72(/) had infinitely many roots on 
<0, /,>, at an accumulation point / it would be r/2(l) = //2(l) = 0. But (7) then 
implies //,(/) = 0 and we have a contradiction. If //2(l) = 0, then //,(/) # 0 and 
from (7) we obtain //2(/) # 0 so that the roots are single. Finally, (8) is a 
consequence of the fact that i]2(t)w(t) must be maximal. 

With respect to the preceding assertion we shall suppose without repeating 
it in the sequel that we M for a maximal w. 
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Lemma 4. If a control w(t) and its response (u(t), v(t)), / e<0 , /,>, satisfy the 
first condition of the maximum principle, then M(t) is constant on <0, /,>. 

P roof . It is easy to see that theorem 2 remains available so that M(t) is 

continuous on <0, /,>. As = 0 on each opern subinterval noncontaining 
d/ 

zeros of l/2, M(t) must be constant. 
The next lemma will serve as the main tool in our further considerations. 
Lemma 5. Let the assumptions of lemma 4 be fulfilled and (//,(/), T]2(t)) is the 

corresponding solution of(l). Let 0 ^ £,, £2 -̂  /,,<!;, # <£>• Then the next implica­
tions hold: 

i) //" /72(£i) = fc(£_) = 0 ™<1 v(&) = F(u(^)l then v(& = F(u(&). 
ii) //' *72(£i) = ^2(^2) = 0 and v(&) # F(u(^)), then v(£2) # F(u(£2))9 but 

there exists £3 lying between £, and E,2 such that v(^) = F(u(£)})). 
iii) Ifv(^) - F(u(^)) = v(q2) - ?(»(&)) = ^ v(t) - F(u(t)) * Ofor t bet­

ween £,, £2 and /,.(£,) = 0, then //->(^) = 0. 
iv) //' v(&) - / > ( £ , ) ) = r(&) - F(u(£2)) = 0, v(t) - F(u(t) ± 0 for t bet­

ween £,, £2 and r/2(%{) ^ 0, then T]2(^2) ^ 0, /?/// there exists £3 /ywg between £, #tfd 
£2such that r/2(^) = 0. The proof is similar to that of [13; p. 463; Th. 1]. For 
the details see [11], lemma 4.6. 

The preceding lemma shows that if v(t) — F(u(t)) has isolated roots, then, 
these either coincide with the roots of ;/2(/) or they separate and are separated 
by those of r/2(t). 

Lemma 6. // w(t) and (//(/), r(/)), / e<0 , /,>, are maximal and 17i(£) = 0, 
v(Z)*F(u(Z)l £e(0 , /,), then 

sign(r(J;) - F(u(£))) = - s ign l72(£), 

i.e. w(t) changes from K to — K (from — K to K) above (below) the graph of F. 
Proof . As M(^) ^ 0 and <; is a single root of 77,, we obtain TJ}(^)(V(^) — 

— f(u(£)))>0. From the second equation of (7) we have l7,(£)#0 and 
sign rj'2(€)= - s i gn ; / , (^) . 

4. Locus of switching 

Definition 2. Denote I' a set of all points in W(L(OK.(R)) in which some maximal 
response which terminates in O has not the derivative. Let Oe V. Then V is called 
the locus of switching. 
We shall describe the construction of V. Denote 

(//(/, //0, r0), r ( / , //0, r())) (9) 
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a solution of (4) such that 0/(0, u(h i>0), v(0n w0, vQ)) = (w0, r0). Let (w0, " 0 )e /? 2 and 
(9) is a corresponding solution of (:S_). Consider a solution (//i, 17:) of (7) 
corresponding to (9) such that 77,(0) ^ 0, t]2(0) = 0. Denote T'(u0, v0) the largest 
negative root of l72(/) (if it exists). Denote Q a set of points in R2 for which T 
is defined. We have 

T-\ Q ^ ( - o o , 0 ) . (10) 
Let 

/1~(M0- r0) = (//(-T"(w0, r0), //0, r0), v(T~(u0, y0), w0, u0)) , (11) 

i.e. /A : I T -+ I?2. 
T \ Q + and / 1 + are defined in a similar way using the system ( S J . Put 
!?, = Q , /I, = A . 
If A- S* 2 is odd and GA" = /lA _ , (Qk _ ,) n .Q, # 0, put 

A " = ( A " - i ) ' ( G D a n d / l , = A^Ak\]. (12a) 

If k ^ 2 is even and Gk = Ak , (/3A. .) n Jf̂  # 0, put 

nk-=(Aj-_t)-](Gr)-and Ar= A? oA[ , . (12b) 

If Gk = 0, we define Ak as an empty map 0 -> I?2. So we have 

Ak\ Qk -> / ? 2 , kG/V. 

Analogously we introduce Ak . 
Let F(0) = #(0) = 0. Consider a solution (//(/, 0, 0), r(/ , 0, 0)) of (S+) . There 

is r(/) < F(//(/)), //(/) > 0 for small / < 0. If these inequalities hold for all 
negative / > 0) , put J = (co_, 0>. If there exists the largest /, < 0 such that 
r(/,) = P(t/(/,)), put J = </,, 0>. Denote 

V\ ={(//(/), v(t)Y teJ). (13) 

Analogously, using a trajectory of (S ), we define V]. 
Now let 

Vl~ ' = Ak ( V' n Qk ) , k G N ( + for k even and - for k odd) 
(14) 

V^1 = / V t V 1 n/2A
+) , keN (- fo rk even and + fork odd). 

Theorem 3. Let V he the locus of the switching of (4) and F(0) = #(0) = 0. 
Then 

v= y (V̂  u VA). 

Proof . Let /9G V, /? ^ 0 , and r, < ... < rA be roots of a maximal control 
u(/) , / G <0, /,>, steering p to O. Then r, = 0, rA ^ /,. If rA < /,, then pk = 
= (w(r j , r ( r j ) e Vt

!,/?A , = (u(rk ,),t+rA ,)) = A • (pk) G V2 etc. We have 
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/; =/?,e G V" u VA. If rA = /,, there is pk = 0 , PA , e Vj and analogously 

/?eVj " ' u V_:"!, so that V c ( J ( V | u V!). 

The converse inclusion will be proved by induction. Let pe Vj, p ^ 0 . Put 
u' - K, (w(0), y(0)) - F, T/,(0) = - 1, rj2(0) = 0. Let l, be the time when 0 will 
be reached. According to lemma 5, i), or ii), and (13) we obtain that r/2(t) ^ 0 
on (0, l,), i.e. \v(t) is maximal. We have Vj cz V and similarly VI cz V. 

Let Vk
± cz V, k = 1, ..., /?, /?e V_! + ' and p = A'(q), qe V\. There exists a 

maximal control vr(l), le<0, l,> steering q to 0 . For the corresponding (;/,, rj2) 
there is l;2(0) = 0. Let vv(l) = - K , te(T~(q), 0> and (//,, l/2) be a solution of 
(7) used in the definition of T~\ we can suppose that 77,(0) = — 1, rj2(0) = 0. 
Define 

/\v(t+ T (q)) f o r l e < 0 , -T (q)) 
w(t) = < 

\\v(t+T (q)) f o r l e < - F (q\ l, - T' (q)} 
and 

/-^(0)iji(t+ T (q)) f o r l e < 0 , - F (</)> 
1M = < _ / = 1 , 2 . 

\ r],(t+T (q)) {ovtei-T-(q)ntl-T-(q)y 

Evidently (l7,, l72), le<0, l, — T (q)>, is a solution of (7) which corresponds to 
the control u( l) and its response (//, v); moreover \v(t) steers p to 0 . As 
according to lemma 4, the function M(t) is constant on <0, l, — T (q)> and 
M(t) ^ 0 on < — r (</), l, — T (q)>, the control u'(l) is maximal. Hence 
V,M ' cz Vand similarly V'l j ' cz V. 

5. Properties of the locus of switching 

To prove some other properties of the locus of switching we must suppose a 
higher smoothness of the right hand sides of (4). 

Lemma 7. Let F, ge C2(R) in (4). Then the sets Q+ are open, the functions T + 

arc differentiahle and the maps A + are global diffeomorhisms. 
P r o o f . The assertion will be proved for Q , T and A . 
Let (z/0, v())eQ and denote T() = T (w0, v()). Consider the solution 

(z/(l, w0, r0), r(l, //0, r())) of (5 ) on <r, 0>, r < T0. According to the theorem on 
the continuous dependence and the differentiability of solutions of differential 
equations with respect to initial conditions, we can find a neighbourhood 0, of 
(ii0, v0) such that for (M0, r 0 ) e O , the solution (9) of (S ) is defined on <r, 0>. 

w . . . , . . du du dv dv . . , 
Moreover continuous partial derivatives — , — , — , — exist in (l, r/0, r0), ö/.0 0ľ0 ð//„ ðľ0 
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/ e < r , 0>, (l/0, DoJeO,. Denote 

(17,(l, i/0, rl0), 77,(1, M0, I?0)) ( 15 ) 

the solution of the system (7) corresponding to the solution (9) of (S_) satisfying 
the initial conditions 

'7,(0) = - 1 , /72(0) = 0 . (16) 

As F, geC2(R), the theorem on the differentiability of solutions of differential 
equations with respect to parameters ensures the existence of continuous partial 

9 ri 9 ii 
derivatives — - , — - , / = 1, 2 in (l, //0, i>0), le<r, 0>, (w(), I > 0 ) E O , . 

du() dv() 

Consider now the equation 

l72(l, W(), i>0) = 0 . (17) 

We know that l72(7^, w(), v()) = 0 and (7) and (17) imply 

yy2(7̂ , i/0, v{)) ^Q 

9l 
Due to the implicit function theorem a neighbourhood 0 2 cz O, of (w0, v0) 
and S > 0, 0 > T() + S > T() — S > T exist such that for each (w0, D 0 ) G O 2 there 
exists the unique solution T(u(h v()) of (17), T(u(h v()) e (T() — 5, T0 + 5), i.e. 
/72(F(i/0, y()), //0, i>0) = 0. Moreover, T is differentiate. We shall show that for 
(w0, i'0) near (w(), v0) the solution T(w0, i>0) is the largest negative root of (17). As 

9/72(0, i?0, f0) _ j 

9l 

there exist a neighbourhood 0 3 c: 0 2 of (w(), r()) and an £ < 0 sufficiently small 
such that for (w(), u0)eO3 and /e<£, 0> 

9/72(l, u0, u0) 1 

9l 2 

so that ?/,(t, w0, vQ) < -t. On the interval <I7} + 5, £> there is T],(t, w0, i>0) < 0. As 
2 

172 depends continuously on (w0, i>0), we can find a neighbourhood 0 4 cz 0 3 such 
that I72(l, w0, t>0) < 0 for (i/0, y0)eO4 , /e<3~, + 5, e>. Then (17) has the unique 
solution on (7^ — 5, 0) for (w0, u0)6O4, i.e. 0 4 c .Q" and T~ = F on 0 4 . 

Further A~ as a composition of differentiate mappings is itself differenti-
able. Repeating the construction o f / l~ , but considering the least positive root 
t~ of I72, we obtain the map A~ which has the same properties as / 1 ~ , namely 
it is differentiate. Evidently, A~ A~ is an identical map and we receive for 
their Jacobians 
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J(A")J(A')= 1 , 

i.e. J(A~) # 0. As A is injective due to the uniquenes of solutions of (5_) with 
respect to initial conditions, we obtain that A is the global diffeomorphism. 

Consequence. All nonempty Q^ are open and Ak
+ are global diffeomorphisms. 

Theorem 4. Let F,geC2(R), F(Q) = g(0) = 0. Then each nonempty set Vk
±
 + \ 

/CG/V0, has an at most countable number of components and these are regular 
Jordan's arcs. The locus of the switching V of (4) is a union of at most denumerably 
many regular Jordan's arcs. 

Proof . As V+ are graphs of functions, the assertion is available for 
k = 0. Let k ^ 1. Then V\ n Qk is a union of an at most countable system of 
its components and these are pairwise disjoint regular Jordan's arc (/,, / = 1,2, 
..., which represent graphs of functions defined on the intervals I,. Denote 
Ej = {(u, v)eR2: uelj}. For each peUj there exists a circle Kp such that 

peKp a Qk~. Put Dj = U (KP
n Ei)* A a r e ° P e n a n d connected. If I, is open, 

p£i' 
define Z), = Dr If /,- contains a boundary point corresponding to pe U] (it is 

possible for/? = O or for p = A f(0)), define D, = Dl u Kp. Then Z), are pairwise 
disjoint regions, £/, c D-x c= fi^. According to (14) 

^ + , = A"(Uv(J = LM-(v,) 
and yt^(C/.-) are connected Jordan's arcs. As /lA is the diffeomorphism, they are 
regular and Aj^(D,-) are open. Further 

Vk
±
 + 1 nAt(Df) = A; [J Ut)nAk(Dt) = Ak^\J U^jnD^j = Ak~(U,), 

i.e. AkT(Ui),j= 1, 2, ..., are open in V+ + ', so that they form components of 
V| + \ The remainder of the assertion is the consequence of theorem 3. 

6. Regular synthesis 

Consider the controlled system (4) with weM. 
Definition 3. Let an open set G a R\ piecewise smooth sets P° a P] a P2 = G 

and a function w: G -* < — K, K> (feedback control) be given. The sets P\ i = 0, 
1, 2 and the function w are said to define a regular synthesis of (4) in G if the 

following conditions are fulfilled: 
i) Oe P° and P° has no cluster points in G. Each component of P' — P'~\ 

i = 1,2, (called cell) is an {-dimensional smooth manifold in G. Points of P° are 
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called null-dimensional cells. The function w is C1 on each cell o and can he 
extended into a C]-function on some neighbourhood of o. 

ii) The set if of all cells is a union of disjoint sets ff x — the cells of type I 
— and f/\_ — the cells of type II. All two-dimensional cells are from y7,, all 
null-dimensional cells are from ff2. 

iii) There exist TI. f/\ -> y and Z\ .&\ -> y , with the following properties'. 
If oef/\ is i-dimensionaf then a unique trajectory of 

u = v — F(u) 
(18) 

v' = ~g(u) + w(u, v) 

goes through each point of o and this trajectory intersects after a finite time 
transversa/!)' with nonzero velocity the (i — \)-dimensional cell TI(o). 

If oef/\ — {0} is i-dimensionaL then a unique trajectory of(\8) starts in each 
point of o and this trajectory goes through the (i + 1)-dimensional cell -T(<T); 

moreover, w is C1 on ouU(o). 
iv) Every trajectory starting in an arbitrary point ofG and continued according 

to iii) reaches O going only through a finite number of cells and satisfies the 
maxium principle. These trajectories are called distinguished. 

v) The time in which the distinguished trajectory reaches O is a continuous 
function of an initial state. 

Theorem 5. If there exists a regular synthesis of (4) in G, then all distinguished 
trajectories are time-optimal in G. 

For the proof see [2; p. 266; Th. 3.19]. 
To prove the existence of a regular synthesis for (4) we must first give some 

lemmas concerning the properties of maximal trajectories and of a locus of 
switching. We shall introduce the next assumptions: 

F, geC2(R), F(0) = g(0) = 0, ug(u) > 0 for u ^ 0, the equations (19) 
g(u) = K, g(u) = —K have the unique roots w+, w~, respectively, and 
g is increasing in u+ and u~. 
F,geC2(R), F(0) = g(0) = 0 and[for each pe V nonlying on the graph (20) 
of F the tangent to V in this point is not parallel to the axis v. 

Denote A0= B{) = O and Bi = A'(Ai_x) for Ai_^Q- and Ai = A+(Bi_]) 
for Bi_ , e r 2 \ ieN. Let Ai = (C,+ , d,+ ), B, = (C,, dr). The points /!,._, and A, 
(Bj_ , and /?,) will be called ends of Vl (V_) if they exist. Further V+ means V'± 

without its ends. 
If the proofs for the cases "plus" and "minus" are the same, we shall consider 

only one possibility in the sequel. 
Lemma 8. Let F,geC\ F(0) = g(0) = 0. Then 

i) All the ends Ai% /?,, /ejV0 (if they exist) lie on the graph of F. 
ii) Each V'+(V'_) lies below (above) the graph of F. 
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iii) V|n V;+I = 0 , ieN. 
Proof . The parts i) and ii) are an immediate consequence of lemma 5. As 

to iii), it is sufficient to prove that V+ n V\ = 0. The general case then implies 
from (14) and the fact that A± are injective. 

Let/?_ V_ n Vjp = A~ (q), qe V. A solution (w, r) of (S_) passing through 
p in / = 0 achieves q in t = —T~ (q). There exists r0, 0 < t0 < — T~ (q) such that 
(u(t0), v(t0) = O. Thus v(t) — F(u(t)) < 0 for t > t0 near r0 due to lemma 1, ii). 
According to lemma 5, iv) this inequality holds for te(t0, —T~(q)) so that u(t) 
is decreasing and q lies to the left of the axis t\ which is impossible. 

Lemma 9. Let (19) hold. Then the tangents in the ends of Vi', ken, are parallel 
to the axis v. 

Proof . Let peQ~ lying on the graph of F not be a singular point of (S_). 
Evidently A~ maps each trajectory of (S_) into itself. According to lemma 5, i) 
A~ (p) then lies on the graph of F. Tangents of such a trajectory in/? and A (p) 
are parallel to the axis v. It implies that a tangent mapping induced by A~ 
transforms vectors parallel to v into vectors with the same property. As with 
respect to (19) no end can be a singular point, the proof is finished. 

Lemma 10. Let (20) hold. Then each component of a set VI # 0, /e/V, is a 
graph of a function of the variable u. 

Proof . Theorem 4 gives that each component U is a regular Jordan's arc. 
Let (p = (<j9,, (p2): I-» R2 be its parametrization. If there exist pk = (p(tk)e £/, 
/ A e / , k = 1, 2, such that q>x(tx) = (px(t2), (p2(t{) =£ (p2(t2), then due to Rolled 
theorem (p\(t}) = 0 for some t3e(/,, t2). But then (p2(t}) # Oand a tangent in (p(t}) 
is parallel to i\ which is a contradiction as (p(t}) does not lie on the graph of F. 

Suppose that some V± is connected and (20) holds. Then it represents 
a graph of a function hf. If the ends of V± exist, then hk : (cj_ ,, cj} -• R and 
'h' <Ci~, ck_}y-+R. 

Lemma 11. Let the next assumptions be satisfied: 
i) (19) holds. 

ii) there exist the ends Ak_x% Bk _ , for some k e 1V, k ^ 2. 
iii) VI are connected, i = 1, ..., k. 

iv) 777e 8el [ J (V | u V_) /8 a graph of a function. 
/ = i 

Lei w0eint dom/l," (w0Gint dom/7;
+), 2 ^ j ^ k. Denote /??,, m2 functions defined 

in a neighbourhood of u0 the graphs of which are trajectories of(S^.), (S_) through 
(w0, /f;-(iio)) ((n0, /i^(w0)))-

 r / ? ^ 

/w; (M0) > m; (u0) > hj' (u0) (m 2 (u0) > m \ (u0) > hj' (u0)). 

P roof . As Bk_, exists, we have dom/7~ = <<:,", c~_ ,>, / = 1 k — 1. If 
Bk exists, there is dom/?A~ = <<j\, ck~_ ,>. Otherwise there is dom/7A

- = (a, ck~_ ,>, 
a< cA7_,. The inequality /wj(wo) > m'i(u0) is evident because of the relation 
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h~(u0) > F(u0). According to lemma 1 m2(u{)) > 0. Let i = 2. As h2'(c^) = 
= — oo, the assertion holds in a left neighbourhood of cj~. If it does not 
hold on the whole int dom//2 , there exists u0 such that m2(u0) = h2'(u0). Let 
A~ (p, q) = (w0, h2(u0))e V:, (p, #)e V|, and L is an arc of a trajectory of (S _) 
joining these points. The diffeomorphism A maps each trajectory of (5_) into 
itself. As L and V\ are not tangent in (p, q), the same must be true in (u0, h2(u0)), 
which is a contradiction. Similarly we proceed by induction forj = 3, ..., k. 

Lemma 12. Let the assumptions i)—iv) of lemma 11 he fulfilled and L is an arc 
of a trajectory of (S) joining (p,q)e Vl

+ and A(p, q) e V__+ \ 1 < i < k — \. Then 
i) L intersects V\ and VA+ ' at a unique point and with nonzero angle. 

ii) L intersects the graph of F at a unique point (u0, F(u0)), C,f_ , < u0 < C+. 
P r o o f Lemma 5 implies that A\p, q) cannot be an end of V_+ l and 

that L intersects the graph of F a t the unique point. According to lemma 11, L 
can intersect V'. and V_+' in at most one point. As L goes to the right in the 
region U(IV) with increasing u, it cannot go through _4,- _ ,. A more detailed 
analysis (comparison of trajectories of (5_) and (S 4 ) going through __,-) shows 
that L cannot go through A,- — for the details see [11; p. 47]. 

Lemma 13. Let (19) and (20) hold and Ak, Bk exist for some keN. Then all sets 
k 

V+, / = 1, ..., k, are nonvoid and connected and a set [J (V| u V_) represents a 
i= 1 

graph of a function defined on <CA~, ck >. 
P roof . The existence of Ak, Bk implies the existence of all __f-, /?,, / = 1, 

..., k — 1. First we shall prove that V'±, i = 1, ..., k, are nonvoid, connected and 
represent graphs of functions. We shall proceed by induction. 

The assertion is evident for Vl. Let / > 1. Denote L an arc of a trajectory of 
(S_) joining __;._ , and _?,- = A~(A,_ ,). Let Ce V\r '. Consider a trajectory (u, v) 
of (S_), (w(0), v(0)) = C Denote K the part of this trajectory for te(co_, 0>. 
Then K intersects the graph of F at a point C, = (u(tx), v(t^), l, < 0, 
c+_2 < w(/,) < c+_ |. Further K cannot intersect Vl as it is an arc of a trajectory 
of (S_), i.e. K cannot converge to the singular point (w", F(u~~)), so that 
according to lemma 3, there exists t2 < t] such that u(t2) = u~, v(t2) > F(u(t2)). 
As Kcannot intersect L, the same lemma ensures the existence of l3 < t2 in which 
v(ti) = F(u(t3)). Using lemma 5, iv) we obtain that CeQ , i.e. V\T ] c: _T3-. 
Therefore V_ is connected and due to lemma 10 it represents a graph of a 
function. The rest of the proof is now evident. 

Lemma 14. Let (19) hold, __,, B] exist and 

lim infg(_) > K, lim sup#(w) < — K, (21) 

lim inf F(u) > - oo , lim inf F(u) < + oo . (22) 
« -+ - X 
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Then there exist the ends A,-, B{for each ie N. 
If moreover F is nonde creasing, the assumption of the existence of A{, B] can he 
omitted. 

Proof . The assertion in an immediate consequence of lemmas 2 and 3 
and the definition of the ends. 

Now we are able to construct the regular synthesis of (4). In the remainder 
of this paragraph we shall suppose that (19) and (20) holds. 

Definition 4. The locus of switching V will be said to have a property (G) if V 
is connected, represents a graph of a function and 
either Ak, Bk exist for each keN 
or there exist A,, k2e /V such that V_ = 0 for i > kx, V+ = Qfor i > k2 and /?,- exist 
for i < k,, A,- exist for i < k2. 
In the second case evidently |k, — k2\ ^ 1. 

Further we shall introduce the next notation: 
Let Ce /? 2 . Then M+(C) is an arc of a trajectory (u, v) of ( S J , (l/(0), r(0)) = C, 
te(T + (C), 0) if Cen+, and te(co_, 0) if C<£ Q+. M~(C) is defined similarly. 

UAk(Bk),keN0, exists, denote LA_+' = M~(Ak) (Lk
++ ' = M+(Bk)). Suppose 

that Vhas a property (G). If-^.+ i (Bk+]),k ^ 1, exists, denote H+ (Hk_) a region 
bounded by V_, Vk

+
 + \ Lk

+ and Lk
+

+ ](V^Vk + \ Lk and Lk + '). If for some k ^ 1 

the end Ak + , (Bk + ,) does not exist, but Vk # 0 (Vk ^ 0), put Hk
+ = \J M^ (C) 

Hk_= (J M-(C)\ 
C e l * ' 

cєr 

Due to the continuous dependence of solutions of (S+) on initial values and a 
special form of trajectories — see lemma 1 — H± are also regions. 

Denote 
P° the set of all ends Ak, Bk, ke1V0, that exist, 
Pl the set of all points of V+ and L+, keN, that exist, 
P2 the set of all points of H±, ke 1V, that exist. 
Put Pl = P1 u P{\ P2 = P2u P\ G = P2; evidently G is a region. Define a 
function w: G -> < — K, K> in the following way: 

for (t/, v)eHk

+u V^\ k ^ 1 

for (//, r)e//i u V^ + 1, A ^ 1 

ir(w, i>) = { K for (//, r) e Lk

+ u {^}, k>\ (23) 

for (//, r )e/Au{f l A } , A ^ 1 

for (w, r) = (0, 0). 

Theorem 6. Let (19) and (20) hold and a locus of switching V of (<\) has a 
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property (G). Then the sets P\ i = 0, 1,2, and the function w given by (23) define 
a regular synthesis of (A) in G. 

Proof . Choose Ak, Z?A, k ^ 0, as nul-dimensional cells of type II, L+, 
k ^ 1, as one-dimensional cells of type I, K+, k ^ 2, as one-dimensional cells of 
type II and / / + , k ^ 1, as two-dimensional cells of type I. Further put 

TT(Hk
±) = Vk, k ^ 1, TT(Lk

+) = 5 A _„ /7(Z/l) = __,_., k ^ 1, 7 7 ( 4 ) = 0 and 

X(K*) = Z / ^ 1 , k > 2 , 2 ^ A ) = L*+ , I(Bk) = Lk_,k^\. 

Lemma 11 and the construction of cells imply that the condition iii) of the 
definition of the regular synthesis is fulfilled. Distinguished trajectories consist 
in general of an arc 0 C , C e V | u { ^ , } , which is a part of V+, further of 
a r c s M - ( C ) , M + (Af(C)) , M"(A2"(C)), ..., M±(Ak~(C)\ which join points 
A;(C), ..., Ak + ](C), and of an arc Ak + ,(C)F>, D e M ; ( / l H I ( C ) ) , which is a 
part of M + (Ak + , (C)); here F) is an initial state. The definition of /_* and 
theorem 3 and its proof imply that all distinguished trajectories are maximal. 
Likewise all the other conditions of definition 3 are evidently fulfilled except v). 
Thus to finish the proof it suffices to show that the time of transfer from an 
arbitrary state DeG to O along distinguished trajectories is a continuous 
function of D. 

Let W± = {(M, v)eG: w(u, v) = ±K}. Evidently W+ (W_) is a set of all points 
in G which lie on V on the right (left) of O and under (above) V. Suppose that 
De W_\V_. Consider a trajectory of (S_) going through D in t = 0 which in 
1, > 0 intersects for the first time the locus of switching V at a point C = 
= (M,, i;,)e V, M, > 0. We shall show that C and t, depend continuously on Z). 
We shall use a system (S_) 

u = F(w) — L> 

!> '=£(«) + /_, 

which has the same trajectories as (S_), but oppositely oriented. Let (it, v) be a 
solution of (5_), (M(0), £(0)) = C Then (M(/ ,) , £('.)) = I). Due to the continuous 
dependence on initial values there exists a neighbourhood 0 , of C such that for 
(i/2, i/2)eO, a solution (u(t), v(t)) of (5_), (M(0), V(0)) = (M2, D2), exists at least on 
<0, /, + £), where <5 > 0 is sufficiently small. Let h be a function the graph of 
which is V\ then /z(w,) = vv Choose s > 0 such that (M, /J(M)) e 0 , for we 
e(w, — £, u} + £). Define a mapping 7: (w, — s, M, + £) x ( — 5, 8) -+ R2 in the 
following way: 

y(M2, r) = (u(t] + r, M2, /Z(W2)), v(t} + r, M2, h(u2))). 

Then y is continuous and lemma 12 implies that it is an injection. Moreover, 
y(uu 0) = D. Hence 7 is a homeomorphism and 0 2 = /((w, — £, M, + 6:) x 
x (— 5, 8)) n fV_ is a neighbourhood of D in W__. That is why r and u2 depend 
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continuously on D e 02. As tx + r(D) is the time of transfer from D e 02 to C e V 
and C = (u2(D), h(u2(D))), a function 9~ (D) = tx + r(D) and a map 
p(D) = C, De02, are continuous. Similarly it can be shown that 9~ and / j ~ 
are continuous on W_ even for D G V_ U {-5,}. The same is true for 9+ and p+ 

defined analogously on W+ . 
Let DeG and, e.g., DeHk_, keN. Then a distinguished trajectory transfers 

a state F> to p~ (D) = C, e V+ in a time 5~ (F>), a state C, to p+ (C,) = C2e V_ ~ ' 
in a time 5+(C,) etc. up to a state Q _ , (C0 = D) to ^ ± (C A _ 1 ) = Cke V± in a 
time 9±(Ck_ ,) and a state Ck to 0 in a time 9+(Ck). As/i^1 are continuous and 
C,, ..., CA depend continuously on Z), the whole time of transfer 9~(D) + 
+ 9+ (C,) + ... + 9±(Ck_ ,) + »9+(CA.) is a continuous function of Z). It is easy 
to verify that the same is true even for De V_ or L_, keN. 

Thus we have according to theorem 5 the next 
Consequence. The distinguished trajectories described in the proof of theorem 6 

are time-optimal (with respect to controls from M). 
Theorem 7. Let (19), (20), (21) and (22) hold and F be nondecreasing. Then 

there exists a regular synthesis of (A) in R2 and the distinguished trajectories are 
time-optimal with respect to controls from L^oc(R). 

Proof . Lemmas 13 and 14 imply that V has a property (G) and we can 
use theorem 6. Further it can be proved that if F is nondecreasing, then 
W(L{oc(R)) = Wop{(L?oc(R)) = R2 - see [11; p. 25; Th. 3.4.] or [12; Th. 9]. 
Pontryagin's maximum principle and theorem 2 imply that time-optimal trajec­
tories are maximal and the corresponding controls are from M. Theorem 3 and 
its proof show that such trajectories are just exactly distinguished trajectories 
from theorem 6, that is why G = R2. 

Comment. Boltyanskii in [2] studied a regular synthesis of an equation 

A-" = //(x, x\ w), \w\ < 1. (24) 

He defined a concept of an oscillating system and proved that such a system then 
satisfies (20). An oscillating system must fulfil: 

i) heC2(R), ____________> o , //(0, 0, 1 ) > 0 > //(0, 0, - 1 ) 
dw 

for arbitrary A\ y and \w\ ^ 1, 

. . .8 / / 1 /6/A2 

n) — < - - — , 
a.v 4 \dyJ 

(a2// V<^Ji^Ji 
\dxdv) " a x 2 8 r 2 . 
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. x /c7z c2h\ n 

IV) \V[ ; + ; ^ 0 . 
Vex- CVV 

where ii)—(iv) hold for arbitrary A\ V and \v = + 1 . 
Equation (1) is a special case of (24). It is not difficult to prove that each 

functionf(.Y. r) from (1) fulfilling i)—iv) is linear, i.e.f(.Y, y) = ax + by\ b2 — 
— 4a < 0 — see [11; p. 55; Com. 6.19]. Thus Boltyanskifs results do not cover 
nonlinear equations of type (1). 

Further we shall show that the equation (2) which can be considered as a 
special case of (4) cannot be nonoscillating in Boltyanskifs sense — see [2], p. 

278 — if the assumptions of lemma 14 are fulfilled, i.e. especially if ДOd/is 

bounded. In this case a maximal trajectory can have arbitrarily many switchings 
while each maximal trajectory of a nonoscillating system can have at most one 
switching — see [2: p. 282: L. 3.20]. 

We shall give an example of a class of equations to which theorem 7 can be 
applied and such that the assumption (20) is replaced by a less "noneffective" 
assumption. 

Consider the equation 

u" + g(u) = ir( l), ht | ^K 

which is equivalent to 

II = V 

(25) 
v = -g(u) + н ( r ) . 

i.e. to the system (4) with F = 0. Suppose that 

g fulfils (19) and moreover the functions g(u), 
g_ (u) = g(u~ + u) - K. g_ (u) = g(W + u) + K are odd. ( ^ 

Evidently, every function g fulfilling (26) can be obtained in the following way: 
L e t £ e C : < 0 . u~). u~ > 0. g(0) = 0. g(ir) = K, g"(0) = g"(u+) = 0, 0 < 
< g(u) < K for ue(0. u~) be arbitrary. We put g(u) = g(u) on <0, u + } and 
enlarge g(u) on I? in a unique way using the fact that g\ g^ and g_ must be odd. 

Lemma 15. Let (26) hold and let for an arbitrary nonconstant solution u(t) of 

u" + g(u) = K (27) 
all the solutions of 

it' + g'[u(t)]ri = 0 (28) 

be bounded. Fhen the locus of switching V of (25) has the property (G) and (20) 
holds. 

P r o o f We shall show that / I* . A~ are rotations by an angle n with cen-
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tres (u+, 0), (u , 0), respectively, and Q+ = Q = R\ which implies the asser­
tion. For the sake of symmetry we shall only consider the case "plus" . 

As gf(.v)d;?—• +oo for A:-* + oo, all the nonstationary trajectories of (S+) 
Jo 

are closed — see [19], p. 95 — and symmetrical with respect to the lines v = 0, 
u = u+. If (77,, i]2) is a solution of the adjoint system (7) corresponding to u(t), 
then 

Tl2 + g'[u(t)]ri2 = 0. 

This equation has a solution u'(t) (the adjoint equation (28) coincides in this 
case with the equation in variations of (25)). Let the period of u(t) be 2d > 0. 
Then due to the symmetry u(t) is even, half-periodic with the period d, i.e. 
u(t + d) = —u(t), teR. Evidently the zeros of //(/) are equidistant with the 
distance d. Denote tr a zero lying in <0, d>. In [21] it is shown that in this 
situation all the solutions of (28) are bounded iff 

•d/ = 0. 
U2(t) •> ,, vX- . J K . 

d\u (o)Y sin*T-(/ - CT) 

But this condition is equivalent to the fact that all the nontrivial solutions of (28) 
have equidistant zeros with the distance d— see [20], Now, if C = (//(/)., r(l)), 
teR is a cycle of (S+), then T + (u^ r0) = — d for each (z/0, v())eC and the 
symmetry of C implies that A+ is the above mentioned rotation. 

If the assumptions of lemma 15 are satisfied, then theorem 7 can be applied 
to (25) but neither the results of Boltyanskii and, if g'{u) > 0 does not hold for 
all ue R, nor those of Lee and Markus — see [13; p. 471; Th. 6] - - are applicable 
(except the linear case). 

In [13], p. 474 the following assumption for the equation (1) is proposed to 
guarantee that Vis a graph of a function: All the solutions of (S±) are periodic 
with the same period 2d > 0. This assumption is not quite correct because, as 
the proof of lemma 15 shows, it does not ensure the distance of the neighbour 
zeros of solutions of (28) or (7) to be d, which is needed in the proof in [13]. 
Moreover, it is questionable whether any nonlinear equation (1) with this 
property exists. For example, using Theorem 3.1.2., p. 97 in [19] we can easily 
show that the only equation of the type (25) fulfilling this assumption and (26) 
is the linear one. 

In [22] a numerical analysis of the equation (25) with 

g(u) = u + £sin////, «<;e/\, ne/V,,, K = K 

can be found. 
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