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ON THE GENERALIZED PROPERTY (K) 

MAREK BALCERZAK 

Let X be a complete separable dense in itself metric space. 
For any family T of real-valued functions defined on X, let B0(T) = T and, for 

each ordinal number a > 0 , let Ba(T) be the family of all pointwise limits of 

sequences with terms taken from | J BY(T). The first number a such that 
y«x 

Ba(T) = Ba+l(T) is called the Baire order of the family T and will be denoted by 
r(T). Evidently, r^T)^^ where (ox is the first uncountable ordinal number. If Tis 
the family of all continuous functions on X, then Ba(T), a < cou are the usual Baire 
classes which will be shortly denoted by Ba, a<co1. 

In [4] Grande considered a Borel, G6 — regular, complete and a-finite 
measure // on X such that JU(X)>0 . He introduced the following definition 

Definition I. A function f: X->R is said to have the property (K) if and only if 
the set of points of continuity of the function f\A is dense in A for each closed set 
A such that UnA£0 implies ju([/nA)>0 for all open sets U 

Denote by K the family of all functions possessing the property (K). Let JM be 
the a-ideal of all sets of measure [i zero. Denote by Ctll the family of all functions 
whose sets of points of discontinuity belong to JM. 

In [4] Grande proved that K c B ^ d J , B1(K) = B2(CfJ. Using similar 
methods, we shall extend these results to the case when JM is replaced by an 
arbitrary a-ideal J with some natural properties. 

Throughout the paper, we shall assume that J is a a-ideal of subsets of X, all 
singletons {x} belong to J and J does not contain open nonempty sets. 

Definition II. (comp. [1]). We say that a nonempty closed set A is I-perfect if 
and only if UnA-£ 0 implies UnA ^ I for all open sets U. 

Remarks, (a) Of course, every J-perfect set A is perfect. Each nonempty set, 
open in J-perfect A, does not belong to J. 

(b) For any a-ideal J, let Ji denote the a-ideal of all sets which are contained in 
sets of type Fa belonging to J (for example, if J is the a-ideal of sets of the 
Lebesgue measure zero on R, then J, Ji are distinct). Observe that the notions of 
an J-perfect set and an Ji-perfect set are identical. 
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Definition III. ([5], [11]; comp. also [1], [7], [8]). For any subset A of X, let 

A* = {xeX: UnA^I for each neighbourhood Uofx}. 

We give a few properties of the operation A*-^>A*: 

Proposition I. For any subsets A, B of X, we have 
(a) A* = A* = A**czA; 
(b) A \ A * e J ; 
(c) A c B implies A*<=B*; 
(d) B e J implies ( A u B ) * = ( A \ B ) * = A*; 
(e) A e J if and only if A* = 0; 
(f) if A =5-= 0, then A is I-perfect if and only if A* = A; 
(g) A^I if and only if A* is I-perfect. 
Proof. Properties (a)—(e) were proved in [5], [11] and property (f) in [1]. It 

remains to show (g). Assume that A £ J. Then, by (e), we have A* =£ 0. In virtue of 
(a), A** = A*. So, by (f), A* is J-perfect. Assume now that A e J. Then, by (e), we 
have A* = 0, whence A* cannot be J-perfect. 

Definition 1. A function f: X--> R is said to have the property (KM) if and only if 
the set of points of continuity of the function f\A is dense in A for every I-perfect 
set A. 

R e m a r k s , (a) Assume that J contains a nonempty perfect set A. Then there 
exists a function which is nonborel and has the property (KM) (comp. [2], 
Example 1). Indeed, let B be a subset of A such that B, A\B are totally imperfect 
(see [7], p. 422). We shall show that the characteristic function XB of B has the 
required properties. B is nonborel, so is XB> TO prove that XB has the property (Kf), 
consider an J-perfect set E. We easily check that XB restricted to E is continuous at 
each point of the set E\ A which is dense in E since, by Proposition I (a), (d), (f), 
we have 

E\AZD(E\A)* = E* = E. 

(b) Assume that J does not contain any nonempty perfect set. Then, every 
nonempty perfect set is J-perfect. Indeed, let A be a nonempty perfect set and 
suppose that A is not J-perfect. There exists an open set U such that UnA =£ 0 and 
UnA e I. But UnA is uncountable, thus it contains a nonempty perfect set (see 
[7], p. 355), which is impossible. Thus, in this case, the notions of an J-perfect set 
and a nonempty perfect set are identical. Consequently, a function has the property 
(KM) if and only if it is in the Baire class 1 (see [7], p. 326). 

Definition 1'. A function f: X--> R is said to have the property (KM) if and only 
if f\A has a point of continuity for every I-perfect set A. 

Let (o denote the ordinal type of the set of natural numbers. 
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Lemma 1. Let e>0 and assume that f has the property (Kg). There are an 
ordinal number a<co1 and a sequence {Un}n<a of nonempty, open, pairwise 
disjoint sets, such that 

(1) X n n U n ^ J f o r a l / n < a , where Xn = ( x \ U U\*; 
\ i<n ) 

(2) o s c / ^ £ on XnnUn for all n<a; 

(3) X \ U Unel. 
n<a 

Proof. Let Xx = X*. Notice that Xi is J-perfect by Proposition I (g). From the 
assumption it follows that /|Xi has a point of continuity we denote by Xi. Hence, 
there is a neighbourhood Ui of JCI such that osc / ^ e on Xxn Ux. If X\ Ui e J, then 
put a = 2; if not, let X2 = (X\ Ui)*. As previously, observe that /|X2 has a point of 
continuity we denote by JC2. In virtue of Proposition I (a), we have X2 cz X\ Uu so 
x2^ Ui. Then there exists a neighbourhood U2 of x2, disjoint from Uu such that 
oscf^e on X2nU2. If X\ (UiuU 2 )eJ , then put a = 3 ; if not, we repeat the 
construction. In this way, we define, by transfinite induction, a sequence { Un}n<a of 
nonempty, open, pairwise disjoint sets fulfilling conditions (1), (2), (3). In 
a separable space such a sequence cannot contain an uncountable number of sets, 
thus a<c0i. 

Lemma 2. Let a sequence {Un}n<a fulfil the assertion of Lemma 1. Then there 

is a set Eel of type Fa such that X\ \J (XnnUn)cE. 
n<a 

Proof. Let Yn = X \ U Ut, n< a. The sets Un are pairwise disjoint, so Un c= Yn, 
i<n 

n<a. Hence 

XnnUn = Un\(Yn\Xn), n<a. 
Consequently, 

X \ U (XnnUn) = X \ U (Un\(Yn\Xn)) 
n<a n<a 

= n ((x\un)u(Y,\xn))Cn ((x\u„)uu (Yn\xm)) 
n<a n<a m<a 

= ( x \ u u„)uU (Yn\Xm). 
\ n<a / m<a 

From Lemma 1 (3) and Proposition I (b) we deduce that the set 

E = ( X \ U U„)uU (Y»\X„) 
\ n<a I m<a 

is of type Fa and belongs to J. 
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Proposition 1. A function f has the property (Kf) if and only if it has the 
property (Ki). 

Proof. Necessity is evident. To prove sufficiency, consider an arbitrary 
J-perfect set A. In virtue of the Baire theorem, it is enough to demonstrate that 
the set Df of points of discontinuity of the function f\ A is of the first category in A. 
Let s(x) denote the oscillation of the function f\A at a point x. Since 

Df= U {xeA: s(x)>l/n}, we only need to show that, for each e>0, the set 
n<(o 

Ze = {xeA: s(x)>e} is nowhere dense in A. Let 17=5-= 0 be an open set in the 
subspace A. We shall find a set V=£0, open in A, such that Vcz U\Ze. Consider 
a sequence {Un}n<a fulfilling the assertion of Lemma 1. We have 

U= U (UnXnnUn)Ju\\J (XnnUn)) 
n<a \ n<a / 

c=|J (UnXnnUn)u(UnE) 
n<a 

where E fulfils the assertion of Lemma 2. The set U is of the second category in A 
(by the Baire theorem). The set UnE is of the first category in A since it is of type 
Fa in A and does not contain any nonempty set, open in A (if it contained such 

a set, we would have UnE £ J and E £ J). Consequently, the set U (UnXnnUn) 
n<a 

is of the second category in A. Since all the sets UnXnnUn, n<a, are of type Fa 

in A, there exist n0<a and a set V=t=0, open in A, such that V c UnX^nU^. In 
virtue of Lemma 1 (2), we have o s c / ^ e on V, thus Vcz U\Ze. The proof has 
been completed. 

Let Kt denote the family of all functions with the property (KM), and Ct — the 
family of all functions whose sets of points of discontinuity belong to J. It is easily 
seen that C/czK,. 

Theorem I ([9], th. 3). Ler 0 < a < c 0 L A function f belongs to Ba(Q) if and 
only if there exists a function g in Ba such that the set {xeX: f(x)4^g(x)} is 
contained in a set of type Fa belonging to I. 

Theorem 1. K.CLB^Q). 
Proof. Let feKt. Since Bi(Cf) is closed with respect to uniform convergence, it 

suffices to show that, for each e > 0 , there exists / eeBi(Cj) such that \f(x)-
fe(x)\ ^ e for all xeX. Let {Un}n<abe the sequence constructed in Lemma 1. For 
each n<a, choose xneXnnUn and define 

I f(xn) if x eXnnUn, n<a 

f(x) if xeX\\J (XnnUn); 
n<a 
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(fe(x) if xeXnnUn, n<a 
g(x)=\ 

^0 if xeX\\J (XnnUn). 
n<a 

Observe that condition (2) of lemma 1 gives \f(x) — fe(x)\^e for all xeX. We 
shall prove that /eeBi(C,). By Lemma 2, the set {xeX: fe(x)±g(x)} is con­
tained in a set of type Fa belonging to I. Hence, in virtue of Theorem I, it remains 
to show that geBx. Consider a nonempty closed set A. We shall find a nonempty 
set, open in A, such that g is constant on it. Consequently, g will belong to Bi. The 
following cases are possible: 

1° A c X \ l J Un. Then A c X \ l J (XnnUn), and so g is constant on A. 
n<a n<a 

2° There exists n0<a such that AnUno±0. If AnU^a U^nX^, then g is 
constant on AnU^. If AnUno\Xno^0, we have 

A n U . \ X . c ( x \ l J U r t)n(X\XJc= 

( x \ (J (XnnUn))Kj(X\(XmnUJ) = X\{J (XnU„). 
\ n^no / n<a 

Hence g is constant on AnU^X^. This ends the proof. 
Remark. We have always Kt£Bi(Q). Indeed, let Y be a countable subset of 

X*, dense in X*, and let / be the characteristic function of the set Y. It is not 
difficult to check that /eBi(C,)\K f . 

Theorem 2. B1(KM) = B2(Q). 
Proof. By Theorem 1, we have Bi(K,)czB2(Cf). We shall prove that B2(Q)a 

Bi(Xf). Let fe B2(Q). In virtue of Theorem I, there exist a function g e B2 and 

a set He I of type Fa, such that {JC e X: f(x) =£ g(x)} a H. Let H = U Hn where 
n<a> 

all the sets Hn are closed and Hn c Hrt+i for each n<a). Let {gn}n<(0be a sequence 
of functions of the Baire class 1 which tends to g pointwise on X. For each n<co9 

let 

if xeX\Hn 

if j t e H n . 

Clearly, the sequence {fn}n<(0 tends to / pointwise on X. Moreover, all the 
functions fn belong to Kt. Indeed, let A be an /-perfect set and consider an 
arbitrary set U=£0, open in the subspace A. Since gneBu the set of points of 
continuity of gn\A is dense in A. We have U^ J, Hn e / ; hence the set V= U\Hn 

is nonempty. Moreover, Vis open in A, thus gn\ A has a point of continuity Xo e V. 
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But 0„| V = /„| V, thus fn\A is continuous at the point x0. We have shown that 
/€Bi(Kj) . This completes the proof. 

From Theorem 2 we can deduce relationships between r(Kj) and r (G) . In 
particular, we have 

Corollary. If r(K,) or r(Q) is infinite, then r(K,) = r(Q). 
R e m a r k s , (a) Let /denote the a-ideal of all countable sets. In this case, Kf = Bi 

(compare Remark (b) following Definition 1). Thus the inclusion KJCZBI(CJ ) is 
obvious. Moreover, B2(Cj) = B2 (see [10]), so Bi(Kj) = B2(C7) follows im­
mediately, as well. 

(b) Let / be the a-ideal of sets of the first category. Since / does not contain any 
nonempty open set and X \ X * belonging to / is open (see Proposition I (a), (b)), 
therefore X* = X. It follows that K,c:Cj. Indeed, if / e K , , then / = / |X* is 
pointwise discontinuous, and so fe Q. Hence we have Kj = Cj, and thus r(Kj) = 1 
(comp. [6]). We can similarly check that if / is a a-ideal which contains all sets of 
the first category and does not contain any nonempty open set, then the equation 
Kf = Cj holds, as well. 

(c) Let / = / / i where \i denotes the Lebesgue measure on R. Grande in [3] 
proved that C J ^ K J and r(Kf) = cOi. Moreover, it was shown in [4] that Q is 
a nowhere dense subset of Kf with the metric of uniform convergence. 

(d) Let / be the a-ideal constructed by Mycielski in [11], It was shown in [1] that 
r(Cf) = c0i. Thus, by corollary, r(Kj) = c0i. 

(e) We proved in [1] that if J is a a-ideal included in /, then r(Q)^r(Q). 
Hence, by Corollary, J<=/ and r(Kl) = (o1 imply r(Kj) = c0i. 

(f) For any a-ideal /, the notion of an /-perfect set is identical with the notion of 
a nonempty perfect set in the topology generated by the operation of the derived 
set Ai->A* (see [8], [1]). This topology is stronger than the previous one. 
However, the family of continuous functions in either topology is the same (see 
[8]). 

(g) It seems interesting whether, for every a-ideal /, there exists a topology Tf 

on X such that the family C(T, ) of functions / : X—> R continuous with respect to Tj 
fulfils the condition K, = Bi(C(Tf)) (note that if / denotes the a-ideal of all 
countable sets, the answer is affirmative). 
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ОБ ОБОБЩЕННОМ СВОЙСТВЕ (К) 

Магек Вакеггак 

Резюме 

Пусть / — а-идеал множеств в полном, сепарабельном, плотном в себе метрическом 
пространстве. В статье рассматривается свойство (Км), которое обобщает свойство (К), опреде­
ленное в [4]. Теоремы из [4] о точечных пределах последовательностей функций со свойством 
(К) расширены на случай (К-). Приведены примеры и замечания. 
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