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ON THE GENERALIZED PROPERTY (K)

MAREK BALCERZAK

Let X be a complete separable dense in itself metric space.
For any family T of real-valued functions defined on X, let By(T)=T and, for
each ordinal number a>0, let B,(T) be the family of all pointwise limits of

sequences with terms taken from |J B,(T). The first number a such that

y<a
B.(T) = B,..1(T) is called the Baire order of the family T and will be denoted by
r(T). Evidently, r(T) = w, where w, is the first uncountable ordinal number. If T is
the family of all continuous functions on X, then B,(T), a < w,, are the usual Baire
classes which will be shortly denoted by B,, a< ;.
In [4] Grande considered a Borel, G5 — regular, complete and o-finite
measure u on X such that u(X)>0. He introduced the following definition

Definition I. A function f: X— R is said to have the property (K) if and only if
the set of points of continuity of the function f| A is dense in A for each closed set
A such that UnA+#@ implies u(UnA)>0 for all open sets U.

Denote by K the family of all functions possessing the property (K). Let I, be
the o-ideal of all sets of measure u zero. Denote by C,, the family of all functions
whose sets of points of discontinuity belong to I,.

In [4] Grande proved that K< B,(G,), B:(K)=B;(G,). Using similar
methods, we shall extend these results to the case when I, is replaced by an
arbitrary o-ideal I with some natural properties.

Throughout the paper, we shall assume that I is a g-ideal of subsets of X, all
singletons {x} belong to I and I does not contain open nonempty sets.

Definition II. (comp. [1]). We say that a nonempty closed set A is I-perfect if
and only if UnA+#@ implies UnA ¢ for all open sets U.

Remarks. (a) Of course, every I-perfect set A is perfect. Each nonempty set,
open in I-perfect A, does not belong to I.

(b) For any o-ideal I, let I, denote the o-ideal of all sets which are contained in
sets of type F, belonging to I (for example, if I is the o-ideal of sets of the
Lebesgue measure zero on R, then I, I, are distinct). Observe that the notions of
an I-perfect set and an I,-perfect set are identical.
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Definition III. ([5], [11]; comp. also [1], [7], [8]). For any subset A of X, let
A*={xeX: UnA¢I foreachneighbourhood U ofx}.
We give a few properties of the operation A— A*:

Proposition 1. For any subsets A, B of X, we have

(a) A*=A*=A**CcA;

(b) A\A*el;

(c) AcB implies A*c B*;

(d) Bel implies (AUB)*=(A\B)*=A*;

(e) A€l if and only if A*=0;

(f) if A+@, then A is I-perfect if and only if A*= A

(g) A&l if and only if A* is I-perfect.

Proof. Properties (a)—(e) were proved in [5], [11] and property (f) in [1]. It
remains to show (g). Assume that A ¢ I. Then, by (e), we have A* #. In virtue of
(a), A**= A* So, by (f), A*is I-perfect. Assume now that A € I. Then, by (e), we
have A*=(), whence A* cannot be I-perfect.

Definition 1. A function f: X— R is said to have the property (K,) if and only if
the set of points of continuity of the function f| A is dense in A for every I-perfect
set A.

Remarks. (a) Assume that I contains a nonempty perfect set A. Then there
exists a function which is nonborel and has the property (K;) (comp. [2],
Example 1). Indeed, let B be a subset of A such that B, A\ B are totally imperfect
(see [7], p. 422). We shall show that the characteristic function xs of B has the
required properties. B is nonborel, so is xz. To prove that xs has the property (Kj),
consider an I-perfect set E. We easily check that g restricted to E is continuous at
each point of the set E\ A which is dense in E since, by Proposition I (a), (d), (f),
we have

E\A>(E\A)*=E*=E.

(b) Assume that I does not contain any nonempty perfect set. Then, every
nonempty perfect set is I-perfect. Indeed, let A be a nonempty perfect set and
suppose that A is not I-perfect. There exists an open set U such that Un A # @ and
UnA e l. But UnA is uncountable, thus it contains a nonempty perfect set (see
[7], p. 355), which is impossible. Thus, in this case, the notions of an I-perfect set
and a nonempty perfect set are identical. Consequently, a function has the property
(K;) if and only if it is in the Baire class 1 (see [7], p. 326).

Definition 1'. A function f: X— R is said to have the property (K}) if and only
if f|A has a point of continuity for every I-perfect set A.
Let @ denote the ordinal type of the set of natural numbers.
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Lemma 1. Let £>0 and assume that f has the property (Kj). There are an

ordinal number a<w, and a sequence {U,}.<. of nonempty, open, pairwise
disjoint sets, such that

*
(1) X.NnU, &I for all n<a, where X,.=(X\ U U.-) ;

(2) oscf=eon X,NnU, for all n<a;
3) X\U U,el

n<a

Proof. Let X; = X*. Notice that X is I-perfect by Proposition I (g). From the
assumption it follows that f|X; has a point of continuity we denote by x,. Hence,
there is a neighbourhood U, of x, such that osc f< € on X;nU,. If X\ U, €I, then
put a =2;if not, let X, =(X\ U,)*. As previously, observe that f| X, has a point of
continuity we denote by x,. In virtue of Proposition I (a), we have X; = X\ Uj, so
x, ¢ U,. Then there exists a neighbourhood U, of x,, disjoint from U, such that
osc f=€ on XonU,. If X\(U,uU,)el, then put a=3; if not, we repeat the
construction. In this way, we define, by transfinite induction, a sequence { U, } .<. of
nonempty, open, pairwise disjoint sets fulfilling conditions (1), (2), (3). In
a separable space such a sequence cannot contain an uncountable number of sets,
thus a < w;.

Lemma 2. Let a sequence {U,}.<. fulfil the assertion of Lemma 1. Then there

is a set E€ 1 of type F, such that X\ |J (X,nU,)<E.

n<a

Proof. Let Y, =X\|J U, n< a. The sets U, are pairwise disjoint, so U, c Y,,

i<n

n<a. Hence

X.nU,=U,\(Y,\X,), n<a.
Consequently,

X\U X.nU)=X\U (U.\(Y.\X.))

n<a n<a

=N ((X\U)u(Y.\X)c N (X\U)u U (Y.\X.))

n<a n<a m<a

= (X\ U U,.)u U (Y.\X.).

n<a m<a

From Lemma 1 (3) and Proposition I (b) we deduce that the set

E=(X\ U U,.)u U (Ya\X.)

n<a m<a

is of type F, and belongs to I.
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Proposition 1. A function f has the property (K;) if and only if it has the
property (K3).

Proof. Necessity is evident. To prove sufficiency, consider an arbitrary
I-perfect set A. In virtue of the Baire theorem, it is enough to demonstrate that
the set D of points of discontinuity of the function f| A is of the first category in A.
Let s(x) denote the oscillation of the function f|A at a point x. Since

D;=J {x€A: s(x)>1/n}, we only need to show that, for each £>0, the set

Z.={xeA: s(x)>e¢} is nowhere dense in A. Let U#0 be an open set in the
subspace A. We shall find a set V#@, open in A, such that V< U\ Z.. Consider
a sequence { U, },.<. fulfilling the assertion of Lemma 1. We have

v=U (UnX,,mU,.)u<U\U (X,.ﬁU,.)>

n<a n<a

U (UnX,nU,)u(UNE)
where E fulfils the assertion of Lemma 2. The set U is of the second category in A
(by the Baire theorem). The set UNE is of the first category in A since it is of type
F, in A and does not contain any nonempty set, open in A (if it contained such
a set, we would have UNE ¢ I and E ¢ I). Consequently, the set |J (UnX,nU,)

n<a

is of the second category in A. Since all the sets UnX,nU,, n< a, are of type F,
in A, there exist no< a and a set V##, open in A, such that Ve UnX, nU,. In
virtue of Lemma 1 (2), we have osc f=<¢€ on V, thus Ve U\ Z.. The proof has
been completed.

Let K; denote the family of all functions with the property (K;), and G — the
family of all functions whose sets of points of discontinuity belong to I. It is easily
seen that G c K.

Theorem I ([9], th. 3). Let 0<a< w,. A function f belongs to B,(G) if and
only if there exists a function g in B, such that the set {xe X: f(x)#g(x)} is
contained in a set of type F, belonging to L

Theorem 1. K;c B,(G).

Proof. Let fe K;. Since B,(G,) is closed with respect to uniform convergence, it
suffices to show that, for each £>0, there exists f. € B;(G) such that |f(x)—
f.(x)| = € for all xe X. Let {U,}.<a be the sequence constructed in Lemma 1. For
each n<a, choose x, € X,nU, and define

f(x.) if xeX.nU,, n<a

fe(x)={
f(x) if xeX\U (X.nU,);

n<a
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fo(x) if xeX.nU, n<a
g(x)={

0 if xeX\U (X.nU,).
Observe that condition (2) of lemma 1 gives |f(x)—f.(x)| =€ for all xe X. We
shall prove that f, € Bi(G). By Lemma 2, the set {xe X: f,(x)# g(x)} is con-
tained in a set of type F, belonging to I. Hence, in virtue of Theorem I, it remains
to show that g € B,. Consider a nonempty closed set A. We shall find a nonempty
set, open in A, such that g is constant on it. Consequently, g will belong to B,. The
following cases are possible:
1° AcX\J U,. Then Ac X\J (X.nU.,), and so g is constant on A.

n<a n<a

2° There exists ny<a such that AnU,#0. If AnU,cU,nX,, then g is
constant on AnU,,. If AnU,\ X, #0, we have

AnU,.,,\X,,oc(X\ U U,.)m(X\X,.o)c

n#¥ng

(x\J (XU )UK Up) = X\ U (XU,
n#ng n<a
Hence g is constant on AnU,\ X,,. This ends the proof.

Remark. We have alwavs K;# B,(G). Indeed, let Y be a countable subset of
X*, dense in X*, and let f be the characteristic function of the set Y. It is not
difficult to check that fe B,(G)\K;.

Theorem 2. B:(K;)=B,(G).

Proof. By Theorem 1, we have B,(K;) = B,(C;). We shall prove that B,(G) <
By(K)). Let fe B,(G). In virtue of Theorem I, there exist a function g € B, and

a set He I of type F,, such that {xe X: f(x)#g(x)} = H.Let H=J H, where

n<w

all the sets H, are closed and H, = H,,., for each n< w. Let {g.}.<. be a sequence
of functions of the Baire class 1 which tends to g pointwise on X. For each n< w,
let

ga(x) if xeX\H,

fu(x)= {
f(x) if xeH,.

Clearly, the sequence {f,}.<. tends to f pointwise on X. Moreover, all the
functions f, belong to K. Indeed, let A be an I-perfect set and consider an
arbitrary set U#0, open in the subspace A. Since g, € By, the set of points of
continuity of g,| A is dense in A. We have U¢ I, H, € I; hence the set V= U\H,
is nonempty. Moreover, Vis openin A, thus g.| A has a point of continuity x,€ V.
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But g,|V=/,|V, thus f.|A is continuous at the point x,. We have shown that
fe Bi(K;). This completes the proof.

From Theorem 2 we can deduce relationships between r(K;) and r(G). In
particular, we have

Corollary. If r(K;) or r(G) is infinite, then r(K;) = r(G).

Remarks. (a) Let I denote the o-ideal of all countable sets. In this case, K; = B,
(compare Remark (b) following Definition 1). Thus the inclusion K;c B;(G) is
obvious. Moreover, B,(G)=B, (see [10]), so Bi(K;)=B,(C;) follows im-
mediately, as well.

(b) Let I be the o-ideal of sets of the first category. Since I does not contain any
nonempty open set and X\ X* belonging to I is open (see Proposition I (a), (b)),
therefore X*=X. It follows that K;c C,. Indeed, if fe K;, then f=f|X* is
pointwise discontinuous, and so f € G;. Hence we have K;= G, and thus r(K;) =1
(comp. [6]). We can similarly check that if I is a o-ideal which contains all sets of
the first category and does not contain any nonempty open set, then the equation
K; = G holds, as well.

(c) Let I=1, where u denotes the Lebesgue measure on R. Grande in [3]
proved that G+ K, and r(K;)= w,. Moreover, it was shown in [4] that G is
a nowhere dense subset of K; with the metric of uniform convergence.

(d) Let I be the o-ideal constructed by Mycielski in [11]. It was shown in [1] that
r(G) = w,. Thus, by corollary, r(K;) = w;.

(e) We proved in [1] that if J is a o-ideal included in I, then r(G)=Zr(G).
Hence, by Corollary, J= I and r(K;) = w, imply r(K;) = w;.

(f) For any o-ideal I, the notion of an I-perfect set is identical with the notion of
a nonempty perfect set in the topology generated by the operation of the derived
set A— A* (see [8], [1]). This topology is stronger than the previous one.
However, the family of continuous functions in either topology is the same (see
[8D.

(g) It seems interesting whether, for every o-ideal I, there exists a topology 7
on X such that the family C(7;) of functions f: X— R continuous with respect to 7
fulfils the condition K;=B(C(t;)) (note that if I denotes the o-ideal of all
countable sets, the answer is affirmative).
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OB OBOBIUIEHHOM CBOWCTBE (K)
Marek Balcerzak
Pesome
Ilycts I — o-Mpean MHOXECTB B IIOJHOM, cenapabGenbHOM, IUIOTHOM B ce6e METPHYECKOM
npocrpancTe. B crathe paccMaTpuBaercs csoiictso (K;), koTopoe oGo6uaer csotictso (K), onpene-

nenHoe B [4]. TeopeMsl u3 [4] 0 TOYeUHBIX IpeReNax MOCAENOBATENBHOCTENR (DYHKLMI CO CBONCTBOM
(K) pacumpens! Ha cinyyait (K;). [Ipusenens! npuMeps! ¥ 3amMeyaHus.
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