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A CONSTRUCTION OF A CW-DECOMPOSITION
OF S-CUBES WHICH ARE MANIFOLDS

JOZEF TVAROZEK

Introduction

Let I"={xeR";|x|=1, i=1,2,..,n} be the n-dimensional cube, J;=
{xeI"; Ix,I =1} its i-th double-face and let s;: I">I", x—(xy, ..., Xi-1, —Xi,
Xi+1, --+» Xn) be the symmetry of I" with respect to the hyperplane x; = 0. Denote by
G, the group generated by the set {s, ..., 5.} of symmetries. Since for every u € G,
we have u?=id, the group G, is commutative and G, =(Z,)*. Every u € G,, u+id,
can be uniquely written in the form u=s;, 05,0 ...0 8, =Sys..4 Where i <i <
...<i. Put N,={1,2,..,n}. Then there is a bijective map 7,: G,—2™,
‘[,.(Sm, u) = {il, B2y ouun J;‘}, ‘l,',.(id) =§.

Now according to [4] we recall the definition of an s-cube.

Letu', ..., u" € G,. Ans-cube X=1"/(u’, ..., u")is a factor space I"/ T, where T
is an equivalence relation on I" defined by

x Ty if and onlyif x =y or there are iy, ..., ik € N,

k
such that x, ye[)J jand y=u "% u % ... o u (x).
j=1

The integer n is called the dimension of the s-cube X. The s-cube X will be
alternatively written in the form X=1I"/(U, ..., U,), where U, =1,(u'), i€ N,.

In the paper [1] a CW-decomposition ¥" of the n-dimensional cube I" is
introduced in such a way that for any given s-cube X=1I"/(u!,..., u") the
equivalence relation T is a cellular one’) on the CW-space (I", ¥") and
a CW-decomposition %"/ T of I"/ T is constructed. Since for every s-cube X =I"/T
T is the cellular equivalence relation on (I", ¥"), by the growing n the number of
cells of #*/T increases very rapidly. The practical computation shows that for n =4
the CW-decomposition "/ T of I"/ T is of very little use for the computation of the
homology H(X) of X.

') See [3], page 32.
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In the present paper a construction of a simpler CW-decomposition # of such
n-dimensional s-cube X, which is a manifold, is given. The number of cells of ¥ is
much smaller than that of #". E.g., for the s-cube I"/(s12...p ..., S12...) Which is

homeomorphic to RP"* we have card %" =12 (6"—=3")+1 and card ¥=n+1.

Moreover, # is the standard CW-decomposition {€°, €', ..., e"} of RP". Since the
CW-decomposition # is just cut for the form of the s-cube X, it seems to be one of
the best CW-decompositions of X for the computation of H(X).

1. Basic properties of s-cubes

We shall make use of the paper [4].

Let X=1I"/(u', ..., u") be an s-cube. The s-cube X is called an r-cube if for
every i, je N, u'=s; implies u’ = 5;. Every s-cube is homeomorphic to some r-cube
([4], Prop.2.10), hence we can limit ourselves in our considerations only to
r-cubes.

Anr-cube Y=1I"/(v', ..., v") has the property “M” if for each nonempty subset
Pc N, such that

i) Vi,jeP: i#j>vi+0

ii) Vie P: card V,#1

we have
Pnr, (H v’) #0
jeP

According to [4], Th. 3.18, an r-cube is a manifold if and only if it has the property
“M’,.

2. o-cubes and their distribution characteristic

Let X=1I"/(U,, ..., U,) be anr-cube and M;={x€ N, ; U, = U}, je N,. For the
future construction of the CW-decomposition # it is suitable to arrange sets
U, ..., U, in some appropriate order.

Definition 2.1. Let X=1I"/(U,, ..., U,) be an r-cube.

a) The r-cube X is called an ordered cube (shortly an o-cube) if the following
conditions are satisfied :

1) card U,=card U,=...=card U,

2) there are integers oy, ..., a, 1=y <a,<...<a,=n, such that M, =
{1,2,.., 04}, My, ={o,+1,a;,+2, ..., a2}, ..., Mg, ={a,.; +1, a,., +2, ..., a,}.

3) If card U, =1, then U,={a;} for ie N,.

b) Let X be an o-cube, s, a4, ..., a,, the integers defined in part a) and let
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p, 9, 0= p=q=s, be such integers that card U, =1 for p<i=<q and card U, # 1
otherwise. Put Bi=a,, p=a;—a,, ..., B,=a,—a,_,. An (2s+2)-touple (p, q;
Qi ..., O3 By, ..., Bs) will be called the distribution characteristic of the o-cube X.
The set {a;.1+1, a;y+2, ..., &), ie N,, will be henceforward denoted by Q,,
where 0o=0 by definition.

Example 2.2. r-cubes X1 = P/(S;u, 81245 S12345, S1245 312345), X2= P/(ld, §2, 82,
Sases Sass» Sass) are not o-cubes because the conditions 1), 2) for X, resp. the
condition 3) for X; from Definition 2.1 are not satisfied. An r-cube I*/(id, id, ss, ss,
Ss, S1675 S167, S123as678) is an o-cube with the distribution characteristic (1, 2; 2, 5, 7,
8;2,3 2, 1)

Making use of [4], Prop. 1.3., it is not difficult to see that every r-cube is
homeomorphic to some o-cube ; it is sufficient to find only a suitable permutation
of the coordinates. Since every s-cube is homeomorphic to some r-cube, we have
the following

Proposition 2.3. Every s-cube is homeomorphic to some o-cube.

3. Representation of o-cubes by o-balls

Let B*={xe R"; Vx}+...+ x2=1} be the standard n-dimensional ball. In this
section we introduce a special type of factor spaces of the products of balls.
Similarly to s-cubes we call them s-balls. We also introduce some special types of
these spaces and prove that every o-cube is homeomorphic to some o-ball.

Definition 3.1. Let n, s, s=n, be integers and let B, ..., B. € N,, Z Bi=n.
i=]1

Choose u', ..., u’€ G, in such a way that u'+ u' for all i#+j. An s-ball X=
Bfx...x B*/(u, ..., u*) is a factor space B**x ...x B%/ Ty, where Ty is an
equivalence relation on B X ...x B* defined by

x Tg y if and only if x=y or there is a nonempty subset M of N, such that

X, y€ QJ(BH s B3 i, n)  and -y=ILu‘(x), where  J(Bs, ..., B; i, n)

= Bfix...x B%1xX3BAx B%1x...x B% ieN,.

The s-ball X will be alternatively written in the form BA x ...x B%/(U,, ..., U,),
where U, = 1,(u'), ie N,. The sums Zk: B: will be denoted henceforward by a,
ke N, and we put =0 by definitio;.l

Definition 3.2. an s-ball X= B x...X B%/(u, ..., u*) is called a regular ball

(r-ball) if for every ie N,, je N, (n = 121 B:) u'=s; implies a,_;<j= a;.
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Definition 3.3. a) Anr-ball X=B*x...X B%(U,, ..., U,) is called an ordered
ball (o-ball) if the following conditions are satisfied :
1) card U= card U,=...=card U,
2) If card Uj=1, then U;={q}, je N,. )
b) Let X=B"x...X B%(U, ..., U,) be an o-ball and let p, q, 0=<p=gq=s, be
such integers that card U=1 for p<i=q and card U,+1 otherwise. An
(2s+2)-touple (p, q; a1, ..., as; By, ..., B,) will be called the distribution charac-
teristic of the o-ball X. The set {a;,_;+1, a;_; +2, ..., &} we shall denote in future
by R, ie N,.

Definition 3.4. Let X=B%x...x B%/(u', ..., u*) be an o-ball and (p, q;
ay, ..., & By, ..., B;) its distribution characteristic. The o-ball X has the property
“M” if for every nonempty subset P of N, with card U,# 1 for all i e P we have

AeP>Anr, (H u"‘)%‘-‘ﬂ
ieP
where
P={A;AcU R, card (AnR)=1 for all ieP} 1)
ieP

Let X=1I"/(U,, ..., U,) be a given o-cube, (p, g; a1, ..., &; By, ..., B) its
distribution characteristic. Now we are going to find an o-ball Y with the same
distribution characteristic which is homeomorphic to X.

Let F;: I'> B' be the standard homeomorphism defined by the radial extension
(see [2], p. 55). We show that the map

F: I">BAx...x B,

(2)
x> (Fg (X1, oo Xa)s +oes FpXayyt15 -o0s Xa)
induces a continuous map
F: I'/(U, ..., U)— B x...X B¥ (U, ..., Us),
(3)

[x]—[F(x)]
It suffices to prove that F is well-defined. Let [x]=[y] for x, ye I", x#y. Then
k 3
there are i, ..., ice N, such that x, ye [ ) J and y= 1 o ... o u*(x). Without loss
j=1

of generality we can suppose that u’»# u% for p, g€ N, p# q. Let M={ie N,;
aje Nk, i,e Oj}-l) Then F(x), F(y)E QJ(BI, seey ﬁs; i’ n) and F(Y)=

(l_L u"') (F(x)), because u®=u' for all je Q.. Hence F[x]=Hyl

') For Q, see Definition 2.1.
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Lemma 3.5. The map F, defined by (3), is a.homeomorphism.

Proof. Since the map F is onto, the space I"/(U,, ..., U,) is compact and the
space B*x...x B%(U,, ..., U,) is Hausdorff, it suffices to prove that F is
injective. Let [F(x)]=[F(y)] for some x, ye I", F(x)# F(y). Then there is

a nonempty subset M of N, such that F(x), F(y)e[) J(B., ..., B.; i, n) and
ieM
F(y)=([-L u"‘) (F(x)). Let i€ M. Then
i€
F(x), F(y)e BA X ...x B%-* Xx3BX BP»t X ... X B*

Denote by g; an element from Q, such that x, ye Ji, Then x, ye[) J? and

ieM

y= I-;[w u®(x). Hence [x]=[y].

Lemma 3.6. The homeomorphism F given by (3) preserves the property “M”.
Proof. Let I"/(u', ..., u®) be an o-cube with the property “M”, with the
distribution characteristic (p, q; ai, ..., a,; By, ..., B;) and let P+ be a subset of
N, such that card U,,#1for all ie P. Let A € P, where Pis defined by formula (1),
in which R;= Q.. Then

1) ¥ AcN,

2) card U#1 for every i€ A

3) U# U forall i, je A, i*j
Since the o-cube i*/(u', ..., u") has the property “M”, we have

Ant, (H u')#ﬂ

i€cA

But [| u’=l_Lu“'and the assertion follows.

ieA [
We know that the homeomorphism F preserves also the distribution characteris-
tic. Then with respect to Lemma 3.5 and Lemma 3.6 we have the following

Proposition 3.7. Let X=I"/(u!, ..., u") be an o-cube with the property “M”
and with the distribution characteristic (p, q; @i, ..., &; By, ..., B.). Then X is
homeomorphic to the o-ball Y= B% x ...x B*/(1f , ..., 1 ) which has the proper-
ty “M” and the same distribution characteristic as X.

4. A construction of the CW-decomposition ¥ of an s-cube
which is a manifold

Let X=I"/(u, ..., u") be an s-cube which is a manifold. Then X is homeomor-
phic to some r-cube X, and according to Proposition 2.3 X, is homeomorphic to
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some o-cube X;. Since X; is a manifold, it has the property “M”. Proposition 3.7
says now that the o-cube X; is homeomorphic to an o-ball Y with the property
“M”. Thus, there exists a homeomorphism H: X— Y, so it suffices to construct
the CW-decomposition # of the o-ball Y only.

Let (0, g; ai, ..., a; By, ..., B.) be the distribution characteristic of the o-ball
Y=BAX..xB%(v',..,v*) = BAX..X B%T; and let ps: BAX...x B~
Bfix...x B%/Tg be the canonical projection. Now a CW-decomposition & of
B x...x B* will be constructed in such a way that Tp will be a cellular
equivalence relation on the CW-space (B4 X ... x B%, €)

Denote by & the well-known CW-decomposition

0,0 L1 1 k=1 k-1
{2, e, ey, e, ..., e , €1 eé}

of the k-ball B* with the characteristic maps

Li: Bl B* x>(x, ..., x, £V1-x3—...—x},0, ..., 0)
f&: B*—> B x—>x

j=0,1,..., k—1. This CW-decomposition of B* induces the product
CW-decomposition & of B% x ...x B?. It consists of cells

4

enx... X eb &)

where p,=fB; and q.e{-1,0,1}, ie N,. The cell (5) will be denoted by
e(ps, ..., D3 G, ..., qs) and its characteristic map by f(pi, ..., Ps; G, .- g5). In
particular, the cell e(B,, ..., B; 0, ..., 0) will be shortly denoted by e" and its
characteristic map by f".

Let ee €be an arbitrary cell, e+ e", and let G(e) be the group generated by the
set

{u'; ie N, ec J(Bi, ..., Br; 1, M)}
The next Lemma follows immediately from the definition of an s-ball.

Lemma 4.1. Let ec &, e+ e". Then pz'(ps(e))= U u(e).

€ G(e)
To prove that Ty is a cellular equivalence relation on the CW-space (B% X ... X
B%, €), we shall need the following

Lemma 4.2. Let e€ &, e+ e" and let ue G(e). Then

1) u(e)e &

2) u(e)ne=@ or ule=id.
Proof: Let (0, p; ay, ..., a,; B, ..., B.) be the distribution characteristic of Y,
S(e)={ie N,; ec J(Bs, ..., B.; i, n}. Then u can be written in the form u=v . w,

where
v=11 u', w=[]u,
i€

i€Q
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Pc N,nS(e), Q=(N,— N,)n S(e). Let us denote
P'={a,_1+p,+l;ieP}, Q'={a,_1+p,+l;i€Q}.

Now put S=P'uQ’, S*= Snt,(u). With respect to (4) we have sign x,=sign y;
for all x, yee and i€ S. Let for x€ e z=u(x). Then for every ie S* we have
sign z;= —sign x;, hence u(e)=-e(p;, ..., p:; qf, --., q*), where g% =g, for i S*,
q%=—gq;for ie S*. So we have shown that u(e) € € and that enu(e)=0@if S*+@.
We shall discuss 3 cases:

1) Q+#0, 2) P#0, Q=¢, 3) P=Q=4.
1) Since the o-ball Bf X ...x B?/(u!, ..., u*) has the property “M” and Q' € Q"),
we have Q'N1, (H u') = Q' Nt (w)#0.

i€Q

Hence S*#@ and enu(e)=0.

2) If PNt (u)#0, we have s*#0 and enu(e)=0. If P'Nnt,(u)=0, we have
ule=id.

3) In this case u=id.

Theorem 4.3. The equivalence relation Ty is cellular®) on the CW-space (B" x

...X B? ¥).
Proof: Let e be an arbitrary cell in &. If e=e", then ps'(ps(e))=e. If e+ e",
according to Lemma 4.1 and Lemma 4.2, part 1), the set ps'(ps(e)) is a union of
mutually homeomorphic cells of €. Making use of assertion 2) of Lemma 4.2 and
of the definition of an s-ball we get that ps maps every cell ee € homeomorphically
on pg(e).

According to [3], Prop.5.8, p.60, we have the following corollary of
Theorem 4.3.

Corollary. The set ¥={ps(e); ee €} is a CW-decomposition of the o-ball
Bf X ...x B?/Tp. The map pso f(p1, ..., Ds; Gss ---» gs) is characteristic for the cell
pB(e(pl’ ooy Pos qs ooy q:))'

Example 4.4. Using the previous results we construct a CW-decomposition #
of the o-ball Y which is homeomorphic to the s-cube X = P/(s,, 123, 53). By [4],
Lemma 1.4, X is homeomorphic to an r-cube X;= P/(s123, $123, 53) and by [4],
Prop. 1.3, X is homeomorphic to an o-cube X, = P/(s1, $123, S123)- The o-cube X;
has the property “M” and the distribution characteristic (0, 1; 1, 3; 1, 2). By
Proposition 3.7 the o-cube X, is homeomorphic to an o-ball Y= B! X B?/(s1, $123)
= B'x B?/Ts. The CW-decomposition & of B! x B? consists of the following 15
cells: e(0,0; 1, £1), e(0,1; 1, £1), €(0,2; +1,0), e(1,0; 0, £1), e(1,1;
0, +1), e(1, 2; 0, 0). The CW-decomposition % of Y has 6 cells: ps(e(0, 0; 1, 1)),
gsg;;h 0; O’ 1))’ pB(e(O: 1 > 1’ 1))’ Pa(e(I, 1 > O, 1))’ pB(e(O’ 2s 1’ 0))’ pﬂ(e(l, 2a

') See Definition 3.4
?) See [3], p. 32
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KOHCTPYKLIMA CW-PA3BHMEHHUA s-KYBOB, KOTOPLIE SABJIAIOTCA
MHOTI'OOBPA3USAMHA

Jozef Tvaroiek

Pe3oMe

Ilycts X — n-MepHEIit s-Ky6, KOTOPbIi sBNAETCH MHOrooGpasneM. B craThe noctpoeHo CW-pa36ue-
Hue ¥ s-ky6a X, kotopoe mo3ponsieT Beraucauts H(X) Toxe pns n=4.
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