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ON THE TRIPARTITE CONJECTURE
JAN BEKA

A complete tripartite graph K(A, B, C) =K. ..., where m, n, s are positive
integers, is a graph whose vertex set is the union of pairwise disjoint sets A, B, C
(called parts of this graph) of cardinality m, n and s, respectively. Two vertices u
and v of K. ., are adjacent if only if they belong to different parts.

An isomorphic factorisation of a graph G =(V, E) is a partition {E,, ..., E,} of
the edge set of G such that the spanning subgraphs (V, E,), ..., (V, E,) are all
isomorphic to each other. Let G/t denote the set of graphs which occur as factors in
an isomorphic factorisation of G into exactly ¢ factors. We say G is divisible by ¢,
written ¢|G, if G/t is not empty.

Harary, Robinson and Wormald in [2] investigated for which ¢ a complete
tripartite graph K. ., is divisible by ¢. They proved that if t=2 or t=4, then
K....../t is not empty, and if t>1 (odd), m=t(t+1) and ¢ divides 2m + 1, then
K1, m/t is empty.

The authors of [2] expressed the following conjecture.

Tripartite conjecture. Consider a complete tripartite graph K., ., and an integer
t>1. If for all m, n and s the condition t|mn + ms + ns implies the existence of
a graph in K. . /t, then t is even, and conversely.

S. Quinn has just proved the tripartite conjecture for ¢t = 6. We shall prove that
the conjecture holds if at least two parts have equal numbers of vertices. For the
standard graph theoretic terminology we follow the book by Harary [1].

Theorem. Let t be even and t|m(m+2s). Then K, m, is divisible by t.

Proof. Suppose m(m + 2s) is divisible by ¢. Since ¢ is even, m must be even. At
first we shall construct a graph in K, m,./4.

Let Ay, A,, By, B, and C be pairwise disjoint vertex sets such that A;, Az, B,
and B; have cardinality m/2 each and C has cardinality s, and let A = A;UA; and
B = B,UB,. Define spanning subgraphs G; (i=1, 2, 3,4) of K(A, B, C) in the
following way: G,= K(B;, A,uC), G.=K(B;, AiuC), G;=K(A,, B;uC) and
G.=K(A;, B,uC). The edge sets of G; partition the edge set of K(A, B, C).
Clearly G:; are all isomorphic to K2, mi2+s and hence the latter graph is in K, m,s/4.
The graphs G; are illustrated in the Figure. Here each letter represents a vertex set
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and each edge between two sets represents the inclusion of all edges joining the two
sets. We consider two cases.

Case 1. Let t=0 (mod 4), t =4 - 1,. Since by the hypothesis ¢ divides m(m + 2s),
then (m/2)(m/2 + s) must be divisible by t,. As G; is a complete bipartite graph,

according to Theorem 1 from [2] there exists a graph G in Gi/t,. Evidently, G is
also in K., m../t.

Ao B, A, oB! A, By Ate o8
Al7.81 Az>az Al.; .Bl AITBZ
C C C C

Gq GZ 63 G‘#

Fig. 1

Case 2. Lett=2 (mod 4),t=2-t;, t,=1 (mod 2). According to the assumption
t divides m(m+2s) so that t, divides 2(m/2)(m/2+5). As t, is odd, (m/2)
(m/2 + s) must be divisible by t,.

Let Hi=G,uG; and H,=G;UG,. Then H, (as well as H,) contains 2(m/2)
(m/2+ s) edges and since t, divides (m/2)(m/2+ s), we have t,=a- b for some a
and b such that a divides m/2 and b divides m/2 +s.

Let X, Y.(r=1,2,...,b) and U, B, (j=1, 2, ..., a) be vertex sets such that
each X, or Y, has cardinality (m/2+s)/b and each U, or V; has m/(2a); let

AzuC=U?=,X,, A,UC=U"=, Y,, B1=U7=1 l],,

B.=J-1V,
and

Y1=Xb, Y2=Xb_1, ceey Yk=Xb—k+1,

where k is the greatest integer such that k(m/2+s)/b<s. In the case of
k(m/2+s)/b<s,let Yi+s and X, be such that Yiin X, =0, |

k+1Y, o C and
U:)=b—kXi oC.
We want for b>1 to construct from sets X,, Y, set sequences {M.}/-; and

{ N:}?-1 such that members of different sequences with equal indices will be disjoint.

If X.nY,.=0, where n=[(b+1)/2], put M,=X; and N;=Y, for every i=
1,2,..,b,and if X,nY,.#¥0, put Mi=X; (i=1,2,...,b) and

Ni=Y:, N2=Ys ..., Neci=Yooy, N.=Y..y, Nov1=Y., N,.= w42y ooy Np

= Yb.
In the case of b=1 put M;=A,uC and N,=A,uC.
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Define spanning subgraphs G; of H,/t, as follows: for every ordered couple
(i,)ef1,2,...,b} x{1,2,.., a} the graph G;=K(M, U;))UK(N;, V;). Graphs
K(M,, U;) [or K(N;, V;)] are complete bipartite graphs with parts M; and U; [or N;
and V,, respectively]. It is clear that graphs G; are edge-disjoint and form
a factorisation of H,. Furthermore, each M, or N; has cardinality (m/2 + s)/b and
U; or V;, has cardinality m/(2a). Clearly, G; are all isomorphic to 2K u/za), (mr2+sys-
Hence the latter graph is in H/t,. As H, is isomorphic to H, and HiUH,=
K(A, B, C), we have t|K,. ;.
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Pes3oMme

B craTbe moKa3biBaeTcs 3-0JbHAs TMIOTE3a NMpPU YCIOBMM, €CIM MO KpailHed Mepe, ABE ROJM
MOJIHOTO 3-110."5“01'0 rpaq)a HMCEIOT OMMHAKOBOC YHMCIIO BEPIUUH.
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