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THE INVERSE PROBLEM OF THE CALCULUS
OF VARIATIONS FOR FINSLER STRUCTURES

DEMETER KRUPKA, ABDURASOUL EZBEKHOVICH SATTAROV

1. Introduction

It is well known that the calculus of variations enables us to characterize many
interesting properties of various geometrical structures; important examples are
the variational theory of geodesics of connections in a Riemann or a Finsler space
[3], [4], the theory of extremals in spaces of supporting vector densities [5], etc.
With respect to the inverse problem, as to under what conditions the equations of
geodesics of a given connection can be regarded as the equations of extremals of an
integral variational functional, it seems that till now no explicit results have been
obtained.

The present paper is concerned with the inverse problem for connections on the
tangent bundle of a differential manifold. It is known that on a Finsler space there
exists a connection whose geodesics coincide with the extremals of the Finsler
structure, such that the covariant derivative of the metric tensor relative to this
connection vanishes (the Cartan connection). Our contribution consistsén showing
that also the converse is true in the sense that if a connection on the tangent bundle
is metrizable, it is precisely the Cartan connection of a Finsler structure. We also
show that the equations of geodesics of a linear connection coincide with the
Euler—Lagrange equations of a lagrangian if and only if the connection is
metrizable (without positivity assumption).

2. Connections on the tangent bundle

Let X be an n-dimensional smooth manifold. Recall the definition of the bundle
of linear connections over X [1]. Denote by F?X the principal L3-bundle of
2-frames over X. The structure group L2 of this bundle is the group of invertible
2-jets with source and target at the origin 0e R" of the real, n-dimensional
Euclidean space R". If jia e L2, a=:(a', a? ..., a"), then the formulas bj(jia)=
D,(a™')(0), bi(jsa) = D;Di(a')'(0), 1<i, j, k<n, j<k, define a global coordi-
nate system on L2, and we set a(jia) = bj(j5a™") so that ajbi= i (the Kronecker
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symbol). Put Q = R*"®@(R"* O R"*), where R" is considered with its natural vector
space structure, R"* denotes the dual vector space, and O is the symmetrized
tensor product, and denote by Iy, 1<i, j, k<n, j<k, the canonical coordinates
on Q. Writing

Ii=ai(bybilE, + bh) (2.1)

we obtain a left action of L} on Q which defines a fiber bundle with type fiber Q,
associated with F?X. This fiber bundle is called the bundle of linear connections
over X, and is denoted by I'X. We note that in (2.1) as well as throughout this
paper, the Einstein summation convention is used.

Let TX be the tangent bundle of X. By a connection on TX we mean
a morphism I': TX— I'X over idx. A geodesic of a connection I is a curve in X
satisfying, in each of the coordinates x' on X, the system of equations

i+ Cpx'x* =0, (2.2)

where Ijx are the components of I' relative to the coordinates x', and ‘“‘dot”
denotes differentiation with respect to parameter.

Denote by T:X the bundle of tensors over X, contravariant with respect to the
first r indices, and covariant with respect to the remaining s indices. Given
a connection I':' TX—-TIX, the covariant derivative Vrh: TX— T:;::1X of
a morphism h: TX— T:X is defined in a standard manner. In particular, let g:
TX— T3X be a morphism over idx. Then Vg: TX— T3X is defined, in any
coordinates x‘ on X, by

dg, 9

» Gj, k =axk ai-]l,l F:kx" - glmr;r(— g,...rﬁ(', (23)

where x‘, x are the coordinates on TX associated with x'.

3. Variationality of a linear connection

Let I" be a linear connection on a manifold X, i.e., a section of the fiber bundle
I'X, I the components of I' with respect to some coordinates x' on X. Consider
the equations of geodesics (2.2). For any regular tensor field g of type (0, 2) on X
whose components with respect to x' are denoted by g, i.e., such that det(g,) # 0,
(2.2) is equivalent with the equations

— &= gm(X™ + Ipyex®%9) = 0. 3.1)

We shall say that the linear connection I' is variational if there exists a function L:
TX — R (a lagrangian for (2.2)) and a regular tensor g such that (3.1) are the
Euler—Lagrange equations of L.
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Recall that the expressions & =¢€(x’, X/, ¥') are the Euler—Lagrange ex-
pressions of a lagrangian depending, in general, on x’, X/, ¥, if and only if

de _d& _1d (d& _d&\_
dx* ox' 2dt (ax" ax") 0, 32)
a& 8ek d aE.' aEk _
ax* Tax dr (ax**ax"‘)“o’ (3:3)
o0& O& _
35 a0 (3.4)

(see [2]), [6]).

Theorem 1. A necessary and sufficient condition that the linear connection I' be
variational is that there exists a regular tensor f of type (0, 2) on X such that in any
coordinates x' on X,

9ii = Gii» (3-5)
i nim ai"! agmk__a_Qﬁ)
w=39 (8x"+ ax ax") (3.6)

Proof. Assume that the equations (2.2), where I'x are components of a linear
connection, are variational, and take a tensor g such that & (3.1) is the
Euler—Lagrange expression of a lagrangian. Then the relations (3.2)—(3.4) hold ;
(3.4) gives

9ij = Gijis (3'7)

i.e., g is a symmetric tensor; (3.3) implies

; . 9g;
gil pc+ gkir;'oi"a'_z:‘= (3.8)

from which (3.6) follows. It is readily verified that because of these two relations,
(3.2) is satisfied identically.
Conversely, if g is symmetric and (3.6) holds, we set

L =% git'®, (3.9)
which defines a lagrangian for (3.1); that is, (2.2) is variational. This completes the

proof.

We note that the lagrangian (3.9) can be obtained from (3.1) by the standard
Tonti construction in the normal coordinates of g.
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4. Variationality of a connection on the tangent bundle

Let us briefly recall the notion and basic properties of the Cartan connection
associated with a Finsler structure on TX, defined by a metric function L: TX — R.
Put in any coordinates x' on X

1L
99=3 3505

(4.1)

g, are the components of a morphism g: TX— T3X over idx which is called the
metric tensor of L. By the well-known properties of L, det(g,)#0, that is, g is
regular, and

99y _99x_0%u 098y .i_
3¢ ar ap’ Akt 0 (4.2)

Denoting by g“ the elements of the inverse matrix of (g,;) we further put

i =1 (OGmi , OGmk _ 3G
Yw=39 <ax"+8x’ axm)' (4.3)

The Euler—Lagrange equations of L are then expressed by
Gm(X™ + ypex?x?) = 0. (4.4)

The Cartan connection associated with L is a connection I': TX — I'X defined
by

%=9"Tix, (4.5)

m 1796 . 99w ., Ogx .\ .
L= g-mY:k"i (ax,' Y“‘+a_g: Yi— ag’: Yh) x!

+1 (%é@ﬁgw 99s _ 99k 89u

19 Gr ot ar aim ax ax'"> Yrax"x".

This is a unique connection on TX for which Vrg =0 (see (2.3)). Moreover, by
4.2),

TR = Yt (4.6)

Hence the geodesics.of I' are precisely the extremals of the Finsler structure L.

These remarks serve as a motivation for the following definitions. Let I" be
a connection on TX, x’ any coordinates on X, I'j the components of I with respect
to these coordinates. We say that I is (locally) variational if the following condition
holds: there exists a system of functions yj of x?, x? such that

Y = TiEle, (4.7)
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and a regular mapping g: TX — T3X over idx, whose components are denoted by
gij, such that the functions

= _ql'n(x + quxpxq) (48)

are the Euler—Lagrange expressions of a lagrangian L = L(x', x, x'). We say that
I is metrizable if there exists a regular, positive-definite mapping g: TX —» T7X
over idx such that (1) g; = g;, (2) (39;/3x*)-x' =0, and (3) Vrg =0. We note that
the properties of a metrizable connection reflect the properties of the Cartan
connection.

Let us denote

Yi = giml";';i’«\'f". (4-9)

Theorem 2. A necessary and sufficient condition that I' be variational is that
there exists a regular mapping g: TX — T3X over idx such that in any coordinates
x on X

9i— 9 =0, (4.10)
2h 4 S0 5 S0 iy, (4.11)
%_%g);‘:n:()’ (4.12)

Proof. Substituting (3.1) and (4.9) in (3.2)—(3.4) and omitting the dependent
relations one immediately obtains (4.10)—(4.13).

Theorem 3. Each metrizable connection is variational. More precisely,
a metrizable connection is the Cartan connection of a Finsler structure.

Proof. Let I be a metrizable connection on TX, g: TX— T3X a morphism
satisfying the requirements (1)—(3) (see the definition of a metrizable connection).
Put

~1(99s  9gx_9gx
Yo =3 <8x" +8x’ ax') ’ (4.14)

Using (3) in the form (2.3) we obtain by means of cyclic permutations

2Yin = 2Gml i — gg',’r ' gg‘fr' r 2“?‘,"1“:.;2'=0. (4.15)
By (2),
(Yi.pq - g.'mrf,':,)x"’iq = 0. (4.16)
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Hence the left hand side expressions of the equations of geodesics of I' can be
expressed in the form

&= = Gim(E"™ + TpiPX) = = Gunk™ = ¥, ok "X°. (4.17)

It is readily verified that & are the Euler—Lagrange expressions of the lagrangian
L)
= 2 gijx X'.
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CZECHOSLOVAKIA

DakynIbTET MATEMaTHKH
IMeparornyeckoro HHCTHTYTa
Hyuran6e
CCCP
OBPATHASI BAPUALIMOHHASA 3AI0AYA IS [TIPOCTPAHCTB ®UHCIIEPA
Demeter Krupka, Abdurasoul Ezbekhovich Sattarov
Pe3ome
B pa6oTte noka3biRaeTcs, YTO BCAKass MeTpH3yeMas CBS3HOCTb Ha KacaTelIbHOM MPOCTPaHCTBE

sIBNsieTCA CBA3HOCThIO KapraHa HekOTOpO#M CTPYKTYpbl PHHCIEpa W 4YTO JIHHeHHas CBA3HOCTb Ha
MHOroo6pa3uH BapMalMOHHAs TOTMA M TOJILKO TOTAA, KOTa OHa MeTpU3yeMasl.
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