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THE STRUCTURE OF THE RINGS
ASSIGNED TO GROUP VARIETIES

BOHUSLAV SIVAK

Recall a construction which assignes to each congruence-modular variety ¥’
some ring R(V) [1].

Let ¥ be a congruence-modular variety and let F, be the ¥ '-free algebra
generated by {x, y}. Let us denote I the least congruence on F, which identifies x
and y. Let &: F,— F,/[T’, I'] be the natural projection on the factor-algebra,
I'=na(r), R(V)=[y]I. The ring operations on R(¥’) are the following ones:

u(x, y)+v(x, y)=d(u(x, y), y, v(x, y)),
u(x, y)- U(x’ y)= u(v(x9 Y)’ y)
—u(x, y)= d(}’, u(x, )’), )’),
1=x, O0=y.

In this definition, d is the ternary difference term in V.
We shall consider only the case ¥ = ¢, where ¥ is the variety of all groups. Each
term u(x, y)-y) can be written in the form

u(x,y)=u'(x,y)y
and trivially:
u(x, x)=x<u'(x, x)=1.
Since R(Y) contains exactly the classes of idempotent terms, the definition of

R(Y) can be modified in the following way: R(¥)=[1]I" (i.e., R(¥’) contains
exactly the classes of terms u satisfying u(x, x)=1.)

u(x, y)®uv(x, y)=u(x, y) v(x,y) (the productin x(F,))
u(x, y)Ou(x, y)=u(v(x, y) -y, y)
Ou(x, y)=(u(x, y))! (the inverse element in 7 (F,))
I=xy™, 0=yy™

Lemma 1. u(x, x)=1 in V' if and only if there exists i such that i = u in V" and
u(x,x)=11in%.
Proof. a(x, y)=u(x, y) - u '(x, x) proves =. The implication & is trivial.
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Corollary. The subgroup of F, which corresponds to [I', I'] is generated by the
set of all elements of the form

u(x,y) - v(x,y) u'(x,y) vix,y),

where u(x, x)=v(x,x)=1in 4.
Proof. The terms u satisfying u(x,x)=1 in ¢ form a subgroup of F,
corresponding to the congruence I'.

Lemma 2. Ifu(x, x)=11in%, thenu=v; ... v« in 4, where each v: has the form
x"y"ory'x™", neZ.

Proof. The term u(x, y) can be written as a product of powers of x and y. The
proof can be done by the induction on the number of these powers.

Corollary. The subgroup of F, which corresponds to [I', I'] is generated by the
set of all elements conjugated with the elements of the form

u(x, y)-v(x, y) - u'(x,y)- v '(x,y),
where u and v have the form x"y ™" or y"x™", ne Z.

Lemma 3. The additive semigroup of the ring R(V) is generated by the set of all
elements of the form x"y™" or y"x™", ne Z.

Corollary. The additive group of the ring R(V’) is generated by the set
{x"y™"|neZ).

Definition. For each ne N, let us denote
a.=x"y™", b.=y"x".
Remark. In R(Y), the elements a., b, have the additive inverse elements
Oa.=yx™", Ob.=x""y".
Lemma 4. Let us denote s=b, =y 'x. Then
b.=5s"@s"'@...®s (the powersin R(V))

for each ne N.
Proof. It suffices to prove b,Ob.-1=s" for n=2. We shall do it by the
induction on n. For n =2 we have:

s2(x, y)=s(s(x, y) ¥, Y)=s(y 'xy, y) =y xy =
=(y2x?)x7'y) = b bs.

Assume that n>2 and that 5" '=b.-1Qb.2 = (y'7"x"71) - (XY =y
Then
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s"(x, y)=5""(s(x, ) - y, Y) ="My xy, y) =y ey Ty oyt =
___y-nxyn—‘l‘=(y—nxn)(xl—nyn—1)=b"eb"_l.

Lemma 5. Let us denote t=yxy~>. Then
a=t"'Or@®..Otd1

(the powers and the unit in R(V’)) for each n € N.
Proof. It suffices to prove a,.1@a.=t" for n=1. We shall do it by the
induction on n. For n=1 we have:

t'(x, y)=yxy i =(yx )(x’y ) =0Qai@a:=a:Oa.

Assume that n>1 and that t" '=a,Qa.-1 = (x"y ")(y" 'x'™") = x"y x'™".
Then

", y)=t(t(x, )y, )= (vxy T y) = )
-1 -n

=(yxy )" -yt (yxy ) =ty Ty Ty Ty T =yxty iy T =
=(yx) -y )y ) (xy ) =01® 0.+1Qa. D1 =241 O an.

Lemma 6. sOt=tOs=1 in R(Y).

Proof. (sO0)(x,y) = s(t(x,y)-y,y) = s(yxy™,y) = y ' -yxy™ = xy7!,
(tOs)(x,y) = t(s(x,y) -y, y) = t(y“'xy,y) = y-y~'xy-y~? = xy~". The term
xy~! is the unit of R(Y).

Theorem 1. The ring R(Y) is generated by the elements s =y 'x, t=yxy 2.
This two elements commutate in R(Y).

Corollary. The ring R(V) is isomorphic to the factor ring of Z[p, q] by some
ideal containing the element 1—pq.

Corollary. The ring R(V’) is commutative.

Theorem 2. The ring R(%) is isomorphic to Z[p, q)/(1 — pq), the isomorphism
is defined by 11, pr>y~'x, g yxy™>
Proof. Each element of R(%) can be written in the form

co@cas@Pes’@..Pas"Pdit@ d’@D ... Ddat™,

where ¢, dje Z. It suffices to prove that such a representation is unique, i.e. that
the zero element of R (%) has only the trivial representation of this type. Trivially,

0=co@cis@cs’D..Pas* D ditDd’D ... Ddat™
if and only if
0=dn@Pdmn-15@..des™" ’Pdis™ ' Dcos"Dcr1s" ' @D ... Das™ ™
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Therefore, we have to prove that the elements 1, s, 5%, ... are Z-linearly indepen-
dent. By Lemma 4, it suffices to prove that b,, b2, bs, ... are Z-linearly indepen-
dent. This proof will be done if we find a group G and its elements x, y such that:
(1) The elements of the form x"y™" or y"x™", n € Z, commute in G.
(2) No equality of the form

')y D), ... (y7"x"). =1, e€Z,neN,

holds in G except in the case e; = ... = e, = 0. Now we shall construct such a group.
Let us denote

M =(f|f: Z— Z has a finite support and D, f(i) =0},
ieZ
G=ZxM.

We define the operation *+ on G in the following way:
(m, f)x(n, g)=(m+ n, h), where h(i)=f(i+ n)+ g(i).

The direct calculations whow that (G, «) is a group with the neutral element (0, o),
0: Z—-2Z, o(i)=0. Let us denote

1if i+k=0
e()={—-11if i=0 forO+keZ,
0 otherwise

x=(1’ (Pl), y=(1’ 0)'

n

Easy calculations give y"=(-n,0), x"=(n,@.), therefore y "x
= (_n’ 0)*(”, q)n) = (0, (Pn), x"y™" = (O» wn)’ where 1J}"(l)= _q)"(_i)'

As all elements of the form (0, f) commute in (G, %), the condition (1) is
satisfied. The condition (2) is a consequence of the equalities

(y_ixi)ei = (0’ (pl')* *(0’ (P-) = (O’ ei(pi),

e;-times

(Y 'x) ... x(y "x"), = (0, Zl e.tp.-)
and the linear independence of the functions @:.

Remark. The ring R(7') is a homomorphic image of R(%) for each subvariety
¥ < 4. This ring can be sometimes easily determined. For instance, if ¥ is the
subvariety of all abelian groups, then R(¥)=Z. If ¥ is the subvariety of ¢
determined by the identity xy?= y’x, then R(¥) is isomorpkic to Z[w]/(w?, 2w).
(In this case, w=sO1.)
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The assignment ¥'— RY) is not injective. If ¥ is the subvariety of ¢ determined
by the identity [[x, y], [z, t]]=1, then R(¥)=R(V"¥) for each V' 4. For
instance, R(¥)=R(%).
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CTPYKTYPA KOIJIELl, CBA3AHHBIX C MHOI'OOBPA3USsIMHU T'PYIII
Bohuslav Sivak

Pe3ome

B paGore HaiiieHo cTpoenne koaen R(V’) nocraBneHbix MOAYASAPHBIM MHOroo6pasusm ¥ nns
cny4ast MHoroo6pasui rpynn. Jloka3aHo, 4YTO A/is MHOrooGpa3us BCeX Irpymi 3TO KOJIbLO H30MOp¢HO
Z[p, q)/(1 — pq) n pns apyrux MHOroo6pasmii rpynn oHo sABASETC roMoMopdHbIM 06pa3oM 3TOro
Konbua. Takum o6pa3oM, Bre koabua R(¥") KOMMyTaTHBHBI.
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