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TYPICAL CONTINUOUS FUNCTION WITHOUT
CYCLES IS STABLE

KATARINA NEUBRUNNOVA

Let C be the metric space of all I— I continuous functions with the uniform
metric where I is a real compact interval. For fe C put ||f|| =max {|f(x)[, x e I}.
Denote by f” the n-th iterate of f. If f"(x)=x for some x €I, n>1,and f"(x)# x
whenever m < n, then f is said to have a cycle at x. The order of this cycle is n while
its length is d =max {|f"(x)—f*(x)|, 1=r, s=n}. Let A(f) be the L.u.b. of the
lengths of all cycles of f. The function f is said to be stable if A: C— R is continuous
at f (cf. [7]). It has been shown in [7] that the stable functions form a residual set
in C. However, this result gives no information on the stability of functions without
cycles, since the set A of these functions is nowhere dense in C (Theorem 1
below). The functions without cycles are very important in applications (see e.g.
[5]). One of the reasons is that the sequences of their iterates are convergent [9]
(see also [2]).

The main aim of the paper is to show that the unstable functions without cycles
form a relatively small set. Namely, we show that the set A is a second Baire
category set in itself (Theorem 2) while the unstable functions without cycles form
a set of the first Baire category in A (Theorem 3). Thus the typical continuous
function without cycles is stable.

The following notation will be used:

F={feA; fis unstable},
G={feA; fisstable}.

As it is known (see [6]) we have F# {J. The property of ‘“absence of the cycles” is
not preserved in any neighbourhood of any function from C since the set of all
functions having 3-cycles is dense in C (see [3]). However, it is possible to prove
a stronger result. '

Theorem 1. The set of all continuous functions without a 3-cycle is nowhere
dense in C.

Proof. Take fe C, €>0. Let x*eI, f(x*)=x*. The continuity of f at x*
implies the existence of a >0, 8 <e such that |f(x)— x*| <e/2, whenever
|x — x*| < 8. Put n=256/4 and for x € [x*, x*+ 2n] define
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*( )_{2x—x* if x*Sx=x*+n
9= 3x* +4n—2x otherwise.

It is easy to see that for x €[x*, x*+2n] we have
lg*(x) = f() = |g*(x)— x*|+ |x* = f(x)| <2n + €/2<Ee.

Now we define ¢g: I— I such that g(x)= g*(x) for x €[x*, x*+2n], g(x)=f(x)
for x ¢ [x*, x*+3n], and let g be continuous in I and ||g — f|| <e. It is easy to
verify that for xo=x*+ /2 we have

9°(x0) <x0 < g(x0) < g*(x0),

hence g has a 3-cycle (cf., e.g. [4]). By the continuity of g, for each continuous r
from a sufficiently small neighbourhood O(g) of g we have

r*(xo) < xo < r(xo) < r’(xo),

thus each r e O(g) has a 3-cycle, g.e.d.
As a direct consequence of Theorem 1 we obtain that the set A of all continuous

functions without cycles is nowhere dense in C. We show it is a second Baire
category set in itself.

Theorem 2. The set A is a second Baire category set in itself.

Proof. Let D be the set of all functions which have only 2-cycles. From Block’s
stability theorem [1] we have clos A = AuD, hence clos A = AuD, where Do is
a suitable subset of D. According to Baire’s theorem clos A is a second category
set. To prove the theorem it suffices to show that Dy is a first category set in clos A.

We show that D= D D.., where each D, = {f€ Do; A(f)>1/n} is nowhere dense
n=1

inclos A. Let feclos A. In any neighbourhood O(f) of f there is a function g€ A.
Let X={xel;|x—g(x)|21/2n}. Clearly X is a compact. Since g has no cycles
and X contains no fixed points of g we have dist (gx, gx')>0, (see Lemma 1 in
[6]), where gx is the graph of g in X and g~ is the inverse relation to g. From the
continuity of g there is such a neighbourhood O(g) = O(f) that for each h e O(g)
dist (hx, hx')>0 and ||h - g]| <1/2n.

We show that h has no 2-cycle in X. Let x;, x2€ X, x1— x2— X1, X1 # x2. Let M
be the point M =(xi, x;)€ R®. Evidently Me hx. Since h(x:)=x,, we have
x2€ h™'(x1), hence M € hx' and dist (hx, hx') =0, which is impossible.

Hence, if h has a 2-cycle in I, x,— x— x;, then at least one of the points xi, x2,
say xi, belongs to I\ X. We have

,x, —le = [x1 - h(x,)lélxl—g(xl)l + Ig(xl)— h(X1)l <l1/n.

Thus h é D, and the theorem is proved.
To show the main result it suffices to prove the next
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Theorem 3. The set F is a first category set in A.
The proof is based on a result from [6] which can be restated as follows
(Theorems 1 and 2 in [6]).

Theorem A. The function A: C— R is continuous at some f € A iff the set of
fixed points of f contains no interval.

Proof of Theorem 3. It suffices to show that F can be represented as Lj A,

n=1
where each A, is nowhere dense in A. Let {I,} be a sequence of all closed
subintervals of I with rational endpoints. For each n let A, be the set of all
functions f e C with the property that the set of fixed points of f contains I,. We

show that D A, =F. Evidently CJ A,cF.If feF, then by Theorem A the set of
n=1 n=1
fixed points of f contains an interval, and hence an interval I, with rational
endpoints. Thus fe A, = CJ A,
n=1

Further we show that each set A,, n=1, 2, ..., is nowhere dense in A.Let fe A,
€>0.If fe G, then f¢ A, and there exists >0, 6 <¢ so that for g e C we have
gé A, whenever ||f—g|/<é. If fe A.cF, we find geC, ||f—g|[=¢/2 in the
following way. Denote I,=[a., b.], and choose x.€(a., b,). Let
8 <min (b — x,, £/2), 6>0. We shall define g* so that

g*(a.) = a,
g*(b.) = b,
g*(x.)=x,+ 6,

and g* is continuous and linear in each of the intervals [a., x.], [x., b.]. The
function g is defined by

_[g*(x) for xel,
g(x)_{f(x) for xeI\I,.

It is easy to verify that g€ C, ||f—gl|<e&/2, and h¢ A, whenever ||h—g| <é.
Thus an arbitrary e-neighbourhood of f contains a §-sphere disjoint with A, and
the theorem is proved.

REFERENCES

[1] BLOCK, L.: Stability of periodic orbits in the theorem of Sarkovskii. Proc. Amer. Math. Soc. 81,
1981, 333—336.

[2] COVEN, E. M.—HEDLUND, G. A.: Continuous maps of the interval whose periodic points form
a closed set. Proc. Amer. Math. Soc. 79, 1980, 127—133.

[3] KLOEDEN, P.: Chaotic difference equations are dense. Bull. Austr. Math. Soc. 15, 1976,
371—-379.

125



[4] LI, T. Y.-YORKE, J. A.: Period three imp;lies chaos. Amer. Math. Monthly 82,1975, 985—992.

[5] MAY, R. M.: Simple mathematical models with very complicated dynamics. Nature 261, 1976,
459—467.

[6] SMITAL, J.—SMITALOVA, K.: Structural stability of typical nonchaotic difference equations.
Journ. Math. Anal. and Appl. 90, 1982, 1—11.

[7] SMITAL, J.—_NEUBRUNNOVA, K.: Stability of typical continuous functions with respect to
some properties of their iterates. Proc. Amer. Math. Soc. to appear.

[8] WIAPKOBCKHM, A. H.: CocyuiecTBoBaHHEe LMKIOB HENpPEepbIBHOTO MpeoGpa3’0BaHus NMPAMON
B ceOa. Ykpaun. Mar. Xypuan 16, 1964, 61—71.

[9] WIAPKOBCKHM, A. H.: O uuknax u CTpyKType HempepbIBHOTrO 0TOGpaxeHus. YKpaud. Mar.
XKypnan 17, 1965, 104—111.

Received October 25, 1982

Katedra teérie pravdepodobnosti
a matematickej Statistiky MFF UK
Mlynska dolina
842 15 Bratislava

YCTOMYMBOCTb TUIMUYHOM HEMNPEPLIBHON &YHKUHH
BE3 LIMKIIOB

Katarina Neubrunnova

Pe3iome

Hoka3biBaeTcs, YTO HeyCTONYMBLIE (PYHKUMH 0OPa3yrOT OTHOCHTENBLHO Majloe MHOXECTBO € TO-
MOJIOrHYecKOi TOYKH 3peHHs. FIMEHHO MOKa3aHO, YTO MHOXeCTBO A Bcex (GyHKUMHA Ge3 UMKIOB
SIBJISIETCS MHOXECTBOM BTOpod KaTteropuu Bepa B ceGe (Teopema 2), a HeycToiluuBble (DyHKUUH
o6pa3yioT MHOXecTBO mepBoi kateropun B A (Teopema 3).
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