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TYPICAL CONTINUOUS FUNCTION WITHOUT 
CYCLES IS STABLE 

KATARlNA NEUBRUNNOVA 

Let C be the metric space of all I-+I continuous functions with the uniform 
metric where I is a real compact interval. For feC put ||/|| =max {|/(x)|, xeI}. 
Denote by fn the n-th iterate of / . If fn(x) = x for some xel, n>\, and fm(x) + x 
whenever m<n, then / is said to have a cycle at x. The order of this cycle is n while 
its length is d = max {\fr(x)-f5(x)\, l ^ r , s^n}. Let X(f) be the l.u.b. of the 
lengths of all cycles of / . The function / is said to be stable if A: C-» R is continuous 
at / (cf. [7]). It has been shown in [7] that the stable functions form a residual set 
in C. However, this result gives no information on the stability of functions without 
cycles, since the set A of these functions is nowhere dense in C (Theorem 1 
below). The functions without cycles are very important in applications (see e.g. 
[5]). One of the reasons is that the sequences of their iterates are convergent [9] 
(see also [2]). 

The main aim of the paper is to show that the unstable functions without cycles 
form a relatively small set. Namely, we show that the set A is a second Baire 
category set in itself (Theorem 2) while the unstable functions without cycles form 
a set of the first Baire category in A (Theorem 3). Thus the typical continuous 
function without cycles is stable. 

The following notation will be used : 

F= {fe A ; / i s unstable}, 
G = {feA; / i s stable}. 

As it is known (see [6]) we have F± 0. The property of "absence of the cycles" is 
not preserved in any neighbourhood of any function from C since the set of all 
functions having 3-cycles is dense in C (see [3]). However, it is possible to prove 
a stronger result. 

Theorem 1. The set of all continuous functions without a 3-cycle is nowhere 
dense in C. 

Proof. Take feC, e>0. Let x*el, f(x*) = x*. The continuity of / at JC* 
implies the existence of a <5>0, 6<e such that \f(x) — x*\<e/2, whenever 
|* - j t* |<<5. Put t} = 6/4 and for x e[x*, x* + 2r\] define 
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0*(x) = { 
2JC-JC* if JC*=IJC=IJC* + r\ 

3x* + Ar\-2x otherwise. 

It is easy to see that for JC e[jc*, x* + 2rj] we have 

\g*(x)-f(x)\^\g*(x)-x*\ + \x*-f(x)\<2r\ + e/2<e. 

Now we define g: I—>I such that g(x) = g*(x) for xe[x*, x* + 2r\], g(x) = f(x) 
for x i[x*, x* + 3r\], and let g be continuous in I and | | g - / | | < £ . It is easy to 
verify that for JC0 = JC* + ?7/2 we have 

g3(x0)<x0 < g(xo) < g2(x0), 

hence g has a 3-cycle (cf., e.g. [4]). By the continuity of g, for each continuous r 
from a sufficiently small neighbourhood O(g) of g we have 

r3(xo) < xo < r(jco) < r2(x0), 

thus each reO(g) has a 3-cycle, q.e.d. 
As a direct consequence of Theorem 1 we obtain that the set A of all continuous 

functions without cycles is nowhere dense in C. We show it is a second Baire 
category set in itself. 

Theorem 2. The set A is a second Baire category set in itself. 
Proof. Let D be the set of all functions which have only 2-cycles. From Block's 

stability theorem [1] we have clos A c A u D , hence clos A = A u D 0 where D0 is 
a suitable subset of D. According to Baire's theorem clos A is a second category 
set. To prove the theorem it suffices to show that D0 is a first category set in clos A. 

We show that D 0 = (J A», where each Dn = { /eD 0 ; A(/)> 1/n} is nowhere dense 

in clos A. Let /ec los A. In any neighbourhood O(f) of / there is a function g e A. 
Let X= {xel; \x - g(x)\^l/2n}. Clearly X is a compact. Since g has no cycles 
and X contains no fixed points of g we have dist (gx, gx

1)>0, (see Lemma 1 in 
[6]), where gx is the graph of g in X and g~x is the inverse relation to g. From the 
continuity of g there is such a neighbourhood 0(g)cz O(f) that for each h e O(g) 
dist(/ix , hx1)>0 and \\h - g\\ <\/2n. 

We show that h has no 2-cycle in X. Let JCI, jc2eX, x\ —»JC2—»JCI, JCI ̂  JC2. Let M 
be the point M = (JCI, X2)GR2. Evidently Mehx. Since h(x2) = xx, we have 
x2eh~l(x\), hence Mehx

l and dist (hx, hx
1) = 0, which is impossible. 

Hence, if h has a 2-cycle in I, JCI—>JC2—>xi, then at least one of the points JCI, JC2, 
say JCI, belongs to I\X. We have 

|JCI - JC2| = |xi - h(xx)\ ^ |JCI - 0(JCI)| + \g(x^) - /I(JCI)| < l/n. 

Thus h£Dn and the theorem is proved. 
To show the main result it suffices to prove the next 
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Theorem 3. The set F is a first category set in A. 
The proof is based on a result from [6] which can be restated as follows 

(Theorems 1 and 2 in [6]). 

Theorem A. The function X: C—»K is continuous at some feA iff the set of 
fixed points of f contains no interval. 

Proof of T h e o r e m 3. It suffices to show that F can be represented as U An 

where each An is nowhere dense in A. Let {/„} be a sequence of all closed 
subintervals of / with rational endpoints. For each n let An be the set of all 
functions feC with the property that the set of fixed points of / contains /„. We 

CO 00 

show that (J An = F. Evidently (J An c F. If feF, then by Theorem A the set of 
n=i rt=i 

fixed points of / contains an interval, and hence an interval Ik with rational 

endpoints. Thus / e Ak cz | J A„. 
«=i 

Further we show that each set An, n = 1, 2, ..., is nowhere dense in A. Let feA, 
e>0. If feG, then fi An and there exists d > 0 , 6 < e so that for g eC v/e have 
giAn whenever | | / - ^ | | < 6 . If / e AnczF, we find geC, | | / - ^ | | ^ e / 2 in the 
following way. Denote In = [an, bn], and choose xne(an,bn). Let 
<5<min (b-xn, e/2), <5>0. We shall define g* so that 

g*(an) = an 

g*(bn) = bn 

g*(xn) = xn + d, 

and g* is continuous and linear in each of the intervals [an, xn], [xn, bn]. The 
function g is defined by 

a(r\ = íf*(x) for xeln 
g(x} \f(x) for xeI\L. 

It is easy to verify that geC, \\f— g\\<e/2, and hiAn whenever | | f t - f i f | |<6. 
Thus an arbitrary e-neighbourhood of / contains a 6-sphere disjoint with An and 
the theorem is proved. 
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УСТОЙЧИВОСТЬ ТИПИЧНОЙ НЕПРЕРЫВНОЙ Ф У Н К Ц И И 
БЕЗ ЦИКЛОВ 

Ка1аппа ^ и Ъ г и п п о у а 

Р е з ю м е 

Доказывается, что неустойчивые функции образуют относительно малое множество с то­
пологической точки зрения. Именно показано, что множество А всех функций без циклов 
является множеством второй категории Бера в себе (Теорема 2), а неустойчивые функции 
образуют множество первой категории в А (Теорема 3). 
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