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M-POPRODUCT OF LATTICES 

ZUZANA LADZIANSKA 

The present paper generalizes the results of [3] concerning the free m-product of 
lattices. The notion of the poproduct of lattices was introduced and investigated in 

[4]. 
Throughout this paper, m is an infinite regular cardinal. A lattice L is 

m-complete (or L is an m-lattice) if for any nonempty S^L with the cardinality 
\S\<m, the join and meet of S exist in L. The concepts of an m-sublattice, 
m-generated and an m-homomorphism are defined in the natural way. 

Let R be a poset and let Lr, reR be pairwise disjoint m-complete lattices. Let 
Q = [J(Lr; reR) be partially ordered in the following way: 

for a, b e Q we put a ̂  b if and only if one of the conditions (i) and (ii) holds : 

(i) there is an re I? such that a, beLr and the relation a^b holds in Lr, 
(ii) there are p, reR such that aeLp, b eLr and the relation p<r holds in the 

poset R. 

If / is a mapping from Q into a lattice M, then fr denotes its restriction on Lr. 

Definition 1. Lef R be a poset and let Lr, reR and L be m-lattices. The lattice 
L is said to be the m-poproduct of the lattices Lr, reR if: 

(i) there is an isotone injection i: Q-+L such that for each reR, ir is an 
m-homomorphism, 

(ii) if M is an m-lattice, then for every isotone mapping f: Q-+M such that for 
each reR, fr is an m-homomorphism, there exists uniquely an 
m-homomorphism g: L-+M such that g0i = f. 

From the definition it follows that L is m-generated by the set i(Q) (i.e., L is the 
smallest m-sublattice of / that contains i(Q)). 

We shall identify the sets Q and i(Q). Then we can say that i: Q^>L is 
a canonical m-embedding. Q will be called a skeleton of L. 

The m-poproduct of the m-lattices Lr, reR will be denoted by Pm(Lr; reR). 
From the definition it follows that an m-poproduct forms the free m-poproduct if 
and only if R is an antichain. 
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Let us denote by Wm(Q) the set of lattice m-polynomials over Q. The concept 
of an m-polynomial is defined inductively as follows: W0(Q) = Q, and for 
m > 0 the set Wm(Q) consists of all elements of U(Wn(Q)\n<m) together 
with all expressions of the form /\S or /\S (cosidered formally), where 
S ^[J(Wn(Q)\ n < m) and 0 < | S | < m . The rank 1(a) of an m-polynomial a is 
the least ordinal n such that a e Wn(Q). 

Denote by 0,1 two new elements, which do not belong to the skeleton Q and 
extend the partial ordering from the set Q to the set QO{0, 1} (0 denotes the 
disjoint union of sets) in the following way: for each q e Q the relation 0 < q < 1 
holds. 

For each a e Wm(Q) and each r e R the upper r-cover a(r) and the lower r-cover 
a(r) are defined as follows: 

Definition 2. 

(i) Let aeLp. 
If p = r, then a(r) = a(r) = a. 
If p\\r, then a(r) = 0, a(r)=l. 
If p<r, then a(r) = 0, a(r) = 0. 
If p>r, then a(r)=l, a(r)=l. 

(ii) If a = w(ai, ..., an, . . .) , then 
a(r)=w((ai)(r), ..., (an)(r), ...), 
a(r)=w((al)

(r),...,(an)
(r),...). 

Note that hr(a) = a(r), hr(a) = a ( r )are m-homomorphisms Wm(Q)—>Lru{0, 1}. 
A lower or upper cover that is distinct from both 0 and 1 is called proper. 

Definition 3. On the set Wm(Q) we define the relation = in the following way: 
For a, be Wm(Q) the relation a = b holds if it is a consequence of the following 
rules: 

(1) there are p, reR (p = r) such that a(p), b(r) are proper and a(p)=b(r) holds in 

O, 
(2) a = /\S and s = b for some s eS, 
(3) a=\/S and s = b for all s e S, 
(4) b = /\T and a = t for all te T, 
(5) b = \/T and a = t for some teT. 

Theorem. Let Lr,reR be a family of m-lattices. Then the m-poproduct 
Pm(Lr; reR) = L exists and L = Wm(Q)/ =, where a = b if and only if a = b and 
b^a. 

Proof. Proof is similar to that of the corresponding theorem of [3]. First we 
need some auxiliary results. 
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Lemma 1. Let a e Wm(Q). If a(r) is proper, then a(r)cr a. If a
( r ) is proper, then 

a = a(r). 
Proof. If aeLr, then a(r)^a = a(r). Therefore (a(r))

(r)^a(r) and a(r)^(a(r%) in 
Q. Now we can proceed by induction on the rank of a e Wm(Q). 

Lemma 2. Let a, b, ce Wm(Q). Then 

(i) aga, 
(ii) a = b and b = c imply that age. 

Proof, (i) If 1(a) = 0, the aeLr for a unique r e i ? . Since a = a(r) = a(r), the 
containment a g « holds by (1). Let a = /\S. Since s g s holds for all seS by 
induction on the rank, it follows by (2) that A ^ E s for all s e S. Hence, applying 
(4), a = /\S<=/\S = a.Leta = \/S. Since s g s for all seS, by induction it follows 
by (3) that \/S = s for all seS. Hence, applying (5), a = \JS = \/S = a. 

(ii) Proof is by induction on 1(a) + 1(b) + 1(c). 
If a g b holds by (2), then a/\S and sgb for some s e S. Hence, s g c and age 

holds by (2). 
If a g b holds by (3), then a = V-S and s g b for all s. Hence, s g c for all s and 

a g c holds by (3). 
If a g b holds by (5), then b = \JT and a g l for some teT. From t= b, b g c it 

follows f g c , hence, age by transitivity. 
If b g c holds by (2), then b = /\S and s g c for some seS. From a g b, b g s it 

follows ags, hence age by transitivity. 
If b g c holds by (4), then c = A ^ and b = t. From a g b, b g tit follows a = t, 

hence a g c by (4). 
If b g c holds by (5), then c = \/T and b = t for some f e T. From a = b,b = t it 

follows a g t, hence a g c by (5). 
If a g b holds by (1), then there are p, r eR such that a(p), b(r) are proper and 

a(p)=^b(r). Therefore agb(r), fe(r)gc, hence age by transitivity. 
It bgc holds by (1), then there are p, reR such that b(p), c(r) are proper and 

b(p)=c(r). Therefore a = b(p), b ( p ) g c , hence age by transitivity. 
Now there remains the case when a = b holds by (4) and b g e holds by (3). That 

means, b = /\T and a g t for all r e T and b = \/S and s g c for all s e S. But 
b = /\T=\/S is possible only if b eQ. Therefore there is an re R such that beLr, 
seLr for all seS, teLr for all teT. Hence, the sets A = {x \x eLr, xga}, 
C = {JC | x e Lr, x g c} are nonempty, because t e A for all teT and s e C for all 
seS. Since Lr is an m-complete lattice, a(r) and c(r) both exist and a(r)gbgc(r). 
Hence, age by (1). 

Lemma 2 is proved. By lemma 2, g is a quasi-ordering. Therefore, the relation 
= defined by 

a = b if and only if a g b and a 3 b 
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is an equivalence relation. Further, C(a)= {b \ a $= /?} is the equivalence class 
containing a. C(Q) = {C(a) | a e Wm(Q)} is a poset with C(a) = C(b) if and only if 
a = b. 

Lemma 3. C(O) is an m-lattice with /\{C(s)\s eS) = C(/\S) and 
\ / { C ( v ) | s e S } = C( \ /S ) whenever S=Wm(Q) and 0 < | S | < m . Furthermore, Q 
is embedded in C(Q). 

Proof. /\S = s for all s e S, therefore C ( A S ) ^ C ( s ) for all seS, hence 
C ( A S ) = C ( s ) . On the other hand, if t = s for all seS, then t = /\S by (4). 
Therefore, if C(t) = C(s) for all s e S, then C(t)=C(/\S). Hence, AC(s) = 
C(/\S). The first equality is proved and the second follows by duality. 

Let x = inf Y in Lr with x e Lr, Y = Lr and 0 < \Y\ < m . Then x = y for all y e Y, 
and therefore x = /\Y. Since ( A ^ ) ( r ) = *, A ^ g x holds by (1). Hence x = /\Y. 
Then means, C(x) = C(/\ Y). Therefore each Lr, re R is an m-sublattice of C(Q). 
From the definition of the relation = and of the class C(a) it follows that for 
x,yeQ from x = y it follows that C (x )=C(y ) and from x^y there follows 
C(x)± C(y). Lemma 3 is proved. 

To complete the proof of the theorem, it remains to show that C(Q) is the 
m-poproduct of (Lr, r e R). Each Lr is an m-sublattice of C(Q) by lemma 3 and 
C(Q) is clearly m-generated by Q. Let K be an m-lattice and let the 
m-homomorphisms fr: Lr—>K be given for reR. We define a mapping 
g: Wm(Q)-*K inductively as follows: 

if xeLr, then g(x) = fr(x), 
if a = A S and g(s) is already given for each s eS, then g(a) = /\(Q(S)\S e S), 
if « = \ / S , then g(a) is defined dually. 
We require the following 

Lemma 4. Let a, b e Wm(Q) and reR. 

(i) If a(r) is proper, then g(a(r)) = g(a). 
(ii) If air) is proper, then g(a) = g(a(r)). 
(iii) a g b implies that g(a) = g(b). 

Proof, (i) If a e 0 , then a = a(r), hence g(a(r)) = g(a). If a = A S , then g(a(r)) = 
g(A(s(r))\seS) = A(g(s(r))\seS) = A(g(s)\s eS) = g(a). 

(By induction, g(s(r)) = g(s) for all seS.) For a = \/S dually. 

(ii) This is dual to (i). 

(iii) If a = b follows by (1), the a ( p )^ b(r) for some p , reR,p = r. Applying (i) and 
(ii), g(a) = a(a (p)) = g(6(r)) = g(6). If a = b holds by (2) with a = A S , then s = b 
for some seS. Hence, g(a) = g(s)tkg(b). The remaining cases are analogous. 

Thus, g induces a map / : C(Q)-*K that extends each / r . If S g Wm(Q) with 
0 < | S | < m , then 
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f(A(C(S)/s e S)) = /(C(AS)) = g(AS) = (g(s) | s e S) = A(/(C(s)) I s e S)). 

We conclude that / is an m-homomorphism, completing the proof of the theorem. 
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т-ПОПРОДУКТ СТРУКТУР 

2игапа Е а с Ш а п з к а 

Р е з ю м е 

В работе изучаются свойства т-попродукта. т-попродукт является обобщением свободного 
т -произведения структур. 
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