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REGRESSION MODEL
WITH ESTIMATED COVARIANCE MATRIX

LUBOMIR KUBACEK

Introduction

The result of direct or indirect observations of parameters f,, ..., fi is
a realization of a random vector Y. If the mean value E4(Y) of the random vector Y
is Eg(Y)=XB, B=(Bi, ..., B)’, (X is a given matrix of the type n X k) and the
covariance matrix X of the random vector Y does not depend on the vector 8, then
the process of observations can be characterized by the regression model
(Y, XB, X), B € R* (k-dimensional vector space).

If the covariance matrix X is not known a priori, but it is possible to obtain
stochastically independent repeated realizations of the random vector Y, i.e.
a realization of the N-tuple stochastically independent random vectors Y, ..., Yy
with the sanie distribution is available, then it is possible to estimate the covariance
matrix by the matrix

S=(1/(N-1)) S(Y- V)Y~ V), where ¥=(U/N) 2.

In the case of normally distributed vectors Y;, Y;~N,(XB, X), i=1, ..., N (>n)
the vector Y and the matrix S are stochastically independent, ¥ ~ N, (Xf, (1/N)X),
(N-1)S~W,(N -1, X) (Wishart distribution with N—1 degrees of freedom).
C. R. Rao (1967 [10]) utilized this fact for investigating stochastic properties of the
least-squares estimator (LSE) of the vector §, in which the unknown matrix £ was
substituted by the estimate S under condition of regularity of the regression model
(i.e. R(X) (rank of the matrix X)=k =n and R(X)=n; see the 2nd model in the
3rd section of this paper).

The aim of the paper is to show statistical properties of the above mentioned
estimate in the case when the conditions of the regularity are not prescribed. The
solution enables to calculate a larger class of problems from the theory of
estimation (see section 3. Special cases).
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1. Preliminaries

Let the random vector Y be normally distributed Y ~ N, (XB, X), f € R* and let
U, ..., U, be stochastically independent random vectors with normal distribution
N,(0, X), where f= R(X). Let vector Y and vectors U,, ..., U; be stochastically

f
independent. Let S=(1/f) D>,UU; and #M(X) denote a subspace generated by
i=1

columns of the matrix X.

Lemma 1.1. If f = R(X), then M(X) = M(S) with probability one. Consequently
R(X)=R(S).
Proof. See [8], Theorem 3.2.1 and Remark 3.2.1.

Lemma 1.2. The random variable T>= (Y — XB)'S~(Y — Xf8) does not depend on
the choice of the g-inversion S~ of the matrix S and has the same distribution as
{fR(Z)/[f — R(®) + 1]} Freg). f-r(xy+1, Where Frery, j—rxy+1 IS the Fisher—Snedecor
random variable with R(X) and f— R(X)+ 1 degrees of freedom.

Proof. See [9], Theorem 1.

Lemma 1.3. The class of all unbiasedly estimable linear function of the
parameter f§ is characterized by the vector XB. If the matrix X is a priori known,
then the BLUE of this vector is XB X[(X)mm]'Y, where (X')rx) is the minimum
X-seminorm g-inversion of the matrix X' (this type of g-inversion is a solution of
the equatzons X' (X)X’ =X and [(X" ) X']'E = Z(X ) X', see [11], p. 46).
The estimate Xﬂ does not depend on the choice of the g-inversion of that type with
probability one. @m X[(X")rmm)' X (covariance matrix of the estimate Y\, it
does not depend on the choice of the g-inversion of that type either).

Proof. See [14], Theorem 1.

In the following the symbol Z denotes a matrix of the type nxs, s =n — R(X),
which satisfies the condition M(Z) =Ker(X')={u: X'u=0}. The vector T,=2'Y
characterizes the class of all unbiased linear estimators of the zero.

Lemma 1.4. A statistic L'Y estimates its mean value with minimal variance iff
cov(L'Y,Z'Y)=0.

Proof. The statement is a consequence of Theorem 5.3 of [6].

The statistic T, = XX~ Y is the unbiased estimate of the vector Xg for an arbitrary
choice of the g-inversion of the matrix X. Further

[ (). 4]

A= [An,Alz] [XX (X)X, XX~ EZ]
Az, Ay Zrx(X )X, zZ'xZ
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Lemma 1.5. The expression t¥=T,— ApALT,=XX"Y-XX"XZ(Z'XZ)Z'Y,
which is invariant as regards the choice of the g-inversion Az, is the BLUE of the
vector Xf, thus with probability one tf= m ie. XXTY—-XX"X2Z (2'XZ)"2'Y=
X[(X)mo]'Y.

Proof. As T; e M(A;;) with probability one and M (A1l,) = M(Az), TT does not
depend on the choice of the g-inversion Az. Evidently cov(z%, Z'Y)=0 and this
with respect to Lemmas 1.4 and 1.3 is sufficient for the proof.

Lemma 1.6. Let Z,,...,Z, be stochastically independent random vectors,
Z~N,(Aw, X), i=1,...,m, where A is a matrix of the type nXt and w,,

i=1,..., m, is a t-dimensional vector. If H=2w.~w£ and R(H)=r, then
i=1

¥Z2Zi- S ZwiH (3. Zw;) = SV,
i=1 j=1 =1 i=

where Vi, ..., V.._, are stochastically independent random vectors with the same
distribution N,(0, X) and the matrices (V,, ..., V,._,) and

2. 2wiH (32m)
i=1 k=1

are stochastically independent.
Proof. Itis an unsubstantial modification of the proof of Theorem 4.3.2 in [1].
Further let

-5 s e - § [ o [P o]

The distribution of the random matrix fA is a Wishart one: fA ~ W,.,(f, A) (the
assumption f= R(X) implies f = R(A) (=R (X)), which enables to define correctly
the distribution of the matrix fA ; for details see [8] chapt. 3).

In the next section the statistical properties of the estimator # =T, — A, A5 T,
are investigated.

2. Statistical properties of the estimator

For the sake of simplicity the following denotation is used. All random vectors
and matrices conditioned by the matrix (T, Az.) are denoted by a right upper index

(p), e.g. .

Theorem 2.1. The random vector £ and the matrix A%, = AR — ARARAR
are stochastically independent and



'~ N, (XB, [1 +(1/f)THZ'SZ) T;]A12); 2.1)
fAR:.~ W.(f — R(Az), Ana); (2.2)

all given expressions are independent of the used g-inversion of matrices.
Proof. Independence from the choice of the g-inversion is implied by Lem-
ma 1.1 and by the fact that with probability one T,e #(Z’'XZ). Let further

al xx—Uﬂ] _
Vo= [V(.z] [Z'uq . oa=1,..,f.

With this denotation the vector

f f
"= T(lp)_ 2 VSI’JI)V:LZ (z VﬂZV{;‘Z) T,
a=1 =1

where
Vf-pl)"’Nn(Alez_z Vaz, An,z)

and

T(Ip)~ Nn (xﬂ + A|2A2_2T2, AnAz)-
Thus

! f
E(#7)=XB + AnAnT:— 3 AuAnVaVis (ﬂz. Vi, v;,;) T.=Xp

and '

’ f -
D(EP)= A+ ETZ[ Evﬂzvm) ] Vazvéz(Evﬂzvfn) A=
B=1

=1 (1/f)T2(Z'SZ)—T2]An.2,

which proves (2.1).
Further '
fAR:=fAR — FARALAR =
f

f f
= S VRVE = S VRV (X VVi) 2 V.V
a=1 B=1

As V& ~N,(A2A% V., Ai2), we can substitute the matrix A;2A7 for the matrix
A in Lemma 1.6 and the vector V,, for the vector w, as well. It implies:

f—R(A3)

fA(lpl)Z—__ 21 sasz'l’ Where sl’ LEREY sf R(A22)
a=

are stochastically independent random vectors with the same distribution
N.(0, A,;>). It proves (2.2).

Stochastical independence of the vector £® and the matrix A®, follows from
f~R(Az)

Lemma 1.6, namely the expression 2 §,5.. does not depend on the second
=1

398



term of the expression for the vector £*’; independence from the first term T is
an obvious consequence of our assumptions.

Remark 2.1. In the course of the proof conditioning by the matrix
(T2, Z'(Uy, U,, ..., Uy)) was used. As in the resulting conditioned distributions the
matrix (T, A) appears, the latter was used in the formulation of the theorem.

Remark 2.2. Lemma 1.1 and the identity XX"Y — XX XZ(Z'XZ)"Z'Y
=X[(X")m)]'Y from Lemma 1.5 imply 7°= X[(X).xs)]' Y. We denoted by XP = t*

= X[(X)mx]'Y the BLUE of XB (this estimate is used i in the case of the a priori
known matrix X ; see Lemma 1.3); analogously we denotefl?— t=X[X)ms]'Y-

Lemma 2.1. For the quantity T;A5T,=Y'Z(2'SZ)"2'Y itis true that T}A5T,=
(Y -XBY'S (Y -XB).

Proof Without loss of generality the matrix Z can be expressed in the form

=1-(X")aeX', thus T,=2'Y=Y-XB. Using the identity [(X")meX']'S=
S(X’);.(s)X', which is valid for a minimum S-seminorm g-inversion of the matrix X’,
we get

An=2'SZ={1-X[(X")re]'}S[I1 — (X)neX']= {1 - X[(X")rns]'}S-

The last expression does not depend on the choice of the g-inversion and therefore
we use the matrix (X')s,; (minimum S-seminorm l-least squares g-inversion; for
details see [11]) for the matrix (X)) Then the matrix X[(X')s.,]’ is a Euclidean
projector on the subspace ((X). As a Euclidean projector is its own g-inversion,
we get

An=({1=X[(X")5.,]'}S) =S~ {1-X[(X")3.]'}
and thus

TiA%T, = (Y -XB)S~{1 - X[(X)2.]'} (Y - XB).
As

(1= X(X)Z (Y -XB) = Y -XB;
the lemma is proved.
Lemma 2.2. The rank of the matrices A, A12 and A,, respectively is:
R(A)=R(Z%), R(A112)=R[E(Z+XX')"X], R(A22)=R(A)— R(A112).

Proof. The matrix X is positive semidefinite and therefore there exists a matrix
J of the type n X R(X) such that £ =JJ’. As for every matrix A R(A)=R(AA’),
we have

rRW=R () wtecyx,z)=r [ )]
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Using Lemma 7.1.2 from [11] we obtain
R [x; ] — R[XX~ Ker (Z')] + R(Z') =
=R(XX"X)+R(Z)=R(X)+n-R(X)=n,

thus the matrix (X ) has full rank in its columns. This fact implies

4

R(A)=R [(xzx) J] ~RW)=R().

The identity R(A;;2)= R[X(X +XX')"X] follows from the identity
A2 =X[(X)no] EX )X = Z(X" )@ X’

(this is the consequence of Lemmas 1.5 and 1.3 and of the properties of the
minimum X-seminorm g-inversion) and from Theorem 2.1 in [13] which states the
identity R[E(X")mX'] = R[Z(Z + XX')"X].

The identity

[I, "Alez_z] [An, An] [ I, 0]= [Anz, 0 ]
0, | Azl, Azz _AZ_ZAZH |_ . 0, Azz
implies the last affirmation R(A,)=R(A)— R(A),2) of the lemma.

Now the following symbolwill be used: C=R(X), vi=R[X(X+ XX')"X],
v.=f—R(Z)+1 and ¢ =Y —Xf; the vector ¢ is an approximation of the error
vector Y —Xg.

With respect to Lemma 1.1 in all the relations for the rank of the above
mentioned matrices the matrix S can be used for the matrix X.

Theorem 2.2. The random variable
T~ (B~ XBY (X(X')rco'S) KB -Xp) /(147 9'870)) [f = (C=w)Vf

has the same distribution as the random variable [f — (C — v,)](vi/v2)F,,..,, where
F,,.., is the Fisher—Snedecor random variable with v, and v, degrees of freedom.
Proof. Regarding Lemma 1.2 and Theorem 2.1 the random variable

T?=(#” — XB)’ ( ﬁf(/‘—n))_',/i,—,,z(w—xls) (1 +% T;A;zrz)_'

has the same distribution as the random variable
{[f— R(A22)]R(A11.2)/[f_ R(A22) - R(AH.Z) + 1]}FR(A“ 2). f—R(A22)—R(Aqg2)+1+
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The distribution of the last random variable does not depend on the matrix
(T2, Ax). An application of Lemmas 2.1 and 2.2 respectively is sufficient for
concluding the proof.

Corollary 1. IfF,, .,(1 — a) is a (1 — a) quantile of the Fisher—Snedecor random
variable, then the (1 — a)-confidence ellipsoid of the vector X is given by the set

{u: (u =3By (X0 8} (u - XB) S

= (fniva) (1 +% 0'S°9) F,, (1 —a)} .

Corollary 2. If the function f(B)= p'p is unbiasedly estimable, i.e. if p € #(X')
(«>3{ue R*}p=X'u), then the interval [p'[(X )]’ Y — %, p'[(X)me]'Y + ],
where

xmt (1) Vi7w (1 +20'8°9) D150 ) SNz,

¢o=f—(C—w) and t, (1—(—21) is the (1 —g) quantile of the Student random

variable with @ degrees of freedom, covers the value p’f with probability 1 — a.
Proof. Taking into acount the relations

A2 =X[(X)m)]'S = X[(X")ri)] S(X )X’
and p=X'u, ue R* we have
u'Aju= P'[(X")m]'S(X")msP-
Theorem 2.1 implies stochastical independence of the random variables u’£® and
fu’' A%, u, where
u't®~N, (p’B, (1 +% o's-v) u'A,,,,u)
and

f"'A(l’i?zU ~ Wil(f — R(A2)), U’ A 2U]= ] ranplU’ Ani2U.

Symbol x7-ra,» denotes the random variable with the chi-square distribution with
f— R(A;;) degrees of freedom. Taking into acount the definition of the Student
variable and its independence from the conditioning matrix (T, Az2) we conclude
the proof.

i~
Lemma 2.3. The random variable T;(Z'SZ)"T,=(Y — )/(F)'S‘(Y —Xp) has the
same distribution as [f(C — v1)/(vi+ v2)]Fc_v,, vi+v,-
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Proof. With respect to our assumptions the random vector T, and the random
matrix Z'SZ are stochastically independent and T,~ N,(0, Z2'XZ), fZ'SZ~
W.(f, Z'£Z). Lemmas 1.2 and 2.2 imply val dity of the affirmation.

==
Theorem 2.3. X = X[(X').s)]' Y (see Remark 2.2) is an unbiased estimate of the
vector X and

- .
DXB) = X[(X )] E(C + v2 = 2)/ (Vi + v, = 2).

Proof. The unbiasedness of the estimate Xg is an obvious consequence of (2.1).
Using this relation and Lemmas 2.3 and 1.3 we get

@(ﬁﬂa {@(i/?l(rz, A} =

=E [1 +% Té(Z'SZ)_Tz]An.z:

_ - ’ C—w .
= X[(X)so) E {1435 E(Femn o))

E(Fc-v,, vi+vy) = (vi + v2)/(vi + v, —2) see [2] relation (16.28).

Corollary 3. The variance of the estimate p'[(X')n.s)]'Y of the unbiasedly
" estimable function f(B)=p’'B is

P’ [(X)mm]) EX )P (C + v2—2)/(vi+ v, —2).

Theorems 2.1, 2.2 and 2.3 characterize basic statistical properties of the LSE in
which the empirical covariance matrix § with the Wishart distribution is used
instead of the matrix X.

It is quite_clear that for f— « ($v2—> w)Xﬂ—-)Xﬂ with probability one and
2(XB)— D(XP).

3. Special cases

From the practical point of view the important cases are the following regular
models [4], [3]:
1st model-

Y=§~N,(iB, %), i=(1,...,1), BeR,R(X)=n,k=1

(direct measurement of the scalar parameter 8 ; n is the number of measurements) ;
2nd model:

Y=E~N,(AB, X), R(A)=k=<n,BeR*, R(X)=n
(indirect measurement of the k-dimensional parameter §);
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3rd model:

[ [(@)0. (50w

(b is a given vector), B € R, R(B)=q =n, R(X,;) = n = k (direct measurement of
the n-dimensional vectorial parameter B with g side conditions);

4th model:
v=[ 5 ]-Ne (s, ) (5).

2117 o :| q
( 0, o) » bed

(b is a given vector), B =(B1, B3)’, Bre R", f.e R', R(B;,B;)=q=n+1, R(B,)=
I=q, k=n+1 (direct measurement of the n-dimensional subvector of the
k-dimensional vectorial parameter 8 with q side conditions);

Sth model:
[ S J~me[(B) . (5 g)] - b

(b is a given vector), Be R*, R(A)=k=n, R(B)=q=k, R(X,;)=n (indirect
measurement of the k-dimensional vectorial parameter with a system of g
conditions).

Next a review of expressions for [(X')m)]'Y and

D{X)n®]'Y} =D{[(X)m] YHC+ v2—2)/(vi+ v, —2)

for the single above mentioned regular model is given (regularity of all these
models enables to estimate unbiasedly the whole vector § and this is reason for
which the formulae for ﬁ [(X)me)]' Y and its dispersion instead of the formulae
for XB and its dispersion are given).

Y

1st model
[(X)ne])' Y=('S™')iS'E
DX Yncr) ¥} = (' ED)7(f — 1)/(f — n)
vw=1, k=1
2nd model

[(X)ms)'Y=(A'ST'A)'A'S™'E
D{(X)m®] Y} =A'ZTA) (- 1)/[f-(n—k)—1]
V1= k, k = k
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3rd model
[X)ms] Y=[I-SB'(BSB’) 'B]§—-SB’'(BSB’)"'b
D{[(X )] Y} =[Z1, - £,,B'(BE,,B) "BEu](f - D/(f—q 1)
vw=n—q, k=n
4th model

o[

x,-Xx,BQ;BZX,, -X,BQ
DKl Y= 2 2 g T [ (- D~ (=D~ 1]

vi=n—(q-1), k=n+l

o al=Pa 5™

[Qn, 012] - I:BIEIIBIIa Bz]_l
021, 022 Bé, 0 -

5th model
[(X )] Y={(A'ST'A)" -
—(A'S"'A)"'B’[B(A’S 'A)'B']"'B(A'S'A)'}A'S ' —
—(A'S"'A)"'B'[B(A'S™'A)'B']"'b
DX )] Y} ={(A’EHA) " -
—(A’Zi'A)'B'[B(A'Z/A) B’ T'B(A'E 'A) (- 1)/[f - (n—k +q)— 1]
vi=k—q, k=k

The last three models are called models with conditions ; they can be rewritten
into a form with explicit conditions; e.g. £ ~ N,.(f:, £11), b+ B, + B,f,= 0 etc.

4. Remarks on the structure of the covariance matrix

The aim of the measurement is not always to get estimates of a function f(f),
many times we have to estimate parameters of the covariance matrix X. The most

14
frequent structure of the matrix X is X'= EA,V,—, where A;, j=1, ..., p are unknown
1=1

parameters and matrices Vi, ..., V,, are known from the design of the experiment.
Two cases have to be distinguished in dependence on the input information:
a) We know the outcome of the random vector Y only;
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b) We know the outcomes of the random vector Y and of the matrix S.
Interesting cases occur when the matrix ¥ has the form =11+ XI'X'+2602'.
The importance of this structure is shown in the following lemma.

Lemma 4.1 (modification of Lemma 5a from [10]). The identity X(X'X)"X'Y =
X[(X)m]'Y (and  thus  X(X'X)"X'EX(X'X)"X’ = QIXX'X)"X'Y]
= XX )mm]'Y} = X[(X)m)XE) holds iff there exist matrices I, © and the
number A satisfying the condition X =Al+ XI'X' +ZOZ'.

Proof. By Lemma 1.4 X(X'X)"X'Y is the BLUE of its mean value Xp iff
X(X’'X)"X'EZ=0. The matrix P=X(X'X)"X’ is the Euclidean projector on the
subspace ((X). By Theorem 2.3.2 from [11] the set of all solution X of the
equation PXZ=0is X =B — P;PBZZ;, where P; and Z; respectively are arbitrary
but fixed g-inversions of the matrices P and Z respectively and B is an arbitrary
matrix with proper dimension. Let X, and Z, be matrices with a column full rank
satisfying the condition #(X)=#(X,) and M(Z)= AM(Z,). The matrix (X,, Z,) is
regular and X{Z, =0. Every matrix B can be expressed in the form

I, M,][X
B=(Xiz,) [L,, 9,] [z;] '

The matrices P; and Z; respectively are chosen in such a way that PoP=
X;(X{X,)"X; =P and ZZ; =2Z,(Z{Z,)"Z; =P, (the Euclidean projector on the sub-
space #(Z)). Then with respect to the relation X{Z,=0, there holds X =
X,I)X; +2Z,L,X] +2Z,0,Z;. Because of PXZ=0 < PXZ,=0 <> Z;XP=0, where
Z XP=2Z;Z,L X;, we have L, =0 (ZiZ, is a regular matrix and X; has a row full
rank). Choosing I't = I+ A(X;X,) ™}, €, =60, +A(ZiZ,)™" and taking into account
the identity I =X,(X{X,)"Xi + Z,(Z{Z,)"Z; we get X = X, I.X; +Z,0,Z; + Al. For the
matrix X there exists a matrix M that X=X;M and therefore X, I.X{ =X;MI'M’X; =
XI'X'; similarly we can reestablish the term Z, @.Z;. By application of Lemma 1.3
the proof is concluded.

Remark 4.1. By Lemma 4.1 the best estimate of the unknown vector Xg in the
case X=Al+XI'X'+202Z’ is X(X'X)"X'Y. Application of the matrix S in the
corresponding estimate X[(X')..s)]' Y results in the enlargement of dispersions with
respect to the BLUE. Of course, in the case when we do not know anything about
the structure of the matrix X we are thrown upon utilization of the matrix S.

Lemma 4.2. Consider the regression model

(v, xs, z=ia..v,.> .

i=1

The function g(A,, ..., A,) = @'4 is unbiasedly estimable by the statistic Y'AY (A is
a symmetric matrix) iff g € M(H), where H is a matrix of the type p X p, the
elements of which are
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{H}.;=Tr(V.V,=PViPV)), P=X(X'X)"X’, i,j=1,..,p.

Proof. See [7], Theorem 3.

Remark 4.2. Lemma 4.2 shows the influence of the structure of the covariance
matrix X on the estimability of its parameters. Consider the following example. Let
feR", i=1,...,1 be orthonormal vectors and X=(f, ..., f.), k=I. Let the
covariance matrix be of the form

Y=y hfi+ .. +yffit+ Ofifii+ ...+ O_ ffi =XI'X' +Z2O0Z',

where I'=diag(y, ..., 1), @ =diag(@,, ..., 0,4, 0,...,0) and Z=(f.y, ..., f,
f.y, ..., f.); the vectors f.4, ..., f, complete the vectors f, ..., f; to be a base of the
space R". This situation is typical for the investigation of the stochastic structure of
measured geophysical potential fields (see [5]). The structure of the matrix H from

Lemma 4.2 is
0,0
H=[o1]:

where | has the dimension (I — k) X (I — k). That is the reason why it is possible to
estimate only the parameters O, ..., O,_, by the vector Y. If in the just considered
case there holds {(X) = #((X), then it is impossible to estimate any parameter. In
the model (Y, XB, X = ¢°V) the condition R(V, X) — R(X)>0 is sufficient for the
estimability of the parameter o® (for more details see [11]).

The situation changes essentially if we have at disposal a realization of the matrix

]
S, fS~ W.,(f, X). In the case of X = E).,f,l; it is obvious that £, = f/Sf, = Ax}/f is an
i=1

unbiased estimate of the parameter A, and the distribution of the chi-square enables
to determine the confidence interval for A; as well (for some details of the spectral
decomposition of the matrix S see [8], p. 86).
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PEI'PECCUSI C OLUEHUBAEMOM KOBAPUALIMOHHOM MATPULIEU
Lubomir Kubacek
Pe3rome

Ha ocHoBe peanu3auuu HOpMalbHO paccrnpefesieHHoro caydaiHoro Bektopa Y~N,(XB, X) u
cny4alHOM MaTpuubl S, KOTOpas paccnpepeneHa nmo 3akoHy Yuwaprta fS~ W,(f, X), nonydaercs
oleHKa nuHeinoi ¢yukuun f(B)=p'p napamerpa B(p, B € R*, k-pa3mepHoe BEKTOpHOE MPOCTPaH-
CTBO) M MCCIERYIOTCS ee CTATUCTUYECKHE CBOWCTBA MPH CIEAYIOIMX NpeRnogoxeHusx: Bekrop Y u
MaTpMua S CTaTHCTHYECKHM He3aBUCHMBI, [ (4uci0 cteneHeit cBoGoabl)= R(X) (panr matpuusl X),
Matpuua X M3BECTHa; HUKAaKHe MPEINOJIOoXKeHUs He cejaHbl o paHrax matpun X u X.
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