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Math. Slovaca 33,1983, No. 4, 395—408 

REGRESSION MODEL 
WITH ESTIMATED COVARIANCE MATRIX 

LUBOMfR KUBACEK 

Introduction 

The result of direct or indirect observations of parameters pu ..., pk is 
a realization of a random vector Y. If the mean value Efi( Y) of the random vector Y 
is Efi(Y) = Xp, P = (pu ..., (5k)', (X is a given matrix of the type nxk) and the 
covariance matrix L of the random vector Y does not depend on the vector P, then 
the process of observations can be characterized by the regression model 
(Y, Xp, L), (ie0lk (k-dimensional vector space). 

If the covariance matrix L is not known a priori, but it is possible to obtain 
stochastically independent repeated realizations of the random vector Y, i.e. 
a realization of the N-tuple stochastically independent random vectors Yu ..., YN 

with the same distribution is available, then it is possible to estimate the covariance 
matrix by the matrix 

S = (l/(N-l))fJ(Yi-Y)(Yi-?y, where Y = (l/N)fJYi. 
i = 1 i = 1 

In the case of normally distributed vectors VI, Yt~Nn(Xp, L), i' = l , ..., N (>n) 
the vector Y and the matrix S are stochastically independent, Y~Nn(XP, (1/N)L), 
( N - 1 ) S ~ W n ( N - l , 2 : ) (Wishart distribution with N - l degrees of freedom). 
C. R. Rao (1967 [10]) utilized this fact for investigating stochastic properties of the 
least-squares estimator (LSE) of the vector P, in which the unknown matrix L was 
substituted by the estimate S under condition of regularity of the regression model 
(i.e. R(X) (rank of the matrix X) = k ^ n and R(E) = n ; see the 2nd model in the 
3rd section of this paper). 

The aim of the paper is to show statistical properties of the above mentioned 
estimate in the case when the conditions of the regularity are not prescribed. The 
solution enables to calculate a larger class of problems from the theory of 
estimation (see section 3. Special cases). 
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1. Preliminaries 

Let the random vector Y be normally distributed Y~Nn(X(i, L), fie0lk and let 
Ui, ..., Uf be stochastically independent random vectors with normal distribution 
Nn(0, L), where f^R(L). Let vector Y and vectors (/,, ..., Uf be stochastically 

independent. Let S = (l/f)^JUiU'i and M(S) denote a subspace generated by 

columns of the matrix L. 

Lemma 1.1. Iff^R(E), then M(L) = M(S) with probability one. Consequently 
R(Z) = R(S). 

Proof. See [8], Theorem 3.2.1 and Remark 3.2.1. 

Lemma 1.2. The random variable T2 = (Y- X(t)'S~( Y - Xfi) does not depend on 
the choice of the g-inversion S" of the matrix S and has the same distribution as 
{fR(i:)/[f - R(L) + 1 ] } F R ( I U - R ( I ) + 1 , where FRiL),f-R(l:)+l is the Fisher—Snedecor 
random variable with R(E) and f—R(E)+ 1 degrees of freedom. 

Proof. See [9], Theorem 1. 

Lemma 1.3. The class of all unbiasedly estimable linear function of the 
parameter ft is characterized by the vector X/5. If the matrix L is a priori known, 
then the BLUE of this vector is Xfi = X[(X')"(1:)]' Y, where (X')- ( r ) is the minimum 
L-seminorm g-inversion of the matrix X' (this type of g-inversion is a solution of 
the equationsJT(X')m(r)X' = X' and [(X%ii:)X']'E = i:(X')-^)X', see [11], p. 46). 
The estimate Xfi doesnot depend on the choice of the g-inversion of that type with 
probability one. Q}(xp) = X[(X')n\is:)\'L (covariance matrix of the estimate 5(/3; it 
does not depend on the choice of the g-inversion of that type either). 

Proof. See [14], Theorem 1. 
In the following the symbol Z denotes a matrix of the type nXs, s^n — R(X), 

which satisfies the condition il(Z) = Ker(X') = {u: X'u = 0}. The vector T2 = TY 
characterizes the class of all unbiased linear estimators of the zero. 

Lemma 1.4. A statistic L'Y estimates its mean value with minimal variance iff 
co\(L'Y,Z'Y) = 0. 

Proof. The statement is a consequence of Theorem 5.3 of [6]. 
The statistic Tx = XX" Y is the unbiased estimate of the vector X/5 for an arbitrary 

choice of the g-inversion of the matrix X. Further 

= ГЛп, Л 1 2 ] ГXX-Г(X-)'X', XX-2ľZ] 
1 ІЛ», Л22J [ Z'Г(X-)'X', z т z J 
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Lemma 1.5. The expression r? = T,-AI2A2-2T2 = XXY-XXi;Z(Z'.£ZYZ'Y, 
which is invariant as regards the choice of the g-inversion \W, is the BLUE of the 
vector X/J, thus with probability one tf = X^i.e. XXY -XXZZ (Z'.£ZYZ'Y = 
X[(X');m]'V. 

Proof. As T2eM(A22) with probability one and M(A\2)<=.M(A22), r* does not 
depend on the choice of the ^-inversion A22. Evidently cov(rf, Z'Y) = Q and this 
with respect to Lemmas 1.4 and 1.3 is sufficient for the proof. 

Lemma 1.6. Let Zu...,Zm be stochastically independent random vectors, 
Zi~Nn(AWi, E), i = l, ..., m, where A is a matrix of the type nxt and iv,, 

m 

i = l, ..., m, is a t-dimensional vector. If H = ^w;wJ and R(H) = r, then 
i = l 

; m — r m m / m \ r m — r 

2.Z.Z; - 2Z,IV;H- (2zkiví) = 2 v, v„ 
i = l / = 1 \fc = l / i = l 

where Vu ..., Vm-r are stochastically independent random vectors with the same 
distribution Nn(0, L) and the matrices (Vu ..., Vm-r) and 

m / m \ f 

/=1 Vfc=l / 

are stochastically independent. 
Proof. It is an unsubstantial modification of the proof of Theorem 4.3.2 in [1]. 
Further let 

A = [XX_] S[(X-)'X',Z] = ( l / / ) g [ x x _ ] u, [ [ x x _ ] I*]'. 

The distribution of the random matrix fA is a Wishart one: fA ~ Wn+5(f, A) (the 
assumption f^R(L) implies f^R(A) (^R(S)), which enables to define correctly 
the distribution of the matrix fA; for details see [8] chapt. 3). 

In the next section the statistical properties of the estimator f = 7\ - A12A22T2 

are investigated. 

2. Statistical properties of the estimator i 

For the sake of simplicity the following denotation is used. All random vectors 
and matrices conditioned by the matrix (T2, A22) are denoted by a right upper index 
(p), e.g. r<*>. 

Theorem 2.1. The random vector t0 0 and the matrix Aft2 = Aff- AffA^Aff 
are stochastically independent and 
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t ( p>^N n (Xp,[ l + (l//)T^(Z'SZ)-T2]/i1i.2); (2.1) 

fA\p
l
)
2~Wn(f-R(A22),Au.2); (2.2) 

all given expressions are independent of the used g-inversion of matrices. 
Proof. Independence from the choice of the g-inversion is implied by Lem­

ma 1.1 and by the fact that with probability one T2eM(Z'LZ). Let further 

rxx ua 

With this denotation the vector 

4 £;!«]• - '• 

i(p) = 7Y> - £ vwv^ (i V^Vp) T2, 
a=l \p=l I 

where 
V^~Nn(Ai2A22Va2yAu.2) 

and 
T\p)~Nn(Xfi + Al2A22T2, AU2). 

Thus 

and 

E(T (P)) = X0 + Al2A22T2 - 2 A]2A22Va2V<a ( £ Vp2V'J] T2 = Xp 
a = l \ f l = l / 

S)(T(p)) = /i112+ £ T 2 [ ( £ V,2V^)~]Va2V^ ( £ V ^ ) T2AU.2 = 

= [1 + (1//)T2(Z'SZ)-T2]A112, 

which proves (2.1). 
Further 

M Jft=M'.".' - M rVAaiiff= 

І V?1>V?1>' - І V?,>V̂  ( £ V ß 2 V S Ź Vy2 V! 
a = l a = l ^ß=M / У=l 

'(p) 
үi • 

As V^~Nn(Al2A22Va2, /ln.2), we can substitute the matrix Al2A22 for the matrix 
A in Lemma 1.6 and the vector Va2 for the vector wa as well. It implies: 

f-R{A22) 

Mft2= 2 SaSa, where S„ ,.., S, R(*22> 
a = l 

are stochastically independent random vectors with the same distribution 
Nn(0, A n , ) . It proves (2.2). 

Stochastical independence of the vector t(p) and the matrix A^2 follows from 
f-R(A22) 

Lemma 1.6, namely the expression ">) SaS'a does not depend on the second 
a = l 
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term of the expression for the vector t(p>; independence from the first term T\p) is 
an obvious consequence of our assumptions. 

Remark 2.1. In the course of the proof conditioning by the matrix 
(T2, Z'(UU U2, ..., Uf)) was used. As in the resulting conditioned distributions the 
matrix (T2, X22) appears, the latter was used in the formulation of the theorem. 

Remark 2.2. Lemma 1.1 and the identity XX"Y - XX i:Z(Z'.2:Z)-Z'Y 
= X[(X')m-(i:)]'Y from Lemma 1.5 imply T = X[(X')m-(S)]'Y. We denoted by X#= T* 
= X[(X')m(r)]'Y the BLUE of X/J (this estimate is used in the case of the a priori 
known matrix E; see Lemma 1.3); analogously we denote"5(^"= t = X[(X')"(S)]' Y. 

Lemma 2.1. Fqrthe quantity T2A22T2 = Y'Z(Z'SZ)~Z'Yit is true that T'2X22T2 = 
(Y-X^) 'S- (Y-X/5) . 

Proof. Without loss of generality thejnatrix Z can be expressed in the form 
Z=l-(X')m ( S )X', thus T2 = Z'Y=Y-JCfT. Using the identity [(X')"(S)X']'S = 
S(X')m(S)X', which is valid for a minimum S-seminorm g-inversion of the matrix X', 
we get 

A22 = Z'SZ = {I - X[(X')-(8)]'}S[I - (X')-(S)X'] = {I - X[(X')-(S)]'}S. 

The last expression does not depend on the choice of the g -inversion and therefore 
we use the matrix (X')s,, (minimum S-seminorm l-least squares gr-inversion; for 
details see [11]) for the matrix (X')"(s). Then the matrix X[(X')S,,]' is a Euclidean 
projector on the subspace M(X). As a Euclidean projector is its own ^-inversion, 
we get 

and thus 

As 

/Í2-2=<{l-X[(X')s+.,]'}S>- = S-{l-X[(X')í,,]'} 

TÍÁ22T2=(y-x?js-{i - x[(X')...,]'}(y- xjj. 

{l-X[(X')t,]'}(Y-W)= Y-t/J? 

the lemma is proved. 

Lemma 2.2. The rank of the matrices A, / i 1 1 2 and A22 respectively is: 

R(A) = R(E), R(A112) = R[Z(Z + XX')-X], R(A22) = R(A)-R(An2)-

Proof. The matrix L is positive semidefinite and therefore there exists a matrix 
J of the type n x R(L) such that L = JJ'. As for every matrix A R(A) = R(AA'), 
we have 

R(A) = R [(™~) JJ'[(X-)'X\Z]] = R [(™~) j ] . 
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Using Lemma 7.1.2 from [11] we obtain 

R [ X X ] = i?[XX-Ker(Z')] + K(Z') = 

= R(XX X) + R(Z') = R(X) + n - R(X) = n, 

/XX~\ 
thus the matrix I _ I has full rank in its columns. This fact implies 

R(Л) = R (^)j]-R(J)-Ä(_). 

The identity R(Au2) = R[Z(Z + XX')~X] follows from the identity 

Au.2 = X[(X%^]'i:(X')-ii:)X' = L(X')m(E)X' 

(this is the consequence of Lemmas 1.5 and 1.3 and of the properties of the 
minimum 2_-seminorm g-inversion) and from Theorem 2.1 in [13] which states the 
identity R[Z(X')m(i:)X'] = R[Z(L + XX')-X]. 

The identity 

I, - A 1 2 A 2 - 2 ] [An, A12l r I, 0 ] = r A 1 1 2 , 0 1 
0, I I | A 2 1 , A 2 2 J | _ - A 2 2 A 2 1 , IJ L 0 , A 2 2J 

implies the last affirmation _R(A22) = _R(A)-_R(A112) of the lemma. 
Now the following symbols will be used: C = R(Z), vl = _R[_£(_£+ XX')~X], 

v2 = f — R (E) + 1 and $= Y — XP; the vector ^ is an approximation of the error 
vector Y — Xp. 

With respect to Lemma 1.1 in all the relations for the rank of the above 
mentioned matrices the matrix S can be used for the matrix _£. 

Theorem 2.2. The random variable 

r = ((X?-X^)'{X[(X')^S ) ] 'S}-(X?-X/5)/( l+i*'S-*))[ / - (C -v,)] / / 

has the same distribution as the random variable [/- ( C - Vi)](v1/v2)Fvl, V2, where 
FV1, v2 is the Fisher—Snedecor random variable with Vi and v2 degrees of freedom. 

Proof. Regarding Lemma 1.2 and Theorem 2.1 the random variable 

T2=(i<p)-X '̂ (rifaz) ~l'A»***-*fi (1+} T ^ T > r 
has the same distribution as the random variable 

{[ / -R(A 2 2 ) ]R(A I I 2 ) / [ / - i . ( / l 2 2 ) -J.( / l 1 I . 2 )+l]}FR ( / l l , 2 , /_R ( / t 2 2 )_R ( / l l l 2 ) + 1 . 
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The distribution of the last random variable does not depend on the matrix 
(T2, A22). An application of Lemmas 2.1 and 2.2 respectively is sufficient for 
concluding the proof. 

Corollary 1. IfFvu V2(l — a) is a (1 — a) quantile of the Fisher—Snedecor random 
variable, then the (1 - a)-confidence ellipsoid of the vector Xp is given by the set 

{u: (u-0) '{X[(X')- ( S ) ] 'S}-(u-xJ)^ 

^(fvjv2) ( l + y *'S-f) Fv l ,V 2(l-a)j . 

Corollary 2. If the function f(P) = p'P is unbiasedly estimable, i.e. if p e M(X') 
(o3{ueMk}p = X'u), then the interval [p'[(X')-(S)]'Y-x, p'[(X%w]'Y+x], 
where 

* = u ( i - f ) Vf/v y ( i+y vs-v) p'[(X')-(S)]'S(X')-(S)p, 

<p = /-(C—Vi) and tp (l——) is the ll- — j quantile of the Student random 

variable with cp degrees of freedom, covers the value p'P with probability 1 — a. 
Proof. Taking into acount the relations 

An.2 = X[(X')-(S)]'S = X[(X')-(S)]'S(X')-(S)X' 

and p = X'u, U£0lk we have 

u'An2u = p'[(X')-(s)]'S(X')-(S)p. 

Theorem 2.1 implies stochastical independence of the random variables u'f(p) and 
fu'A^u, where 

u ' f ^ - N , (p'P, ( l + y O S * ) u'/in.2u) 

and 
fu'A^\u-Wl[(f-R(A22)),u'AnM^X2f-RiA22)u'An.2U. 

Symbol %/-R(,I22) denotes the random variable with the chi-square distribution with 
f-R(A22) degrees of freedom. Taking into acount the definition of the Student 
variable and its independence from the conditioning matrix (7"2, A22) we conclude 
the proof. 

Lemma 2.3. The random variable Ti(Z'SZ)~T2 = (Y-^)'S-(Y-Xp) has the 
same distribution as [/(C-Vi)/(vi + v2)]Fc-vlt *--+-*. 
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Proof. With respect to our assumptions the random vector T2 and the random 
matrix Z'SZ are stochastically independent and T2~Ns(0, Z'£Z), /Z'SZ — 
Ws(f, ZTZ). Lemmas 1.2 and 2.2 imply val dity of the affirmation. 

Theorem 2.3. X/? = X[(X')m(S)]' Y (see Remark 2.2) is an unbiased estimate of the 
vector Xp and 

3>(Xß) = X[(X%m]'Ľ(C + v2- 2)/(v, + v2 - 2). 

Proof. The unbiasedness of the estimate X/? is an obvious consequence of (2.1). 
Using this relation and Lemmas 2.3 and 1.3 we get 

®(X% = E{2s(xi}\(T2,A22))} = 

= E[l+yT2(Z'SZrr2]yi„.2 = 

= X[(X');(r)]'£ f 1 + £ ^ 7 E(FC-V1,v1+V2)]; 
I V\ + v2 J 

E(Fc-Vl,v1+v2) = (v1 + v2)/(v1 + v 2 - 2 ) see [2] relation (16.28). 

Corollary 3. The variance of the estimate p'[(X')~(S)]'Y of the unbiasedly 
estimable function f(P) = p'P is 

p'[(X')- ( r )] ' i :(X')- ( E)P(C + v2 - 2)/(Vl + v2 - 2). 

Theorems 2.1, 2.2 and 2.3 characterize basic statistical properties of the LSE in 
which the empirical covariance matrix S with the Wishart distribution is used 
instead of the matrix E. ^^ 

IMs quite clear that for /—>oo (=>v2-^oo)X/5-^X/5 with probability one and 

3(XfJ)->3(X0). 

3. Special cases 

From the practical point of view the important cases are the following regular 
models [4], [3]: 

1st mode l * 

Y=%~Nn(lp,L), i = (\,...,\)', PeM\R(Z) = n,k = \ 

(direct measurement of the scalar parameter /3; n is the number of measurements); 
2nd m o d e l : 

Y=Z~Nn(A0, Z), R(A)=k^n,PeMk,R(L) = n 

(indirect measurement of the /c-dimensional parameter 0 ) ; 
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3rd model: 

'-[.y~M(i) <••:)]• -•«• 
(b is a given vector), Pe0ln, R(B) = q^n, R(Ln) = n = k (direct measurement of 
the n-dimensional vectorial parameter P with q side conditions); 

4th model: 

MA W (J, *)(£)• 
(Гoľ°o)]' beЗíą 

(bisagi\en\ectoT),p = (P'1,P^)',p1e&ln,p2e0ll,R(B1,B2) = q^n + l,R(B2) = 
l=\q, k = n + l (direct measurement of the n -dimensional subvector of the 
k -dimensional vectorial parameter P with q side conditions); 

5th model: 

M AH*. [(>«]• -•«• 
(b is a given vector), Pe0lk, R(A) = k^n, R(B) = q^k, R(Zn) = n (indirect 
measurement of the fc-dimensional vectorial parameter with a system of q 
conditions). 

Next a review of expressions for [(X')m(S)]'Y and 

S{[(X%(S)]'Y} = S{[(X')- ( r )]'y}(C+v 2-2)/(v 1 + v 2 -2) 

for the single above mentioned regular model is given (regularity of all these 
models enables to estimate unbiasedly the whole vector P and this is reason for 
which the formulae for p = [(X')m(S)]'Y and its dispersion instead of the formulae 
for JC/T and its dispersion are given). 

1st model 

[(X')^w]'y--(/'s-lo-I/s-l5 

2-{[(X')^s)]'y}=(/'.s-'iy'tf- D/(/- n) 

v, = l, k = l 

2nd model 

[(X')- ( S )]'y = (A'S-1A)-1A'S-1i 

S{[(X')-(S)]'y} = (AT- ,A)-1(/- l)/[f-(n -k)-l] 

Vi = k, k = k 
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3rd model 

[(X')-(S)]'Y = [I - SB'(BSB') 'B]i= -SB'(BSB')-'b 

2){[(X')-( S )]' Y} = [2.„ - 2.„B'(B2.„B') lBEu](f- l)/(f-q - 1) 

Vi = n — q, k = n 

4th m o d e l 

"l-SBIŮnBil . r-SB,ů„' 

Э{[(X')- ( S )]'У = 

и-wr-rт з̂iҷ-T"]* 
^ „ ^ „ B Í Q ^ B Æ , , -2ľ„B{Q12 

-Q2lBi.2^n, — Q22 
(/-l)/[/-(<7-l)-l] 

v1 = n - ( q —/) , k = n + l 

rû„,û I 2 i rB.SBI.B,!"1. 
LQ21,ûJ l B2, OJ ' 

r Q m Q n l l B A . B Î . B j T 1 

[QM.QMJ l B2, oJ 

5th mode l 

[ (X'Us ) ] 'V={(A'S- 1A)- 1 -
- (A'S-'A^B'^A'S ^^BT^A'S^A) ' 1 }A'S^g -

- (A'S-'A^B'^A'S^A)"^']-1-* 

^ { [ ( X ' U l T j - ^ K A ' i r / A ) - 1 -
- (A'.i:r1

1A)-1B'[B(A'2:n1A)-1B']-1B(A'i:1
 lA)~l}(f - \)/[f-(n - k + q) - 1] 

Vi = k - q , k = k 

The last three models are called models with conditions; they can be rewritten 
into a form with explicit conditions; e.g. § ~ Nn(fiu Lu), b + Bi/3i + B2ft = 0 etc. 

4. Remarks on the structure of the covariance matrix 

The aim of the measurement is not always to get estimates of a function f(P), 
many times we have to estimate parameters of the covariance matrix E. The most 

p 

frequent structure of the matrix L is E = ^AjV,-, where A,, / = 1, ..., p are unknown 

parameters and matrices V-, ..., Vp, are known from the design of the experiment. 
Two cases have to be distinguished in dependence on the input information: 

a) We know the outcome of the random vector Y only; 
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b) We know the outcomes of the random vector Y and of the matrix S. 
Interesting cases occur when the matrix E has the form E = Al + XrX' +ZOZ'. 

The importance of this structure is shown in the following lemma. 

Lemma 4.1 (modification of Lemma 5a from [10]). The identity X(X'X)"X'V = 
X[(X%mYY (™<1 thus X(XfX)XEX(XfX)X' = 2J[X(X'X)"X'y] 
= &{X[(X%m]'Y} = X[(X%m]S) holds iff there exist matrices T, O and the 
number A satisfying the condition E = AI + XrX' + ZOZ'. 

Proof. By Lemma 1.4 X(X'X)"X'V is the BLUE of its mean value X/5 iff 
X(X'X)-X'_£Z = 0. The matrix P = X(X'X)"X' is the Euclidean projector on the 
subspace M(X). By Theorem 2.3.2 from [11] the set of all solution E of the 
equation PEZ = 0 is E = B — Po PBZZo, where Po and Zo respectively are arbitrary 
but fixed g-inversions of the matrices P and Z respectively and B is an arbitrary 
matrix with proper dimension. Let Xt and Zi be matrices with a column full rank 
satisfying the condition M(X) = M(Xt) and M(Z) = M(Zx). The matrix (Xl9 Zi) is 
regular and XiZ- = 0. Every matrix B can be expressed in the form 

B -<^[£:S][ž']-
The matrices Po and Zo respectively are chosen in such a way that Po~P = 
X,(X,'Xi)-X; = P and ZZo =Z1(Z;Z1)"Z; = P1 (the Euclidean projector on the sub-
space M(Z)). Then with respect to the relation X{Zi = 0, there holds E = 
XiriXi' + ZiLiXJ + ZiGiZ;. Because of P£Z = 0 o PEZ^O o Z;£P = 0, where 
ZJ SP = Zi'ZiLiXJ, we have Li = 0 (ZJZi is a regular matrix and Xx has a row full 
rank). Choosing Ti = T2 + A(X{Xi)_1, 0X = 02 + A(ZIZi)-1 and taking into account 
the identity I = Xl{JH[XlyX[ + Z&lZJ-Zl we get E = X,r2X{ + Zi02Z[ + Al. For the 
matrix X there exists a matrix M that X = XiM and therefore Xi^XJ = XiMrM'X{ = 
XrX'; similarly we can reestablish the term Zi02Z(. By application of Lemma 1.3 
the proof is concluded. 

Remark 4.1. By Lemma 4.1 the best estimate of the unknown vector X/J in the 
case r = AI + XrX' + ZeZ' is X(X'X)"X'Y\ Application of the matrix S in the 
corresponding estimate X[(X')"(S)]'V results in the enlargement of dispersions with 
respect to the BLUE. Of course, in the case when we do not know anything about 
the structure of the matrix E we are thrown upon utilization of the matrix S. 

Lemma 4.2. Consider the regression model 

(Y9Xp,E = tw) 
\ i = 1 / 

The function g(Xl9 ..., Ap) = g'k is unbiasedly estimable by the statistic Y'AY (A is 
a symmetric matrix) iff geM(H)9 where H is a matrix of the type pXp, the 
elements of which are 
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{H}, i=Tr(V lV i-PV l-PVJ-), P = X(X'X)X, i,j=l,...,p. 

Proof . See [7], Theorem 3. 

R e m a r k 4.2. Lemma 4.2 shows the influence of the structure of the covariance 
matrix L on the estimability of its parameters. Consider the following example. Let 
f-eSft", / = 1, ..., / be orthonormal vectors and X = (fu ..., fk), fc_i/. Let the 
covariance matrix be of the form 

E = yj.n +... + ykwj + o,ffc+1fi+1 +... + 0,_fcf,f; = xrx + z e z ' , 

where r = diag(y,, ..., y,), e = diag(0 l 5 ..., 0,_fc, 0, ..., 0) and Z = (ffc+1, ..., f,, 
f,+1, ..., fn); the vectors f,+1, ..., fn complete the vectors fu ..., f, to be a base of the 
space 3/ln. This situation is typical for the investigation of the stochastic structure of 
measured geophysical potential fields (see [5]). The structure of the matrix H from 
Lemma 4.2 is 

Чi 0,0 
I 

where I has the dimension (I- k)x(l — k). That is the reason why it is possible to 
estimate only the parameters 0-, ..., 0,_fc by the vector Y. If in the just considered 
case there holds M(X) = M(E), then it is impossible to estimate any parameter. In 
the model (Y, Xp,E = o2V) the condition R(V, X ) - R ( X ) > 0 is sufficient for the 
estimability of the parameter a2 (for more details see [11]). 

The situation changes essentially if we have at disposal a realization of the matrix 
/ 

S, /S ~ Wn(f, E). In the case of E = 2-M'I it is obvious that £ = f fSf, = hxVf is an 
i = l 

unbiased estimate of the parameter A, and the distribution of the chi-square enables 
to determine the confidence interval for A, as well (for some details of the spectral 
decomposition of the matrix S see [8], p. 86). 
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РЕГРЕССИЯ С ОЦЕНИВАЕМОЙ КОВАРИАЦИОННОЙ МАТРИЦЕЙ 

ЕиЪоппг КиЬасек 

Резюме 

На основе реализации нормально расспределенного случайного вектора У — АЦХ/З, .Е) и 
случайной матрицы 8, которая расспределена по закону Уишарта /8~ ̂ „(/, X), получается 
оценка линейной функции /(0) = р'0 параметра 0(р, /5е^ к, /с-размерное векторное простран­
ство) и исследуются ее статистические свойства при следующих предположениях: Вектор У и 
матрица 8 статистически независимы, / (число степеней свободы)^ Я (.Е) (ранг матрицы Е), 
матрица X известна; никакие предположения не сделаны о рангах матриц Е и X. 

408 


		webmaster@dml.cz
	2012-08-01T00:33:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




