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OSCILLATORY PROPERTIES OF THE FOURTH 
ORDER LINEAR DIFFERENTIAL EQUATION 

JOZEF ROVDER 

1. Introduction 

In the present paper we consider the equation 

yiiv)+q(t)y' + r(t)y = 0, (1) 

where the functions q(t), r(t) are continuous on an interval [a, oo). A solution y(t) 
of (1) is said to be oscillatory if it has an infinite numbers of zeros on [a, oo) and 
nonoscillatory if there exists a number c>a such that y(i)±0 on [c, oo). The 
present paper is a continuation of paper [5] in which an asymptotic behaviour of (1) 
was studied. The aim of this work is to show an oscillatory behaviour of solutions of 
(1) provided that we know its asymptotic behaviour. Unlike other works, for 
example Mamrilla [2, 3], we do not require g(t) and r(t) to be of one sign. Further 
the symbol L[a, oo) will refer to the set of all complexvalued functions which are 
Lebesque integrable on [a, oo). 

2. Preliminary results 

Lema 1. (Hinton [1]) Let r(t)>0 on [a, oo) and r"(t)/r1+1/n(t) be in L[a, oo) for 
n = l,2, ..., n. Then 

(i) r1/n(t) is not in L(a, oo) 
(ii) [r'(t)/r1+1/n(t)]f is in L[a, oo). 

(iii) [r'(t)lr1+1/2n(t)Y is in L[a, oo). 

Lemma 2. Let r"(t)lr1+1/n(t) be in L[a, oo), r(t)±0 on [a, oo). Lef a±0, 0 real 
numbers. Then 

Jim \r(t)\p exp ( - | a | f \r(s)\1/n d s ) = 0 

for every number b^a. 
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Proof. Let r( t )>0 on [a, <*>). Then from Lemma 1 there follows 

1 | [ r 1 + , / "(ř)J dt<°° and hence 
L Lr , + ,"(ř)J 

dř<°°. 

Since 
(~\ r'(t) V , ,- r'(t) „ r'(6) 
1 b^r'^T^W"*' where K=7^W)' 
r'(t) then lim _+_;„, x exists. Let us denote it by c. We show that c = 0. Suppose on the «->» r yt) 

contrary that c=£0. Then 

r'(t) 
ІH2 [ӯЦõ] = 

and for the number c 2 /2>0 there exists a number t0^b such that 

r'(í) 
r1+1/"(í) - c <-

for all t^t0, i.e. 

|_r1+1/"J 2 ° -

Multiplying the last inequality by rl/"(f) we get 

[ rV) T>--cV"(rt 
„r1+1"(f)J 2 C r Kt} 

which contradicts Lemma 1, because the left-hand side is in L[a, °°), while the 
right-hand side is not in L[a, °°). Hence 

_ _ _ _ _ _ n 

hm-———— = 0. ;"" r
1+1/"(í) 

From this it follows that 

ř— a r1+1/n(t) r(t) ar1/n(t) 

for every real number a, (l, ai=0. Then for the number 1/2 there exists a number 
h^O such that 

я r ' ( ř ) l 

P r(ř) ar1 / л(ř) 4 
for every f>íi, i.e. 
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ß r(t) <\ \a\run(t) 

and hence 

ßҖĄwwчty 
Integrating the last inequality over [tu t] we get 

[ter(t)%<±\a\j'r(s)1/nds, 

i.e. 

0<[7SF<~p[fi«il>>"-H-
Multiplying the last inequality by exp —1«| j r1/n(s) ds we obtain 

0 < [ T S ] '
 exp [" | a |{ r l / n ( s ) H < e x p [~\ | a | { r l / n ( s ) ds\ • 

Since r1/n(s) ds = oo, then Hm exp - - \a\\ r1/n(s) ds = 0 and consequently 

lim [r(t)Y exp T- |a | [' r1/n(s) ds] = 0. (2) 

Let now r(f)<0. Then - r ( f ) > 0 and -r(t) satisfies the assumptions of 
Lemma 1. Therefore 

lim[-r(0r exp [-|«|J^' [-rC^)]1/rt ds] = 0. (3) 

From (2) and (3) we obtain the conclusion of Lemma 2. 

3. Main results 

From Lemma 2 and the results of paper [5] concerning the asymptotic properties 
of (1) we obtain the following theorems: 

Theorem 1. Let q(t)±0 on [a, oo), q"(t)/q4/3(t) and r(t)/q(t) be in L[a, oo). 
Then the differential equation (1) has a fundamental system of solutions which 
consists of two nonoscillatory solutions yu y2 and two oscillatory solutions y3, y* 
with the properties: 

a) If q(t)>0, then 
y ^ l , yVV*73-^ as *->«>, i = 1, 2, 3, 
y^-^0 as f->oo, (-l)'y£>>0 on [T, oo), i = 0, 1,2, 3, 
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y3°4, / = 0, 1, 2, 3 are oscillatory and unbounded. 
b) If q(t)<0, then 

y i -> l , y i ' V " 3 - ^ as t->oo, i = l , 2 , 3 , 
yco^^oo for I = o9 1,2,3 and t->oo, 
y3?4 are oscillatory and y3°4—>0 as f—>oo, / = 0, 1, 2, 3. 

Theorem 2. Let r ( f ) ^ 0 on [a, oo), r"(t)lr5\t) and q(t)lr12(t) be in L[a, oo). 
Then the following statements are valid 

a) If r(t)>0, then the differential equation (1) has a fundamental system of 
oscillatory solutions yk(t), k = 1, 2, 3, 4 such that y(i?2(0, / = 0, 1, 2, 3 approaches 
zero as t—>oo and y3?4(0> Z = 0, 1, 2, 3 are unbounded. 

b) If r ( t ) < 0 , then 
y<«">_> OO aS t-» OO, | = 0, 1, 2, 3, 
y(o_^0 as f->oo, (-l) 'y?>(f)>0, / = 0, 1, 2, 3, 
y3

04, / = 0, 1, 2, 3 are oscillatory and unbounded if 
| r(t)|3/8_+0, and bounded if |r(t)|38->oo as *->«>. 

4. Proofs of theorems 

Proof of T h e o r e m 1. Let q(t)>0. From Theorem 4 in [5] it follows that 
equation (1) has a fundamental system of solutions yk, k = 1, 2, 3, 4 such that 

diafo, q2l\ q1 \ l](yl9 y{, y7, y D V ' - K l , 0, 0, y)T, (4) 

diafa, a2 3, a13, l](yk, y'k, y'L, y'k")T exp [ - r k £ a 1 3 dfi] a"13-+pk, (5) 

1 V3 
where fc = 2, 3,4, T2 = - 1 , r3,4 = -±—i, pk = (fk, 1, Tk, - f k ) T . 

It is easily seen that (4) implies yi—>1 and for / = 1, 2, 3, y^q'13—>0. For the 
solution y2 we get from (5) 

,4V2~')/3 exp q1 3(s) ds [!/"«' . ( -1 ) ' + 1 , i = 0 , l , 2 , 3 . (6) 

It follows from Lemma 2 that y2°—>0 for i = 0, 1, 2, 3. From (6) it also follows that 
there exists a number T>a such that y 2 < 0 , y 2 > 0 , y 2 < 0 , y 2 " > 0 on the interval 
[T, oo) and hence y2 is a nonoscillatory solution of (1). For the other two solutions 
y3,4 of equation (1) we get from (5) 

y3q
2 3 exp (-.-Í')J>><-H-T'-
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í.e. 

ti V3 . \ _,_ r / i . Vš ^ ( l - f ) ^2/3exp
 [ ( I + T O £ > ( o H [ i + o ( l ) ] -

Similarly we get 

y * = ( _ " + T 0q_2/3 exp [(rf 0 £ql/3(o) do] [1+o(1) ]-
c . 1 V3. 2 __. . 2 , 1 \ ! 3 . . _ , . . . . 
Since x - - ^ - i = cosT7r + isinT-T and x + -r- i = cos -+ i s inx 
there holds 

y3.4 = q'2'3 exp [± £ <_1/3(6) do] [ ±cos ( | JT + ̂  £ qll3(6) dd) + 

+ i sin ( | jr + - ^ £ g1/3(o) ds)] [1 + o(l)] . 

If we denote by 

a(t) = q~2'3 exp [± £ 4
l'3(d) do] , 0 ( . ) = ^ + ^ £ <_1/3(o) d«, 

then for u3 = Rey3 and w4 = Imy4 we have 

u3 = a(t) [cos/3(f) + o(l)], u4 = a(0 [sin0(f) + o(l)]. 

From Lemma 1 and 2 it follows that lim a(t) = lim j3(f) = °° and therefore u3(t), 

w4(f) are oscillatory and unbounded. It holds as well for u3°(t) and i*__°(0> 
I = 1, 2, 3. It is evident that the functions y_, y2, w3, u4 form a fundamental system 
of (1). 

Let now q(t)<0. Then from Theorem 6 in [5] we have 

diafo, q2'3, q1'3, l](y„ yl, y_, y{"Y - . _ , -*( l , 0, 0, 0)T (6) 

diafo, q2'3, q1'3, _]-(y_, yU yl yk")r-q-
ia-

•exp[T_£q1/3(6)dd]^p„, (7) 

i V5 

Where p_ = (l, T„, T_, 1)T, fc = 2, 3, 4 and T2 = 1, T3 ,4= - x± - - - - i . From (6) we 

have yi->l, y_o<_-,/3->0 as f->°°, i = l, 2, 3 and (7) gives 
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y£V2-03exp[J[V3(ő)dð]- • 1 . 

Applying Lemma 2 to the last relation we get yi°—>-oo as f—>oo5 / = 0, 1, 2, 3. 
For the other two solutions we get from (7) 

ì.e. 

and similarly 

y3q
23 exp 

y3 = q 2 /3exp 

y4 = q 2 3 exp 

1, 

(i+^i)£ai/3(ó)dó]-[i+0(i)] 

1 vз. 
й - т i ) £ < î , 3 ( ð ) d ð ] " [ 1 + o ( l ) l -

Similarly as in the case q(t)>0 we get that u3 = Rey3, w4---Imy4 and their 
derivatives are oscillatory, but they approach zero (a(r)—>0 as t—>oo). 

P r o o f o f T h e o r e m 2. Let r(t)>0. It follows from Theorem 8 in [5] that the 
differential equation (1) has a fundamental system of solutions yk(t), k = 1, 2, 3, 4 
with the properties 

dia[r34 , r1/2,r14, - ] • ( * , yí, yï, y i ' O V 

• e x p | - T j r1 4(<5)dój->p t , (8) 

where rk are the roots of the equation r4 + 1 = 0 and pk = (1, rfc, rt, TI)T. Since the 

roots of this equation are rk = ± — ±— i, we have 

yxr
3ls exp 

y2ŕ's exp 

y3r3 / 8 exp 

yĄŕ's exp 

V2_,.V2. 
T^T1' 

[(т-f)£-(ð)H-> 
0-4)[/ЧS)dShi 

(-f+^)£>(ð)-H-
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If we divide these expressions into real and imaginar parts, we get that U\ = Rey., 
u2 = Imy2 are oscillatory approach zero, while u3 = Rey3, u4 = Imy4 are oscillatory 
and unbounded. Similarly we obtain that the derivatives of the solutions uu u2 are 
oscillatory and approach zero, and the derivatives of the solutions u3, u4 are 
oscillatory and unbounded. 

Let now r(f)<0. Then from Theorem 10 in [5] if follows that equation (1) has 
a fundamental system of solutions yk, k = 1, 2, 3, 4 such that 

dia [(-r)3/4, (-r)1/2, (-r)1/4, l](yfc, yi, yl y'k")T-

•( -r)- 3 / 8exp f -Tk | r ( -r) , / 4d6J- ,p f c , 

where xk are the roots the equation T 4 - 1 = 0 and pk = (1, rk9 x\, TI)T. Since the 
roots of the equation T 4 - 1 = 0 are T- = 1, T2 = — 1, T3,4= ±i, then for fc = 0, 1, 2, 3 
there holds 

yHr| 3 / 8exp[-J' |r , / 4 (d) |d6]-*l , 

y^ |r | 3 / 8 exp[ | ' | r , / 4 (6) |dd]^(- l )* , 

y3*>|r|3/8 exp [-i | ' |r1/4(6)| ds]^(i)*, 

yi*>|r|3/8 exp [i f |r,/4(6)| d6] ->( - i ) \ 

From these relations it follows that yi, y2 are nonoscillatory and yik>(0—*°°» 
y2k)(0-»0, y(i*>(0>0, (-l)*y^*>>0. We cannot apply Lemma 2 for investigating 
the solutions y3, y4, because Rer3,4 = 0. However, there is valid for y3*4: 

y3*
) = ( i )* |r | - 3 / 8cxp[- i | ' |r , / 4 (d) |d6][ l + o(l)], 

y4*> = (-i)*|r|"3/8 exp [i | ' |r1/4(6)| dfi] -[1 + o(l)], 

and therefore 

y3(0=k|-3 /8 [cos ( £ |r|1 /4d6)-isin ( £ |r|' /4d6)] [l + o(l)], 

y4(0=|r|"3/8 [cos ( | ' |r|1/4d6 + isin ( | ' |r| l /4do)] [l + o(l)] . 

From these expressions we have that w3 = Rey3, u4 = Imy4 are oscillatory and 
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unbounded if | r | 3 8—>0 as t—>oo and w3, u4 are oscillatory and bounded if | r | 3 8—>oo 
as r—> oo. We can easily prove that the same properties are valid for the derivatives 
of u3, u4. 

5. Discussion 

In paper [2] Mamrilla proved the following statements for the differential 

equation 

(a,) y ( " , ) + Q y ' + Q'y = 0 

T2V3 
(i)HQ(xУ: + et(x)]—3, where e,(x)&0 f ^ ^ dx = °° Q'(x)^0 ( = 0 

(ii)ПQ(x): 1 1 r°° e (x) 

—, e2(x) ^ 0, -2±-± dx = oo, then there exists 

does not hold in any subinterval of [a, oo)), then there exists a fundamental system 
of solutions of (ai) such that three solutions are oscillatory and one is nonoscillat-
ory and approaches zero monotonically as JC—>oo. 

-_vi_c_,vd! ..M>« r___>^_, 
a fundamental system of solutions of (ai) such that two solutions are oscillatory and 
the other two solutions are nonoscillatory and diverge to oo monotonically as 
J C — > o o . 

If Q ( J C ) > 0 , then Theorem 1 gives another sufficient condition so that the 
equation (ai) may have a fundamental system of solutions which consists of two 
oscillatory and two nonoscillatory solutions. The nonoscillatory solutions converge 
to 0 and 1. From this it evidently follows that there also exists a fundamental system 
which consists of three oscillatory and one nonoscillatory solution that approaches 
zero. 

Similarly if Q ( J C ) < 0 , then the differential equation (ai) has a fundamental 
system such that two solutions are oscillatory, the third diverges to oo and the fourth 
converges to 1. From this it easily follows that there also exists a fundamental 
system which consists of two oscillatory and two nonoscillatory solutions. The 
nonoscillatory solutions diverge to oo. 

In paper [3] Mamrilla proved a sufficient condition for all solutions of (1) to be 
oscillatory. Then there exists a fundamental system of oscillatory solutions. He 
requires q(t) t o D e of one sign. Therefore we cannot apply his theorem to the 
differential equation 

y ( n ) + s i n t y ' + f2y = 0. (9) 
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However, the conditions of Theorem 2 are satisfied. Indeed: 

r(t) e e L U ' ' 
and 

r"(t) 2 T M , 
^ 7 ^ = p75GL[L°°)-

Hence equation (9) has a fundamental system of oscillatory solutions. 
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КОЛЕБАТЕЛЬНЫЕ СВОЙСТВА 
ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ЧЕТВЕРТОГО ПОРЯДКА 

1оге1 КоV<Iе^ 

Резюме 

В работе рассматриваются колебательные свойства фундаментальной системы решений 
уравнения (1), если несобственные интегралы из некоторых дробей функции ^ и г являются 
конечными. 
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