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OSCILLATORY PROPERTIES OF THE FOURTH
ORDER LINEAR DIFFERENTIAL EQUATION

JOZEF ROVDER

1. Introduction

In the present paper we consider the equation

y®+q(t)y’ +r(t)y=0, (¢))

where the functions q(t), r(t) are continuous on an interval [a, ). A solution y(t)
of (1) is said to be oscillatory if it has an infinite numbers of zeros on [a, ®©) and
nonoscillatory if there exists a number ¢>a such that y(¢)#0 on [c, ©). The
present paper is a continuation of paper [5] in which an asymptotic behaviour of (1)
was studied. The aim of this work is to show an oscillatory behaviour of solutions of
(1) provided that we know its asymptotic behaviour. Unlike other works, for
example Mamrilla [2, 3], we do not require g(¢) and r(¢) to be of one sign. Further
the symbol L[a, ) will refer to the set of all complexvalued functions which are
Lebesque integrable on [a, ©).

2. Preliminary results

Lema 1. (Hinton [1]) Let r(t)>0 on [a, ) and r"(t)/r***"(t) be in L[a, ®) for
n=1,2,...,n. Then
(i) r'"(t) is not in L(a, »)
Gi) [7'()/r**"(0)] is in L[a, ).
Gii) [r'(e)/r'*V*"(¢))? is in L[a, »).
Lemma 2. Let r"(t)/r'*'"(t) be in L[a, ), r(t)#0 on [a, ©). Let a#0, p real
numbers. Then

lim |r(6)|° exp (—lal f |r () dS) =0
(o A
for every number b =a.
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Proof. Let r(t)>0 on [a, ©). Then from Lemma 1 there follows

[0 Jar<e

o

[_r_(t)_] ’dt<°° and hence f

rl+l/n(t) N r1+l n(t)
Since
Tr_r ] _r __r'(b)
J [ l+1/n(t) le 1+l/n( ) K’ Where K= r1+1 n(b) ’
then !irg ;% exists. Let us denote it by c. We show that ¢ = 0. Suppose on the

contrary that ¢#0. Then

1 im [ ,clgfzt)T: c?

and for the number ¢?/2>0 there exists a number #,=b such that

r'(t) 2_ 2| _C
’I:rl+l/n(t):| c <2
for all t=t,, i.e.
r Pl
[T(V)":l >§ ci
Multiplying the last inequality by r'"(t) we get
r (t) ] 2 1/n
| g >z

which contradicts Lemma 1, because the left-hand side is in L[a, ®), while the
right-hand side is not in L[a, ). Hence

r'@) _
+1/n(t) 0.

11m :

From this it follows that

lim £ ) __mpr®W._1___,

~ea r () r(t) a-r’(e)
for every real number a, 8, a# 0. Then for the number 1/2 there exists a number
t, =0 such that

P 1 1
r(t) ar“"(t)

for every t>1,, i.e.
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58] <3 talr=0

and hence
r (t) 1

1/n
ﬁ r(t) Ialr (t)
Integrating the last inequality over [t,, f] we get

[Inr(r)® §,<% IaIJ r(s)"'" ds,

i.e.
[ ((:l))] <exp [% |a|£ r(s)"" ds] )

Multiplying the last inequality by exp [—Ial J r'’7(s) ds ] we obtain

0<[ r((:))] exp [—Ialﬂ r'(s) ds]<exp [—% |a|£ r'"(s) ds] .

Since J r'*(s) ds =, then lim exp [—% |a|J r'*(s) ds] =0 and consequently

tim ()] exp [ ~al [ r~(s) ds] =o0. @

Let now r(t)<0. Then —r(t)>0 and —r(t) satisfies the assumptions of
Lemma 1. Therefore

lim [~ ()" exp | ~la [ [~r(s)1™ ds] =0. 3)

From (2) and (3) we obtain the conclusion of Lemma 2.

3. Main results

From Lemma 2 and the results of paper [5] concerning the asymptotic properties
of (1) we obtain the following theorems:

Theorem 1. Let q(t)#0 on [a, »), q"(t)/q**(t) and r(t)/q(t) be in L[a, »).
Then the differential equation (1) has a fundamental system of solutions which
consists of two nonoscillatory solutions y., y» and two oscillatory solutions ys, ys
with the properties:

a) If q(t)>0, then

=1, yWq >0 ast—>m, i=1,2,3,
y$’—0 as t—> o, (-=1)y$?>0 on [T, »), i=0, 1, 2, 3,
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y$%, i=0, 1, 2, 3 are oscillatory and unbounded.
b) If q(t)<0, then
yi—1, y¥Pg”?>50ast—ow», i=1,2,3,
y$— — fori=0,1,2,3 and t— o,
y$’; are oscillatory and y’,—0 as t—» o, i=0, 1, 2, 3.
Theorem 2. Let r(t)#0 on [a, »), r"(t)/r’ *(t) and q(t)/r' *(t) be in L[a, »).
Then the following statements are valid
a) If r(t)>0, then the differential equation (1) has a fundamental system of
oscillatory solutions y.(t), k=1, 2, 3, 4 such that y{’.(t), i=0, 1, 2, 3 approaches
zero as t— © and y$.(t), i=0, 1, 2, 3 are unbounded.
b) If r(t)<0, then
yPowast—s», i=0,1,2,3,
y$¥—=0 as t—> o, (—1)'yP()>0, i=0,1,2, 3,
y$%, i=0,1, 2, 3 are oscillatory and unbounded if
[r(£)]*®*—0, and bounded if |r(t)|>®— © as t— .

4. Proofs of theorems

Proof of Theorem 1. Let q(t)>0. From Theorem 4 in [5] it follows that
equation (1) has a fundamental system of solutions y., k=1, 2, 3, 4 such that

dia[q, ¢*7, q'°, 1](y1, y1, ¥1, yi")"qa7'—=(1, 0,0, ¥)T, (4)

dia[q, ¢*°, ">, 1]1(y&, Y& Yo y&'')" €Xp [—tkf q"’ dé] g "’>p, (5
where k=2,3,4, 1,=-1, T;_4=%i?i, pe=(%, 1, &, —%)".

It is easily seen that (4) implies y,—1 and for i=1, 2, 3, y{?q " *—0. For the
solution y, we get from (5)

y9a exp [ [ a*2(s) ds| (=17 i=0,1,2,3. ©)

It follows from Lemma 2 that y$°>— 0 for i =0, 1, 2, 3. From (6) it also follows that
there exists a number T > a such that y,<0, y;>0, y2<0, y;'' >0 on the interval
[T, «) and hence y. is a nonoscillatory solution of (1). For the other two solutions
ys.« of equation (1) we get from (5)

o[ (-3-5)

0

ey dsll VA,
a'®) 48|25,
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i.e.
Y= (5——2- i) a2 exp [(%+? i) L q"*(8) dd] [1+0(1)].
Similarly we get
Yi= (%+-\£—§ i) q"m exp [(%—? i> J: q'?(6) dé] [1+0(1)).
1

.1 . ) V3.
Since 5—71—cos§n+lsm§ﬂ: and §+Tl—cos3+1s1n
there holds

3 then for yu
V3.4=q exp[ jq""‘(é) dﬁ] [+cos 2 \/—f q'*(6) d6)+

+isin 2n+—I ”’(6)d6>][1+0(1)]

If we denote by

a=q"exp |3 [ 4"(8) de], b= +£ j q°(8) 48,

then for u;=Rey; and us=Imy, we have
us=a(t) [cosB(t)+0(1)], us=a(t)[sinB(t)+0(1)].
From Lemma 1 and 2 it follows that lim a(t) =lim B(t)= o and therefore us(t),

u.(t) are oscillatory and unbounded. It holds as well for u$’(t) and u{’(t),
i=1, 2, 3. It is evident that the functions y,, y2, Us, us form a fundamental system
of (1).

Let now ¢(t)<0. Then from Theorem 6 in [5] we have

dia[q, 47, ¢'°, 11(ys, y1, y1, yi"')"-qa7'—>(1, 0, 0, 0)" ©)
dia[q’ q2/3’ q”s, 1]'(yk’ yk’ yk, yl,(”)T'q—Us'
-exp 5[ a*(8) d6] -, ™)
Where p.=(1, 7, 15, 1)", k=2,3,4 and 1,=1, 134——%+—\é—§l From (6) we

—i/3

have y,—1, y{’q™*—>0 as t—> o, i=1,2,3 and (7) gives
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y$q@ 3 exp [f q'”(8) dé}—» 1.

Applying Lemma 2 to the last relation we get y{’——w as t—o, j=0, 1, 2, 3.
For the other two solutions we get from (7)

, 1 V3. (.,
ysq® exv[(—i——z—l) Lq (6)d6]—+1,

i.e.
V3. ([
vi=a e [(3+51) [ a2(0) o] 11+ 0())
and similarly

ye=a e [ (2-Y23) [ '@ ds] 1+ 000

0

Similarly as in the case q(t)>0 we get that u;=Rey,, us=Imy, and their

derivatives are oscillatory, but they approach zero (a(t)—0 as t— ).
Proof of Theorem 2. Let r(t)>0. It follows from Theorem 8 in [5] that the

differential equation (1) has a fundamental system of solutions y,(t), k=1, 2, 3, 4
with the properties

e

dia[r3 4’ rl/Z’ rl 4’ 1]'(Yk, y‘:’ y;:, yk )Tr—3 8,
-exp [—‘tkf r' (o) dé]—>pk, (8)

0

where 7, are the roots of the equation t*+1=0and p, = (1, 1, 2, 7). Since the

V2_ V2.

roots of this equation are 7, = i‘—z—i—z- 1, we have

f ) d6]—>1,

0

.b)

)f r (o) d6]—>1

—i—2—) f r(s) déJ-»l

0

SIS,

) f rU(8) dé]—) 1.

0
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If we divide these expressions into real and imaginar parts, we get that u; =Rey;,
u,=1Imy, are oscillatory approach zero, while u;=Rey;, u,=Imy, are oscillatory
and unbounded. Similarly we obtain that the derivatives of the solutions u,, u, are
oscillatory and approach zero, and the derivatives of the solutions u;, u, are
oscillatory and unbounded.

Let now r(t)<0. Then from Theorem 10 in [5] if follows that equation (1) has
a fundamental system of solutions y., k=1, 2, 3, 4 such that

dia [(_r)SM’ (_r)x/z’ (-r)lma 1]'(yk’ yl’u Yis yl’t”)T'
.(_r)—s/x exp [—Tk J (_r)1/4 dé]—)pk,

)

where 7, are the roots the equation t*—1=0 and p.=(1, ©, 13, 12)". Since the
roots of the equation t*—1=0are 1,=1, 1,=—1, 15, = %i, then for k=0, 1, 2, 3
there holds

y$|r|*® exp [—j |r'4(8)| d6]—>1,
yolrP exp | [ 1r4(9)] o] (-1,
Yl exp [ =i [ 1r(6)] d8] -G,

y&|r|>® exp [1j |r'2(8)| dé]—»(—i)“.

From these relations it follows that y,, y, are nonoscillatory and y{*(t)— o,
y$(1)—0, y(£)>0, (—1)*y$>0. We cannot apply Lemma 2 for investigating
the solutions ys, y., because Re1; ,=0. However, there is valid for y$}:

Y= ¥l exp [ =i [ 17(@)] 48] 11 +0(1)

y = (=t rl > exp [i [ 174(8)] do]-[1+0(1))

and therefore

ys(t)=|r|>*® [cos (J:; [r|** d6> —isin (J: [r]* d6>] [1+0(1)],

ya(t)=|r|>" [cos (J |F|"* d6 +i sin (J |r[e d6>] [1+ o(1)].
From these expressions we have that u;=Reys, u,=Imy, are oscillatory and
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unbounded if |r|**— 0 as t— © and us, u, are oscillatory and bounded if |r|* *—

as t— o, We can easily prove that the same properties are valid for the derivatives
of us, ua. '

5. Discussion

In paper [2] Mamrilla proved the following statements for the differential
equation

(a1) y™+Qy'+Q'y=0

() IfQ(x)= [¥+ 8,(x)] %, where €,(x)=0 J @ dx=0Q'(x)=0(=0
does not hold in any subinterval of [a, ©)), then there exists a fundamental system
of solutions of (a,) such that three solutions are oscillatory and one is nonoscillat-
ory and approaches zero monotonically as x — .

(if) If Q(x) < [ _2 ;/3
a fundamental system of solutions of (a,) such that two solutions are oscillatory and
the other two solutions are nonoscillatory and diverge to © monotonically as
xX— o,

If Q(x)>0, then Theorem 1 gives another sufficient condition so that the
equation (a,) may have a fundamental system of solutions which consists of two
oscillatory and two nonoscillatory solutions. The nonoscillatory solutions converge
to 0 and 1. From this it evidently follows that there also exists a fundamental system
which consists of three oscillatory and one nonoscillatory solution that approaches
zZero.

Similarly if Q(x)<0, then the differential equation (a,) has a fundamental
system such that two solutions are oscillatory, the third diverges to « and the fourth
converges to 1. From this it easily follows that there also exists a fundamental
system which consists of two oscillatory and two nonoscillatory solutions. The
nonoscillatory solutions diverge to .

In paper [3] Mamrilla proved a sufficient condition for all solutions of (1) to be
oscillatory. Then there exists a fundamental system of oscillatory solutions. He
requires q(t) to be of one sign. Therefore we cannot apply his theorem to the
differential equation

—&(x) —13, £(x)=0, £a(x) dx = o, then there exists
x x

y™ +sint y'+ 2y =0. )
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However, the conditions of Theorem 2 are satisfied. Indeed:

t) sint
‘rl((t))=st2 eLl, =)
and
rll(t) _i
r5/4(t) - t5/2

Hence equation (9) has a fundamental system of oscillatory solutions.

€L[1, »).
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