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ON REPRESENTATIONS OF LOGICS
SYLVIA PULMANNOVA

In [12] an embedding of a logic L into a lattice of all f-closed subspaces L;(V) of
a vector space V with the Hermitian form f was found. In the presented paper it is
shown that L;(V) has the Hilbertian property (M + M* =V for all M e L,(V)) if
and only if the supremum ave exists in L for any a e L and any atom e€ L.

1. Basic concepts

Let L be an orthomodular o-orthoposet, i.e. L is a partially ordered set with the
first element 0 and the last element 1, with the orthocomplementation 1: L—L
such that

(i) (a*)*=a, a€el
(ii) asb>a*=b"*, a, bel

(iii) ava*=1, aelL.

We say that a is orthogonal to b (a Lb), a, b € L if a<b* and we suppose that

(iv) va,eL for any sequence {a;} of mutually orthogonal elements of L.

Finally, we suppose that L has the orthomodularity property, i.e.

(v) a<b implies that there is de L, d La such that b=avd.

A partially ordered set L with the properties (i)—(v) is called a logic.

A state on L is a map m: L—][0, 1] such that

(i) m(1)=1,

(ii) m(va;)=Z2m(a) for any sequence {a;} of mutually orthogonal elements of
L.

A state m on L is pure if it cannot be written as a convex combination of other
states, i.e. if the equality m(-)=cm,(:)+ (1 —c)my(:), 0<c <1 implies m=m, =
m.

Let L be a logic and P a set of pure stateson L. For a e L let us put P, ={p € P:
p(a)=1}, and for peP let us put L,={aeL: p(a)=1}.

Definition 1 [2]. We say that the pair (L, P), where L is a logic and P is a set of
pure states on L, is a quantum logic 1f
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(i) P,cP,>a<b,a, beL,
and
(i) L,cL,>p=gq, p, q€P.

Definition 2 [13]. Let M c P. We say that a state m is a superposition of states of
M if M(a) =1 implies m(a) =1, where M(a) = 1 means that p(a)=1 forallp e M.

Let us put M={peP: M(a)=1=>p(a)=1}, ie. M is the set of all pure
superpositions of states in M.

Definition 3 [12]. We say that S = P is a subspace if {p, q} =S foranyp, qe€S.
If S is a subset of P, we denote by A(S) the smallest subspace of P containing S.

Definition 4 [12]. We say that Sc P is a closed subspace of P if S=8§.
We denote by L(P) the set of all subspaces of P and by F(P) the set of all closed
subspaces of P, i.e.

L(P)={ScP:S=A(S)}
and
F(P)={S<P:S=3).

It can be easily seen that F(P) < L(P).

Definition 5 [3]. We say that p € P is a minimal superposition of the set S c P if
peSand pé&Q for any Qc S, Q+S.

Definition 6 [3]. We say that the minimal superposition postulate (MSP) holds in
the quantum logic (L, P) if for any finite set S = {s,, ..., 5.} ¢ P and any minimal
superposition p of S there holds {p, S} nS,#@ for any partition {S,, S,} of
S (i.e. such sets S, and S, that S;US,=S and SN S, =0).

Definition 7 [10]. We say that the superposition principle holds in the quantum
logic (L, P) if {p, q}~#{p, q} for any different states p, q € P. (Compare with

[6].)

Proposition 1 [11]. If the MSP holds in the quantum logic (L, P), then

(i) peA{r,q} > reA{p, q}, qe A{r, p} for any mutually different states p,
q, reP.

(ii) A(S)=S for any finite subset S < P.

The states p, ..., p. are independent if p, é A{p,: j#i},i,j=1, 2, ..., n. The set
{pi1, ..., p=} is a basis of an element S € L(P) if pi, ..., p. are independent and
S=A{p:, ..., p.}. If SeL(P) has a finite basis {p, ..., p.}, then by (ii) of
Proposition 1 S € F(P). In this case we say that S is finite-dimensional.

An element aeL is the support of a state se P (in symbols: a =supps) if
s(b)=0<«bla (belL). If a=supps, then L,={beL: b=a}. If a state s has
a support, we say that s is supported.
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Proposition 2 [4]. Let (L P) be a quantum logic such that all states in P are
supported. Then ~

(i) suppsisanatom of L for any s € P and there is a one-to-one correspondence
between states in P and atoms of L. '

(ii) a=v{suppp: peP,} for anyaeL.

Let us define the following binary relation on P:

plgq if there is a € L such that p(a)=1 and q(a)=0 (see [2]).

If p 1 q, we say that p is orthogonal to g. It can be easily seen that the relation L
is symmetric and antireflexive. If all states in P are supported, then p Lq iff
suppp.l suppq.

For Sc P let us write S*={seP: sLS}, where s LS means that s Lp for any
pES.

Proposition 3 [4]. If (L, P) is a quantum logic such that all states are supported,
then S**=S for any Sc P.
For S,cP, ae€ A let us set

Va=(Us), Is=a(Us.).

Proposition 4 [2, 4, 12].

(i) The set F(P) is a complete lattice with the operations v and A=nN
(set-theoretical intersection). If all states are supported, then S+ S* is an
orthocomplementation in F(P).

(ii) The set L(P) is a complete lattice with lattice operations = and A = . If the
MSP holds, then S, + S, ={p e P: pe A{r, q}, r € S:, q € S;}. The singleton subsets
{p} of P are atoms in both F(P) and L(P).

Proposition 5 [4]. Let (L, P) be a quantum logic such that all states in P are
supported. Then P, e F(P) for any ae L and the map a—P,: L— F(P) is an
orthoinjection, i.e. preserves ordering and orthocomplementation.

The following representation theorem was proved in [12].

Theorem 1. Let (L, P) be a quantum logic such that the superposition principle
(SP) and minimal superposition postulate (MSP) hold in it. Let there be at least
four independent states in P. Then there is a division ring K and a vector space
V over K such that L(P) is isomorphic to the set L(V) of all linear subspaces of
V (i.e. there is a bijection between them that preserves the ordering).

If, in addition, all states in P are supported, then there is an involutorial
anti-automorphism x: A—A* in K and a Hermitian form f: V X V— K such that
the set F(P) is isomorphic to the set L;(V) of all f-closed subspaces of V (i.e. there
is a bijection between them that preserves ordering and orthocomplementation).
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2. Hilbertian property of L,(V)

A question may arise if the lattice L,(V) from Theorem 1 has the Hilbertian
property, i.e. if M+ M* =V for any M e L,(V) (M, + M, denotes the least linear
subspace of V containing both M; and M,).

It is known [8, (33.4) and (29.13)] that M+ M*=V holds iff L(V) is
orthomodular. By Theorem 1, L,(V) is orthomodular iff F(P) is orthomodular. As
there is a one-to-one correspondence between atoms of L and elements of P, p Lq
iff suppp L suppgq, and the set of all atoms is join-dense in L, the set F(P) is
isomorphic to the completion by cuts L of the logic L ([7, Th. 2.4 and 2.5]. See also
the remarks at the end of [5]). The orthomodularity of L under somewhat different
assumptions was studied in [1]. The proof of the following theorem requires
a refinement of the technique of [1]. Before stating the theorem, we shall need
some lemmas. In the sequel we suppose that (L, P) is a quantum logic such that all
states are supported and MSP holds.

Lemma 1. For any Se F(P) and any finite-dimensional Q € F(P) we have
SvQ=S+Q.

Proof. (The technique of the proof is similar to [9, p. 55].) It is enough to show
that Sv{p} =S+ {p} forany pe P, p ¢ S. By Theorem 1 in [12], the set L(P) has
the covering property, i.e. S+ {p} covers S. But then S* covers (S + {p})*, and
there exists geP such that (S+{p})*+{q}=S"*. Similarly we have that
(S+{p})**covers[(S+ {p})*+ {q}]*=S**=S in L(P). From this it follows that

S+{p}=(S+{p)*=Sv{p}.

Lemma 2. Let L have the following property:
foranyaeL and anyatomee L,aveeL. ()

Then the following statements are equivalent

(i) asx<ave implies x=a or x=ave for any ae L and any atom e€ L
(covering property),

(i) ife, fare atomsin LandaeL, ane=0, then e<av fimplies that f<ave
(atomic exchange property).

Proof. (i)=> (ii): If ane=0 and e<avf, then aAf=0, because if not, then
f<a, which implies e <a, a contradiction. Since a<ave<avf, by (i) ave=
avf=f.

(ii)=> (i): Let ane=0 and a<x<ave, a#x. As L is atomistic, there is an
atom f<x, f€a. From fAa=0 we get by (ii) that ave=avf. Since avf<x<
ave, we get x=ave.

Lemma 3. F(P) has the covering property.
Proof. We show that F(P) has the atomic exchange property. It can be shown as

360



in the proof of Lemma 2 that this is equivalent to the covering property. Let
SeF(P),p,qeP,péS,peSv{q}. ByLemma 1, Sv{q} =S +{q}, i.e. there is
s €S such that p € {s} + {q} (Proposition 4 (ii)). By Proposition 1 (i), ge{p} +
{s}, which means that ge Sv{p}.

Theorem 2. Let (L, P) be a quantum logic such that MSP holds and all states are
supported. Then the lattice F(P) is orthomodular if and only if L has the property
(x) of Lemma 2.

Proof. I. Let L have the property (). By Lemma 3, F(P) has the covering
property. As a— P, is an orthoinjection from L into F(P), L has the covering
property as well. Indeed, if a A b exists in L, then P, ., = P,nP, = P, A P,. From this
it follows that if avb exists in L, then P,,, = P:,p1yr=(PrAP3)* =P,vP,. If
a<x<ave,then P,<P,<P,,.=P,v{p}, where p =supp'e. The last inequality
implies that P, =P, or P.=P,v{p} =P,... It follows that x =a or x =a v e. Since
L is orthomodular, it has the Varadarajan property: if a € L with 0<a <1 and if e
is an atom of L, then there exist two atoms x and y suchthate<xvy,x<a,y<a*
(see [8, (30.7)]).

For M € F(P), let By denote the maximal set of orthogonal states in M. Such
a set exists by Zorn’s lemma. We show that M = By. Clearly, Buc M. Let se M,
séBy. It can be shown that for any pe By s(suppp)#0 only for at most
a countable subset {p,, p,, ...} of Bu. Hence sLlp for pé{pi, p, ...}. Put

a = \/ supp p:. Using the Varadarajan property we show that there is an atom e€ L,
i=1

o0 1
e<a" such that avsupps=ave. Let g=supp'e. Then ¢ e(V{pi}) NnM, ie.
i=1

qlp, i=1,2, .. Let pe Bu, pé{ps, p2 ...}. Then e<avsupps<(suppp)*,
hence q Lp for all p € By, which contradicts the maximality of By. Hence there is
no atom in M\B,, and since F(P) is atomistic, this implies that M = B,,. Now let
M, cM,, M,, M, e F(P). Let B, be the maximal orthogonal set of states in M,. It
can be extended to the maximal orthogonal set B, in M,. Let B;= B,\B, and
B;=M,. Then B, c Bi = Bi = M{ and thus M; = B; < M. In addition, M, v M, =
(MyUM;)™ =(B,UB;)” =(B,UBs;)” = B, = M,. This proves the orthomodularity of
F(P).

II. Let F(P) be orthomodular. Then F(P) has the Varadarajan property and
hence L has it, too. Let ae L, a#0,1 and e be an atom of L. Then there exist
atoms x <a, y <a' such that e<xvy<avy. It can be easily seen that supp™' x =
(Pxv{supp~'e})AP,, supp~'y=(P.v{supp 'e})AP; in F(P). Now let c=a, e.
Then supp™'y =(P.v{supp 'e})AP;<P.AP;<P, ie. y<c and thus c=avy.
We have shown that ave=avy and this completes the proof.
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O MPEICTABJIEHUAX JIOTUK
Sylvia Pulmannova
Pe3iome
B [12] noka3aHo BioOXeHMe JOTMKM L B peuleTky BceX f-3aMKHYTbIX mopnpoctpanctB L (V)
JUHEHOTro npocTpaHcTBa V ¢ repmutoBoit ¢popmoit f. B npepnaraemoii crathe nokasaso, yto L(V)

umeeT kadectBo ['unbbepra M+ M* =V uns Bcex M e L, (V) Torna u Tonbko Torna, KOrna ave
cywiectByetT B L gnst Bcex a € L u Bcex aToMoB e€ L.
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