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ON THE TWO-SIDED MULTIPARAMETER CONTROL

FRANTISEK RUBLIK

One important task which statisticians have often to solve is to decide whether
a statistical population is concentrated in prescribed boundaries. For example, if
a producer of furniture receives a consignement of pressed planks, he wants to
know whether they are sufficiently flat. This can be expressed by the requirement,
that the thickness x; of the plank in the i-th place of surface satisfies fori=1, ..., m
the relation

X; € <q’ Q) (1)
where q < Q are prescribed boundaries. Another similar problem is controlling
several parameters Xxi, ..., X, of the same product, which have to satisfy for
i=1, ..., m the relation

xi€(q;, Q). (2)
Here ¢; < Q. and the interval (q;, Q:) is an admissible inaccuracy. If we assume
that the vector x =(x,, ..., x») is normally distributed with diagonal covariance
matrix, then both (1) and (2) can be expressed by the inequality

P([]¢a. @))=z1-4, 3)
i=1

where A € (0, 1) is a chosen number determining degree of quality of the statistical
population. Unfortunately, parameters of the normal distribution satisfying (3)
cannot be described in a simple analytical form, hence it is necessary to construct
a statistical hypothesis implying (3).

Let us put
O ={(u,0): u,0eR™, 0.>0 for i=1, ..., m} 4)
and for 0 =(u, o) € O denote
o m -1 1 m X — Wi 2
fx, 0)=@r)y ™ ([T o) " exp (-5 5 Eo8Y (s)
i=1 i=1 i

Po(A)= L f(x, 0) dx.
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1+(1=A)"™

Let ¢ be the 3

quantile of the N(0, 1) distribution, i.e.

1+(1-A)""
2 )

where @ is distribution function of the standard one-dimensional normal dis-
tribution. If we denote

D(c)=

H.={(u,0)€0; i+ c0,<Q, - co,=q; i=1,.., m} (7)

then making use of well-known properties of normal distribution (5) we see that for
each 6 e H,

Py (lj (i Q—))ZPe (l'j {(w — cai, w+cm))=
=(P(c)—P(—c)"=QP(c)-1)"=1-A.

We have shown that the hypothesis (7) implies (3), which means that it is
reasonable to test its validity. We shall give an explicit formula for the maximum
likelihood ration test statistic and describe its asymptotic distribution.

Let x!™M=(x{", ..., x), ..., x!"'=(x!", ..., xI?) be independet observations of the
random vector x, x; be the sample mean and s; be the sample standard deviation of
the i-th coordinate, i.e.

% _1 ixl_il § = (_1_ i(x‘-”—j.y)' 2
4 n I=l 1 9 1 n l=l t (] L4

If x; €(qi, Q;), we denote

Si xitesi<Q, Xi—csi=q;
M =x%,D,= {'.;_q. i.»e(qi,q—‘;—(—)-i>, Xi—csi<qi (8)
Q. — X% fie<qi+oi, Q.-), X+ c¢s,> Q..
c 2
If ;= Q;, we put
D,=min {22, de O, [st+@-ay (1 +%2)]' i )
M, =Q;—cD; (10)
and finally for x; <gq; let
D; =min {0'2: L3 C(q.-z— ii)+ [s.-’+(i,»— q) (1 +%2>]”2} (11)
M, = q; + cD..
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It is shown in [2] that the mapping (M, D;) defined by the formulas (8)—(12) is
the maximum likelihood estimator of (i, 6;) under the constraints y; + ca, <Q.,
w; — co; = q;. Thus if we denote

6=M,,...M,,D, ..., D,) (13)
then (cf. (5))

l_[ f(x, 6) =sup {n f(x 0); 0e Hc}

j=1
and @ is the maximum likelihood estimator under the hypothesis H..

Theorem. If 6= (%, ..., %m, St o0 Sm), then for each parameter 6 € H., and for
every positive number t

G, 6)
f(x, 6)

where log is logarithm to the base e and

25 (5) (-2 ) £ )

j=o \'] 4 r=0 \I

lim P, [ -2 ZIog >t]$1 —F(v), '(14).

n—sw

(1 —% arc tg %)’_’Fz,_,(t). (1?)

Here F; is the distribution function of the chi-square distribution on j degrees of
freedom, Fo(t) =1 for t>0 and the function arc tg takes its values in the mterval

(-33)-1

R T e Rt e s (16)
then (14) holds with equality sign.

Before proving the theorem we recall that a set H is said to be approximable at
a point 6 € H by a cone K, if for every sequence {a,} of positive numbers tending
to zero

0=<ql+ol gn+Qn Qi—gq: Qm‘qM)

sup {o(x, K+ 0); xeH, ||x— 6| <a.} =0(a.),
sup {o(y+6, H); yeK, |lyll<a.} =o(a.).

Here we use the notation
o(x, D)=inf {||x —z||; ze D}

and by the cone K we mean any closed convex set such that ax € K whenever x € K
and a=0.
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Since 6, 6 are consistent maximum likelihood estimators, we can use the
Chernoff theorem (cf. [1] or [2]). If the set H. is approximable at the true value 6
of the parameter by a cone K, the making use of this theorem it is easy to see that
the left-hand side of (14) is of the form

Po = P, [info-cx,(z — 0%)'J(z — 0*)>t|N(O, J Y]

where J is a diagonal matrix with diagonal 77, ..., 0,7, 2077, ..., 20,>. If 0 is an
interior point of H., then K,=R?®" and P,=0. If 8= (u, o) belongs to the
boundary of H,, then it satisfies the relations

w,+co,=Q,, w,—co,>q, j=1,..,v
w,¥co,=Q,, w—co,=q, j=v+l,..s
w,+co,<Q,, m,—co,=q, j=s+1,..,r
w,+co,<Q,, m,—co,>q, j=r+1,...,m.

The set H. is in this case approximable at 8 by the cone K, consisting of all vectors
(x, y) e R*, satisfying the relations

X, +cy, <0 ji=1,..,v
x,+cy, <0, x,—cy,=0 j=v+1,..,s (17)
x; —cy, =0 j=s+1,...,r.

Since the set J'?K, is determined by the inequalities (17) where c is replaced by

%, this set is smallest if 6 is determined by (16). This means, that for

P= SquEH:PG

R={(x,y);x,yeR™, x;+ vy, <0, x,—yy,=0,i=1, ..., m) (19)
c

=—, 20
Y=5 (20)

where L., is the unit matrix of the type 2m X 2m. Denoting
K={(Zl’ ZZ);ZI+YZZsOa Z1_Y2220} (21)

we see that

0*((x, y), K) = ZQ’((x.-, y), K) (22)

and putting x* =(|x4[, ..., |x.|) we obtain
92((x’ _V), K): QZ((X+: y)9 K)
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Hence if A, is the set of all vectors (X, y) such that x, y€R™ and
>0, ..., %x.>0, (x,y)¢K i=1,...)j, (x,y)eK i=j+1,..,m,
then aditivity of probability, symmetry of N(O0, I), (18), (19) and (22) imply

1-p=2" 3 () PlAn(e*(x ). D<BING, E1=27 3 (7) (P0™PG).

" - 23)
Here
Py = P[(x, 1) € K, x> 0|N(0, I)], (24)
P(0)=1 and for j=1,...,m |
P(j)=P [292(&,», ), K)<t, (%, )€K, 6,>0 i=1, ..., jIN(0, 12,.)] .
(25)
Obviously, '
ri)=3 (7) b, (26)
where )
P, =P [B,n{ S (G, 1), K)<t} INO, 1) @)

and B, is the set of all vectors (x, y) € R¥ such that x, ye€ R’ and

x>0, (x,y)éK i=1,..,j,
yi<yx, i=1,..,r y=zyx i=r+1,..,]j.

If x,>0 and & is the projection on the cone (21), then (cf. Fig. 1)

22 =YZ1

Z4
(x, Yi) yi<-xly,
2y, — -— A
(x, y.-)={-(yl"'+ PLZT) vty
(0, 0) ¥i =YX,
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When the transformation
2(1+7%) x4 y), w=1+v)"(—yx +y)
is applied to (27) for i=1, 2, ..., r, we see that
P=2P|D,n(3a+ 3 o] INO.L )| @)
where D, is the set of all vectors (zi, ..., Zry Xos15 -y X;, Ves1, -.-» y,) such that

z>0 i=1,...,r, x>0, y=yx, i=r+1,..,].

To calculate the probability (28) we need

Lemma 1. If $(X) N(0, I,) and c,, ..., ¢ are vectors belonging to R®, then in
notation of the theorem

Plc!x<0j=1,.., k,xi+..+x;<v]=F,(v)P[cjx<0j=1, .., k] (29)
Proof. Let us consider the transformation
X1 = U COS @,
X2 = U Sin @, COS @,
X, 1=using; ... sin@,_, cos @, ;
X, =using-...-sin@,_;sing, |,

where (u, @i, ..., @o-1) €(0, ) X @, ¢ =(0, 27) X (0, x)*~>. The absolute value of
the Jacobian of this mapping is of the form

l]l = up IO((pli ceey (pp—Z)'

Making use of this transformation and Fubini’s theorem we see that

2
F,(v)= . exp (_u_) u’! duj Q2r)"?Q(e, ..., Pp-2) d@y...dg, ,
(().nI ) 2 @
(30)

2
1=f( exp (—%) uf! duf 2r) 7" Q(qu, ..., @, 2)d@,...dg, .. (31)
0, ®) @®

Hence if we denote by A the set of all vectors (@, ..., ¢,-1) satisfying for
j=1, ..., k the inequality

c; (cos @i, sin@, cos @, ..., sin@, ... sin@, )<0,
the repeated use of the transformation, Fubini's theorem, (30) and (31) yield
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p
P [c}st j=1,..,k 2x?$v]=

2
=F,,(v)j exp (—-l;—) u*"'du J Q2r)"?Q(@1, .- @p—2) d@r...d@,_4,
(0, ») A

which completes the proof of the lemma.
Now if we take into account both (28) and (29) we obtain

P, =Fy_,(47P[x: >0, 5 Zyx|N(0, L)}~ =
= Fy- ()47 (47 = @) " arc tgy) (32)

where the second equality can be easily shown by means of the transformation
X1 = ucos @y, y1 = usin ¢,. Making use the same transformation we can show that

Pc=4""—(Q2m) 'arctg % . (33)

Obviously, the relations (23), (33), (26), (32) and (20) imply (14).

Now we prove that the likelihood ratio test is consistent. Since this assertion can
be proved in a general setting, we assume for a while that we are given a family of
probabilities {P, ; 8 € ©}, defined on a measurable space (X, &) by densities

dP,

fx, 0)="g

(x),

satisfying the following conditions.
(CI) O is an open subset of R™ and P, # P,, whenever 0, # 0,.
(CII) The functions {f(x, -); x € X} are continuous functions of the variable 6.
(CIII) If 6, 6* belong to O, then there is a number é >0 such that the positive
part of the function

G(x, 8)=sup {logf(x, 6); [|6 — 6*]| <5}
is P, integrable, i.e.
[ max {0, G(x, 8)} dPs(x) <.

(CIV) The function logf(-, 8) is P, integrable for each 0 € ©. If we denote by
x™=(xy, ..., x,) n independent observations and for < © put

L(x™, t)=sup {Ii f(x;, 6%); 6*€ r} .

then we can state
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Lemma 2. Let 0 € © — 1. If there are measurable mappings
6: X">0, 0,:X">7
and a compact set K =t such that
Po[L(x™, 6,)=L(x™, O)]>1, Po[L(x™, 6,)=L(x™, K)]>1
then under the conditions (CI)—(CIV)

L(x™ ‘"
P, [log %>M]—>1 (34)

for any real number M.

Proof. Since Ku{60} is a compact subset of R™, the probabilities {Pe-;
0* e Ku{0}} fulfill the conditions presented in [3]. But 6 ¢ K, which according to
Theorem 1 in [3] means that

[L(x"‘), K)

lim Pe L(x(_"),ﬂ)

n <e‘”] =1.
Since
L(x™, 8, ) L(x™, 0)

L, 6,)° L(x™, K)

with probability tending to 1 for n— o, the lemma is proved.
Let us turn our attention again to testing the hypothesis (7). If we denote (cf.

(13))

to=t(x", ..., x")==-2 2 log =+~ ;gz: gg

2": 2 (=~ M)z+n [2 2 log——m]

then

where M, D, are expressions determined by the formulas (8)—(12).
Hence if F is the function (15) and

F(((A, a))=1-a,
then the tests
reject H, if t,>t(A, a)

accept H, if t,<t(A, a) (33)

b =
according to the theorem have asymptotic size a. Moreover, it is easy to see that
the assumptions of Lemma 2 are fulfilled. This means, that if 8 € O — H_, then the
tests (35) will reject the hypothesis H, with probability tending to 1 for n tending to
infinity.
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O OIBYXCTPOHHOM KOHTPOJIE MHOI'OMEPHOI'O ITAPAMETPA
FrantiSek Rublik
Pesome

ITycTs m-MepHbIA BEKTOP HOPMaJILHO pacnpefielieH ¥ €ro KOOPAHUHATHI ABIAIOTCA He3aBUCHMBIMH
cny4adHbIMA BelWYMHaMHM. B cTaTthe HaxomuTcd sBHas ¢opMyna IS CTATHCTHKH OTHOUIEHHS MpaB-
ponono6us s mpoBepKM rumoTte3bl W +co,<Q;, W, —co=q, i=1,...,m, rie W — cpenHoe
3HaYeHHe, 0; — CTAHIApPTHOE OTKJIOHEHHE i-TOH KOOPAMHATHI H ¢; < Q; MPOM3BOJIbHbIE (PUKCHPOBAH-
Hule yKchna. IIpuBeneHo TOXe acCHMIITOTHYECKOE paclpefelieHHe 3TOH CTaTUCTHKM M MOKa3aHo, 4YTO
NpoBepKa YNOMSHYTOM [MIIOTe3bl MPH MOMOLIM OTHOUIEHHS MPaBIONOAOGHS MMEET CBOMCTBO COC-
TOSATENLHOCTH.
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