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ON THE TWO-SIDED MULTIPARAMETER CONTROL 

FRANTlSEK RUBLlK 

One important task which statisticians have often to solve is to decide whether 
a statistical population is concentrated in prescribed boundaries. For example, if 
a producer of furniture receives a consignement of pressed planks, he wants to 
know whether they are sufficiently flat. This can be expressed by the requirement, 
that the thickness xt of the plank in the i-th place of surface satisfies for / = 1, ..., m 
the relation 

Xie(q,Q) (1) 

where q < Q are prescribed boundaries. Another similar problem is controlling 
several parameters xl9 ...,xm of the same product, which have to satisfy for 
/ = 1, ..., m the relation 

Xie(qi,Qi). (2) 

Here q,<Q, and the interval (qi9 Q,) is an admissible inaccuracy. If we assume 
that the vector x = (xi, ..., xm) is normally distributed with diagonal covariance 
matrix, then both (1) and (2) can be expressed by the inequality 

p(f[(q*9Q,))*l-A, (3) 

where A e (0, 1) is a chosen number determining degree of quality of the statistical 
population. Unfortunately, parameters of the normal distribution satisfying (3) 
cannot be described in a simple analytical form, hence it is necessary to construct 
a statistical hypothesis implying (3). 

Let us put 

0 = {(li, o): ii, oeRm, ot>0 for / = l , . . . ,m} (4) 

and for 6 = (ii, o) e 0 denote 

/(*, d) = (2„)-<* (ft o.)"' exp {-\ | (j^~) , (5) 

Pe(A) = jAf(x,6)dx. 
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1 +(1 - A)Vm 

Let c be the ^—z—-— quantile of the N(0, 1) distribution, i.e. 

1 + fl - AY/m 

0 ( c ) _i_______ t (6) 
where <l> is distribution function of the standard one-dimensional normal dis­
tribution. If we denote 

Hc = {(/i, a ) e 0 ; Ia1 + ca l^Q I , ju.-c.a,^^, i = l, ..., m} (7) 

then making use of well-known properties of normal distribution (5) we see that for 
each 6eHc 

Pe ( f j <<?,, Q>) ^Pe ( f t </i, " COi, [ii + COi>) = 

= (0(c) - <P(-c))m = (2<P(c) - l )m = 1 - 4 . 

We have shown that the hypothesis (7) implies (3), which means that it is 
reasonable to test its validity. We shall give an explicit formula for the maximum 
likelihood ration test statistic and describe its asymptotic distribution. 

Letx111--^*1!11, ..., Jtl-i1)- ...,JCM = (jtIr1, ..., x[n]) be independet observations of the 
random vector JC, i, be the sample mean and s, be the sample standard deviation of 
the i-th coordinate, i.e. 

1 n /1 n \ 1 2 

*=^2^. * = £?,(&-*Y) • 
n 7=i \n /=i / 

If JC, e ((?,, Q) , we denote 

MІ = XІУ DІ 

Si Xi + cSi ^ Qi, i, - es, ^ qi 

Xj - q{ _ / qi±Q\ 
XІ 

c 

QІ - XІ - IЧІ + Q« 

xi € ( g,, — - ; — [ ) , i, - cs, <q t (8) 

* 6 ( £ P , 4 * + «,>Q. 
If Xt^Qi, we put 

Di=min{_^,£__^+[s? + (ii_Q)2(1+^]12} (9) 

Mi = Qi-cDi (10) 

and finally for i, ^ qr, let 

D I=min{^ )^^+[s? + (i i-,1Y(l+f)]1/2} (ID 
Mi = c7i + cA. 
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It is shown in [2] that the mapping (At, D,) defined by the formulas (8)—(12) is 
the maximum likelihood estimator of (jUj, o,) under the constraints n, + co,^Qt, 
H,i — coi^q,. Thus if we denote 

0 = (M„... ,Mm ,D l , ...,Dm) (13) 

then (cf. (5)) 

f [ /(*-", 6) = sup {fl /(*"•, 6); den} 

and 0 is the maximum likelihood estimator under the hypothesis He. 

Theorem. If 6 = (xi9 ..., xm9 su ..., sm)9 then for each parameter OeHc and for 
every positive number t 

UmP. [ - 2 | l o g ^ | > f ] - S l - F ( 0 , (14) 

where log is logarithm to the base e and 

™-*-%®H-**¥r±® 
( l -^arc tg^=y~F 2 ,_ r (0 . (15) 

Here Ff is the distribution function of the chi-square distribution on / degrees of 
freedom, F0(t) = 1 for t>0 and the function arc tg takes its values in the interval 

( - ! • ! ) • » 

ЛŢl + Ql qm + Qm Ql-qi Qm-Ç[m\ /, ч̂ 

- (-ү- , ..-, -^— » ~ 2 " - • - . —2c—) ( 1 6 ) 

then (14) holds with equality sign. 
Before proving the theorem we recall that a set H is said to be approximable at 

a point 0 e H by a cone K9 if for every sequence {a,} of positive numbers tending 
to zero 

sup{Q(x9K + 0);xeH9Wx-e\\^an} = o(an)9 

sup{g(y + e9H);yeK9Wy\\^an} = o(an). 

Here we use the notation 

Q(x9D) = mt{Wx-zW;zeD} 

and by the cone K we mean any closed convex set such that ax e K whenever xeK 
and a^O. 
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Since 6, 0 are consistent maximum likelihood estimators, we can use the 
Chernoff theorem (cf. [1] or [2]). If the set Hc is approximate at the true value 6 
of the parameter by a cone K, the making use of this theorem it is easy to see that 
the left-hand side of (14) is of the form 

Pe = Pe [infe*eK6(z - 0*)'J(z - 0*) > t\N(0, J l)] 

where J is a diagonal matrix with diagonal o\2, ..., om
2, 2o\2, ..., 2a~2. If 6 is an 

interior point of Hc, then K0 = R2m and Pe = 0. If 0 = ([i,o) belongs to the 
boundary of Hc, then it satisfies the relations 

/xIy+ 00̂  = 0,., fJkJ-calf>qil j = l,...,v 
\itj + cot} = Q,., IM, - cot} = qt] ) = v + 1, ..., s 
lih + cot. < Qi}, ixt} - cot] = qtj j = s + 1, ..., r 
fa, + cotj < Qt], ju., - cotj >qh j = r + 1, ..., m. 

The set Hc is in this case approximable at 6 by the cone Ke consisting of all vectors 
(x, y)eR2m, satisfying the relations 

x^ + cy^O y = l, ..., v 
x^ + cyi.^0, Xi-cyt.^O j = v + l,...,s (17) 
xh-cyt)^0 1 = 5 + 1, ..-, r. 

Since the set J1/2K0 is determined by the inequalities (17) where c is replaced by 
c 

—7=, this set 
V2 
F = supeeHcP0 

c 
—p, this set is smallest if 6 is determined by (16). This means, that for 

P = 1 - P[Q2(Z, K)^t\N(0,12m)], (18) 

K = {(x,y);x,yGRm,Xi + Yyi^O,Xi-Yyi^O,i = l,...,m} (19) 

* - % • ( 2 o » 

where I2m is the unit matrix of the type 2m x2m. Denoting 

K = {(zu z2); Zi + Yz2^0, Zi-YZi^O} (21) 

we see that 

m 

Q2((x, y), K) = %Q2((Xi, y.), K) (22) 
i = l 

and putting JC+ = (|JC,|, ..., \Xm\) we obtain 

Q2((x,y),K) = e
2((x+,y),K). 
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Hence if A, is the set of all vectors (x, y) such that x,yeRm and 

xx>0,...,xm>0, (Xi,yi)^K i-=l, ...,;, (*,, yt)eK 1 = 7 + 1,..., m, 

then aditivity of probability, symmetry of JV(0,1), (18), (19) and (22) imply 

1 - P - 2 " 2 (?) P[An{p2((x, y), K)^r}|N(0,I2„,)] = 2" § (7) (PK)-'PO). 
>=o \ 7 / >=o \ 7 / 

(23) 

Here 
P t = P[(x,, y.) 6 K, JC, > 0|N(0, f2)], (24) 

P(0) = 1 and for j = l,..., m 

P(J) = P [ZQ2((X>, yd, K)^t, (xh y,)$K, *,>0 i = 1,..., ;|N(0,12/)] 

Obviously, 

where 

P»=P [в„n{ІУ((i., y,), K)«() |N(o, /„)] 

and Bjr is the set of all vectors (JC, y)e R2' such that x, yeR' and 

Xi>0, (xi,yi)$K i = l,...,j, 
yi<YXi i = l, ..., r yt^yxi i = r + l , ...,;. 

If JC,>0 and ;r is the projection on the cone (21), then (cf. Fig. 1) 

Fig.l 

r (*> У') 

Jt(Xi, УІ) = 

yt^-Xi/y, 

П T y ^ ' 7 + 7 7 У.є(-*/y,y*). 
(0, 0) У.^УДC,. 

(25) 

(26) 

(27) 
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When the transformation 

z,(i + y2) 1 /2U + w ) , "<= (i + r2)~1 / 2(-y^ + y.) 

is applied to (27) for i = 1, 2, ..., r, we see that 

P,> = 2 T - V n f É z ? + É (tf + y ? ) ^ } |N(0, J2j r) 
l i - 1 i = r + l J 

(28) 

where D.r is the set of all vectors (zi, ..., zr, Jtr+., ..., xy, yr+i, ..., y,) such that 

z ,>0 i = l , . . . , r, x, > 0 , y^yxi i = r + l, . . . , / . 

To calculate the probability (28) we need 

Lemma 1. If £(X) N(0, Ip) and cu ..., ck are vectors belonging to Rp, then in 
notation of the theorem 

P [ C ; J C ^ 0 ; = 1,..., k,JC2+... + J c^ i ; ] = Fp(i;)P[c;jc^07 = l , . . . ,k ] (29) 

Proof. Let us consider the transformation 

JCI = M cosqpi 
JC2 = M sin (pi cos cp2 

xp i = M sin (pi . . . sin (pp-2 cos (]9p i 
jCp = M singer...-sinqpp_2 sincpp i, 

where (M, q>l9 ..., qpp_i)_(0, a>)x <p, cp = (0, 2;r) X (0, JT)P~2. The absolute value of 
the Jacobian of this mapping is of the form 

|J | = M" lQ(<Pu..;(Pp-2). 

Making use of this transformation and Fubini's theorem we see that 

Fp(v)=\ exp ( - ^ - j Mp_1dM (2ji)~p/2Q(q)u ..., cpp-2) dq)x..Acpp -
J(o. v1 7) \ Z / J~ 

(30) 

1 = [ e x p ( - ^ - ) u ^ ' d u f (2n)-p 2Q((pu ..., <pp 2) d(p,...d(pp ,. (31) 
J(o, «>) \ Z / J,p 

Hence if we denote by A the set of all vectors (q){, ..., <pp-i) satisfying for 
; = 1, ..., k the inequality 

cj (coscpi, sinqpi coscp2, ..., sin(pt-... • sincpp i ) ^ 0 , 

the repeated use of the transformation, Fubini's theorem, (30) and (31) yield 
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P L ' J C ^ O j = l,...,kfJx
2^vj = 

= FP(v)jo exp ( - y ) up~ldu jj2jt)~p/2Q((pl9 ..., cpp.2) dq>i...dq>p-l9 

which completes the proof of the lemma. 
Now if we take into account both (28) and (29) we obtain 

Pir = F2i.r(t)4~rP[Xl>0, yxi_yXl\N(0,12)Y~r = 
= F2i.r(t)4~r(4-1 - (27Z)-1 arc tgy)'"', (32) 

where the second equality can be easily shown by means of the transformation 
Xi = u cos <pi, yx = u sin q>x. Making use the same transformation we can show that 

P K = 4 - 1 - ( 2 ; r ) - 1 a r c t g - . (33) 

r 
Obviously, the relations (23), (33), (26), (32) and (20) imply (14). 

Now we prove that the likelihood ratio test is consistent. Since this assertion can 
be proved in a general setting, we assume for a while that we are given a family of 
probabilities {P e ; 8e 0 } , defined on a measurable space (X, Sf) by densities 

/ < x , * ) - ^ ( * ) , 

satisfying the following conditions. 
(CI) e is an open subset of Rm and Pe^P* whenever t91-^r32. 
(CII) The functions {/(JC, •); x e X} are continuous functions of the variable 0. 
(CIII) If 0, 0* belong to ©, then there is a number 6 > 0 such that the positive 

part of the function 

G(JC, 6) = sup {log/(jc, 0 ) ; | | 0 - 0 * N S } 

is Pe integrable, i.e. 

J max{0, G(JC, 6)} dPe(jc)<oo. 

(CIV) The function log/(*, 0) is Pe integrable for each 0 e 0 . If we denote by 
jt(n) = (jci, ..., JC„) n independent observations and for T C 0 put 

L(x(n\ т) = sup j f j f(x„ * ) ; * є т} 

then we can state 
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Lemma 2. Let 6 eO — T. If there are measurable mappings 

0:Xn-->@, 0n:Xn-->T 

and a compact set KCZT such that 

Pe[L(x(n\ 6n) = L(x(n\ 0 ) ] -> 1, P6[L(x(n\ ft,) = L(x(n\ K)]-> 1 

then under the conditions (CI)—(CIV) 

P 4 ' 0 g L l ^ > M H 04) 
for any real number M. 

Proof. Since Ku{0} is a compact subset of Rm, the probabilities {P0.; 
Q*eKv{6}} fulfill the conditions presented in [3]. But 8 £ K, which according to 
Theorem 1 in [3] means that 

~L(x(n\ K) 
i n n LQ I 
n—>°° I 

Since 
S M O T H - H -

L(JC(">, ftO^LQc*"', 0) 
L(x("\ en)"L(xin\ K) 

with probability tending to 1 for «—»<», the lemma is proved. 
Let us turn our attention again to testing the hypothesis (7). If we denote (cf. 

(13)) 

4=a^ . . . ,^o=-2 | io g l^ |4 | , 
then 

( . = Z Z TyJ +n 2 2 , log— - m , 
i = l 7 = 1 1-Si L i = l -Ji J 

where Mi? D, are expressions determined by the formulas (8)—(12). 
Hence if F is the function (15) and 

F(t(A,a)) = \-a, 
then the tests 

to(x™ [fllv_f reject ft if tn>t(A,a) 
WKX "'"X }~ [accept Hc if tn^t(A, a) ^ } 

according to the theorem have asymptotic size a. Moreover, it is easy to see that 
the assumptions of Lemma 2 are fulfilled. This means, that if 6 eO — Hc, then the 
tests (35) will reject the hypothesis Hc with probability tending to 1 for n tending to 
infinity. 
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О ДВУХСТРОННОМ КОНТРОЛЕ МНОГОМЕРНОГО ПАРАМЕТРА 

Ргапп&ек КиЬНк 

Резюме 

Пусть т-мерный вектор нормально распределен и его координаты являются независимыми 
случайными величинами. В статье находится явная формула для статистики отношения прав­
доподобия для проверки гипотезы /х, + са. ^ С , щ-со^^, 1 = 1, ..., т , где ^ — средное 
значение, а, — стандартное отклонение /-той координаты и д( < О, произвольные фиксирован­
ные числа. Приведено тоже асимптотическое распределение этой статистики и показано, что 
проверка упомянутой гипотезы при помощи отношения правдоподобия имеет свойство сос­
тоятельности. 
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