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ON THE FACE-VECTORS OF TRIVALENT
CONVEX POLYHEDRA

STANISLAYV JENDROL

1. Introduction

Let S be a convex polyhedron and let p«(S), or v«(S) denote the number of its
k-gonal faces, or k-valent vertices, respectively. We shall call the sequence (p«(S))
the face-vector of S and the sequence (v«(S)) the vertex-vector of S. A polyhed-
ron S is said to be trivalent if v«(S)=0 for all k#+3. Consider a sequence of
nonnegative integers (p«). The present paper deals with necessary conditions for
(p«) to be the face-vector of some trivalent convex polyhedron S, i. e. conditions
for the existence of a trivalent convex polyhedron S such that p«(S) = p« for all
k=3. (Evidently p, = p,=0).

The well-known Euler formula leads for a trivalent convex polyhedron to the
condition

3ps+2pa+ps=12+ > (i —6)p« (1)
i=6

for the terms of the sequence (p:). The equality (1) gives no information about ps.
Thus the above problem is equivalent to the following problem:

Let p=(p:|3<i#6) be a sequence of nonnegative integers satisfying (1).
Denote by P(p) the set of all nonnegative integers ps such that if ps is added to p,
then the face-vector of a trivalent convex polyhedron S is obtained. Characterize
P(p).

For any sequence p=(p:|3<i#6) of nonnegative integers let
- o=2Xp, for 3<i#6
and .
o=3p; for 3<,j#0 (mod 3).

As far back as 1891 Eberhard [1] proved the following theorem
(cf. Griinbaum [4, p. 254], Jucovié [9, p. 64]):

Theorem 1. P(p) is nonempty for any sequence of nonnegative integers p =
(P« |3 < k#6) satistying (1).
In 1974, Fisher [2] proved the following assertion.
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Theorem 2. For any sequence p = (p« |3 < k+ 6) of nonnegative integers satis-
fying (1) there exists an integer d<3o such that P(p) contains the number
ps=d +2t for any nonnegative integer t.

Theorem 3 (Fisher [2, 3]). For any sequence p=(pi«|3< k#6) of nonnega-
tive integers with ps=2 or ps=2 which satisfies (1) there exists an integer d<30
such that P(p) contains every integer =d.

Griinbaum [4, p. 272] proved

Theorem 4. Let p=(p«|3<k+#6) be a sequence of nonnegative integers with
0=<2.

(i) If 0=0 (mod 2), then no odd integer is an element of P(p).

(ii) If =1 (mod 2), then no even integer is an element of P(p).

For detailed references to results concerning this problem, see the works of
Griinbaum [4, 6], Jendrol—Jucovi¢ [7] and Jucovi¢ [9].

The purpose of the present paper is to prove that this assertion of Griinbaum
characterizes all'sequences p = (p«|3<k+6) for which the set of nonnegative
integers not belonging to P(p) is infinite.

More precisely, we shall prove the following

Theorem 5. Let a sequence p=(p«|3<k+6) of nonnegative integers satisfy
1).

(i) If o<2 and 0=0 (mod 2), then there exists an integer d such that P(p)
contains every even integer =d and no odd integer.

(ii) If o<2 and o=1 (mod 2), then there exists an integer d such that P(p)
contains every odd integer =d and no even integer.

(iii) If o =3, then there exists an integer d such that P(p) contains every integer
=d.

The existence part of the proof comprises the construction of a planar map with
a trivalent 3-connected graph and the prescribed number p: of k-gonal faces. The
existence of a convex polyhedron combinatorially equivalent to such a map is
guaranteed by the Steinitz theorem (see [5, p. 235] or [9, p. 30]).

2. Basic construction elements and some existence lemmas

In this chapter we prove some existence lemmas which are valid for all maps with
the 3-connected graph and on the orientable surface of genus g for any g =0 (i. e.
not only for planar maps with a trivalent graph).

Consider such a map M with sequences q=(q:|i=3) and v=(v|i=3) as

a face-vector and vertex-vector, respectively. From the trivial equality 2 v, = Ziq,
= ==

there follows a useful relation
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vs= 1(21q, Zw) )

Basic construction elements: The face-aggregate of a map M as in Fig. 1a
(or its mirror image), or 2a, or 3a, called configuration Am, or B, or G, (conf An,
conf B,,, conf G, in the sequel) consists of an m-gon, m =6, two hexagons and one
quadrangle, or of an m-gon, m=6, two hexagons and two quadrangles, or of an
m-gon, m=6, two hexagons and three quadrangles, respectively. (We note, that i,
j» k, m, n, t, w mean nonnegative integers in the sequel.)

m Pome2

qa, _ b,
Fig. 1
P Tsa /'—’-——~~-~\\
II, \\ I/ \\
' m } ¢ ms+2 !
9 b)
Fig. 2

Basic construction steps: The number of edges of the m-gon in conf An of
M is increased by inserting new edges into the ‘‘middle” hexagon so that two edges
are divided to form three edges, see Fig. 1b. This gives rise to a conf Bm+2 or
(m+2)-gon and a conf Bs (considering the “bottom” hexagon). Two new hexa-
gons appear in the map M. If it is necessary to increase the number of edges of the
(m+2)-gon, then conf Bm+2 is used in further constructions; otherwise we use
conf Be.
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Analogously we obtain a conf Cms2 (or an (m+2)-gon and conf Cs) and three
new haxagons from conf B..; this transformation is shown in Fig. 2b. Finally,
Fig. 3b shows how to transform conf C,, into conf An.> (or (m+2)-gon and
conf Ag) with one additional conf Ce. Six new hexagons appear in the map.
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If it is necessary to change an m-gon in conf A, to an i-gon, i=m + 6, it can be
done by constructing gradually a conf B+2, conf Cn..4, conf A,..6 etc. In the sequel
we shall call this transition from conf A, to conf An+s (in the course of which an
m-gon is changed into an (m+ 6)-gon, one conf As and ten new hexagons are
created) an A-step. Analogously a B-step (C-step) consists in increasing by six the
number of edges of an m-gon in conf B,, (conf C,,) with a conf Cs and ten hexagons
as a by-product.

LetM=M(q, v, g, a, b, c) be a map on the orientable surface of genus g having
the following properties :

(i) Its graph is 3-connected.

(ii) Sequences q=(q:|i=3) and v=(v.|i=3) are the face-vector and the
vertex-vector, respectively, of M.

(iii) M contains as submaps at least a configurations As, a =0, b configurations Be,
b =0, and c configurations Cs, c=0. Mentioned configurations are pairwise
disjoint.

Lemma l.a. (Insertionofan j-gon, j=7.) If there exists a map M(q, v, g, a,
b, c), then there exists amap M(q',v', g, a’,b', c') withq' =(q:| 9" = q. + s,

v'=(vilvi=v forall i=4: v§=%(‘;iq',-—;iv’,«>),

where s;=0 for all i+3,4,5,6, j; j=7, s;=1 and for the values j, ss, ss, Ss, Ss, a’,
b’, ¢’ see Table 1, lines 1—9 if a+0, or lines 10—18 if b+0, or lines 19—27 if
¢+ 0, respectively.
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Table 1

a J $3 Sa Ss Se a' b’ c

1. 6k 0 3k-3 0 10k-10 a b c+k-1
2. 6k+1 1 3k-4 0 10k -8 a-1 b c+k-1
3. 6k+1 0 3k-3 1 10k -9 a-1 b c+k-1
4. 6k+2 0 3k-2 0 10k -8 a-1 b+1 c+k-1
5. 6k+3 1 3k-3 0 10k-5 a b c+k-1
6. 6k+3 0 3k-2 1 10k-8 a-1 b+1 c+k-1
7. 6k+4 0 3k-1 0 10k-5 a—1 b ct+k

8. 6k+5 1 3k-2 0 10k +1 a—1 b+1 c+k—-1
9. 6k+5 0 3k-1 1 10k -5 a-1 b c+k—1
10. 6k 0 3k-3 0 10k-10 a b c+k—1
11. 6k+1 1 3k-4 0 10k -7 a+1 b-1 c+k-1
12. 6k+1 0 3k-3 1 10k—-10 a b-1 c+k-1
13. 6k+2 0 3k-2 0 10k -7 a b—-1 c+k

14. 6k+3 1 3k-2 0 10k—1 a b c+k-1
15. 6k+3 0 3k-2 1 10k -7 a b-1 c+k-1
16. 6k+4 0 3k-1 0 10k-2 a+1 b—-1 c+k

17. 6k+5 1 3k-2 0 10k a b-1 c+k

18. 6k+5 0 3k-1 1 10k-3 a b-1 c+k

19. 6k 0 3k-3 0 10k-10 a b c+k—1
20. 6k+1 1 3k-4 0 10k—-4 a b+1 c+k-2
21. 6k+1 0 3k-3 1 10k-10 a b ct+k-2
22. 6k +2 0 3k-2 0 10k-5 a+1 b c+k—-1
23. 6k+3 1 3k-3 0 10k-3 a b c+k-1
24. 6k+3 0 3k-2 1 10k—-6 a b c+k—1
25. 6k+4 0 3k—-1 0 10k -3 a b+1 ct+k-1
26. 6k+5 1 3k-2 0 10k—1 a+1 b c+k-1
27. 6k+5 0 3k-1 1 10k -3 a b c+k-1

Proof. To obtain the map M(q’, v’, g, a’, b’, c'), the required j-gon, j=7, is
inserted into one of the configurations As (in the cases a=1, 2, ..., 9), or of the
configurations Bs (in the cases a =10, ..., 18), or of the configurations Cs (in the
cases a=19, ..., 27) of the map M(q, v, g, a, b, c), respectively. We use only
basic constructions described in the previous part.

A 6k-gon, k=1, is inserted into conf As, conf Bs, or conf Cs by (k—1)
repetitions of an A-step, B-step, or C-step, respectively. The starting step for
constructing a (6k + 2)-gon, or a (6k +4)-gon, k=1, is the insertion of an 8-gon or
a 10-gon into the appropriate configuration. This is followed by the necessary
number of A-steps, B-steps, or C-steps.

A (2m+1)-gon, m=3, is inserted into conf As (conf Bs, conf Cs) as follows : we
start by inserting a 2m-gon which will appear in conf Az, conf B,,, or conf C;. By
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adding edges as in Figs. 4, 5, or 6, respectively, we obtain the (2m +1)-gon.
Figures ‘““a” are considered if ss=0; figures ‘b are taken in the opposite case.

{oamer {amet
3
a) Fig. 4 b)
II’ \~\‘ ,I’ \\\‘
H 2m+1 ! H 2m+1 )
4L 4
4
5
a, Fig. 5 b,

// ~\“ //’ \\\\
‘ 2m+1 ) { 2m +1 )
3 T A

4
] S
4

4
9, b,

Fig. 6
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Lemma 2.¢.. (Insertion of a pair of odd-gons.) Let m=7, n=7. If there
exists a map M(q, v, g, a, b, c), then there exists a map M(q’, v', g, a’, b', ¢')

with

q'=(qi|qi=qiforall i+4,6, m, n; qi+ si, 6= qs+ S6, gm=qm+1), gn=qn +1,

if m#n, or

q'=(q%|qi=q: for all i+4,6, m; qi=qa+ sa, g6 =qs+ Ss, qm=qm+2), if m=n,

and

v'=(v’,~|v'.-=vi for all i#3, v3=% (2

i=4

iq'i—ziv;)).

Table 2

a m n Sa a' b' c’

1. 6r+1 6w+1 3(t+w)-5 a—1 b+1 c+t+w—2
2. 6r+1 6w+3 3(t+w)-4 a-1 b c+t+w—1
3. 6r+1 6w+5 3(t+w)-3 a b c+t+w-1
4. 6t+3 6w+3 3(t+w)-3 a b c+t+w-—1
S. 6t+3 6w+5 3(t+w)-2 a-1 b+1 c+t+w-1
6. 6t+5 6w+5 3(t+w)—-1 a—-1 b ct+t+w

7. 6t+1 6w+1 3(t+w)-5 a b-1 ct+t+w—1
8. 61+1 6w+3 3(t+w)—-4 a+1 b-1 c+t+w—1
9. 6t+1 6w+5 3(t+w)-3 a b ct+t+w—1
10. 6t+3 6w+3 3(t+w)-3 a b c+t+w—1
11. 61+3 6w+5 3(t+w)-2 a b-1 cHt+w
12. 6t+5 6w+5 3(t+w)—-1 a+1 b-1 cHt+w
13. 6r+1 6w+1 3(t+w)-5 a+1 b cHt+w=2
14. 6t+1 6w+3 3(t+w)—4 a b+1 c+t+w=2
15. 61+1 6w+5 3(t+w)-3 a b c+t+w—1
16. 61+3 6w+3 3(t+w)-3 a b c+t+w-1
17. 6t+3 6w+S5S 3(t+w)-2 a+1 b c+t+w-1
18. 6t+5 6w+5 3(t+w)—-1 a b+1 ct+t+w-1

For the values m, n, s, a', b', ¢' see Table 2 lines 1—6 if a+ 0, or lines 7T—12 if
b+ 0 or lines 13—18 if c+ 0 (in the second case consider m = n in the Table 2 ), ss
is a constant depending on m and n.

Proof. Inserting into the one from among the configurations As (cases a =1, 2,
..., 6), or configurations B (cases 7, ..., 12). or configurations Cs (cases 13, ..., 18)
of the map M(q, v, g, a, b, ¢) a pair of odd-gons we obtain a map M(q’, v’, g, a’,
b', ¢"). Insertion of a pair (6¢+ x)-gon, (6w + y)-gon, t=1, w=1, x=1,3, or 5,
y=1,3, or 5 into conf As, conf Bg, or conf Cs is described in Jendrol—Jucovid
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[7]; we shall therefore give only a sketch of their construction. If r=1, or w=1 we
start by inserting a (6 + x)-gon and a (6 + y)-gon in such a way that the (6 + y)-gon
(or the (6+x)-gon if t#1) was a part of conf As+,, conf Be., or conf Ce.,
(conf As.x, conf Be., or conf Cs.x) and that only hexagons with at most some
configurations Cs are formed.

If t=2 and w=2, we start by inserting a (12 + x)-gon and a (12 + y)-gon in such
a way that a conf C,,.,, one of the conf A2+, conf By, and conf Ci2+, and neither
conf A¢ nor conf Bs are formed. This is followed by an appropriate number of
A-steps, B-step, or C-steps. Fig. 7 shows the initial positions for the insertion of
a (6t+1)-gon and a (6w + 1)-gon into conf As.

& G

[«
1 Fig.7

Lemma 3.a. Let f=(fi|i=7) be a sequence of nonnegative integers with a finite
number of nonzero elements and let

j=6+;(i—6)f.~.

If there is a map M=MJ(q, v, ¢, a, b, ¢) with a+ b+ c+0, then there is
amapM' =M(q', v', ¢, a’, b, ¢") with

q' =(q'\g5=qs+ 53, qi=qa+ 54, 45=qs+ 55, g6 = qs + s, ¢' = q. + f for all i =T),
v’ =(v'.<\v’,-= v for all i+3; v'3=1§ (Eiq',—Ziv’,»));
>3 1 4
for the values s, sa, s, a', b', ¢' see Table 1, lines 1—9 if a+0: Iines 10—18 if
b+0, lines 12—27 if c#+ 0. The value s is a constant depending on the sequence f.
Proof. There exists a sequence of maps Mo=M, M,, ..., M,=M', h=

f2|+1
> f; —\ = 3 such that the existence of a map M, follows from the existence of

=7

a map M., z=1, 2, ..., h, by some of Lemmas 1.a or 2.8 for suitable a or f.
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Inserting into the one from among the configurations As (for a=1—9), or
configurations Bs (@ = 10—18), or configurations Cs (a = 19—27), respectively, of
the map M, an even-gon, or a pair of odd-gons required we obtain a map M;. We
obtain the map M;, z=2, ..., h, from the map M,_; by inserting and even-gon, or
a pair of required odd-gons with =7 edges (or a single odd-gon if z=~h and

gfzin =1 (mod 2)) into the new conf As, or the new conf Bs of M,_;. (A conf As,

or conf Bg is called a new conf As, or a new conf Bs, respectively, of M, if it
contains a face, which has not appeared in the map M._,. It should be remarked
that at most one of new conf A¢ or new conf Bs appears in the map M,, — see
Lemmas 1.a and 2.8).

If neither new conf As, nor new conf Bs appear in M,_;, one from among the
configurations Cs is employed for creating an even-gon or a pair of odd-gons
required.

Lemma 4.a. If there is a map M= M(q, v, g, a, b, ¢) with c+0, then there is
amap M'=(q', v', g, a', b’, ¢'), where

1. ¢'=(q'|qi=gq. torall i+ 6, ps=ps+21),
v'=(vi|vi=wv forall i+3, vi=vs+41),

where t is a nonnegative integer and a’=a, b'b, ¢'=c, or

2. ¢'=(qi|g5=q:+2, gi=qa—3, q'i=q: for all i=5),
v'=(vi|vi=v;—-2, vi=v; for all i+3)
and a'=a, b'=b, c'=c—1, or
3. ¢'=(qi|g3=q:+1, qi=qs—2, g5=qs+1, qs=qs— 1, q'=gq: for all i=7),
v'=i|vi=v:-2, vi=wv for all i#3)
anda'=a, b'=b, c'=c—1.

5
3
I
§ t
{ ]
1 1
3 L
a, b, c,
Fig. 8

Proof. Adding into the conf Cs of the map M a pair of edges as shown in
Fig. 8a (broken lines) we receive two new hexagons and a conf Cs. Repeating the
above procedure t-times a map M’ in the case a =1 is obtained.
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The transformation of a conf Cs of the map M as shown in Fig. 8b or 8c gives
a map M’ in the case a =2, or a =3, respectively.

Lemma 5. If there is a map M=M(q, v, g, a, b, ¢) with b#0, then there is
a mapM,:M(qlv U,, g, a, b—l, C), where

g’ =(qilgs=q:s+1, gi=qa—2, qgs=¢qs+1, gs=qs— 1, qi=q, for all i=7) and
v' =i vi=vs—2, vi=v, for all i+3).

Proof. Itissufficient to transform a conf B¢ of the map M as shown in Fig. 9.

3

Fig. 9

Lemma 6. Let M=M(q, v, g, a, b, c) be a map and let fs, fs, fs be nonnegative
integers satisfying the following conditions

(i) 3f3+2ﬁ+f5=3q3+2q4+ qs,
(il) f3>q3, qssfsSq5+l,
(iii) s<2c+¢qs or s=2c+q;+1 and b+0.

Then there is a map M' =M(q’', v', g, a', b’, ¢') with
q9'=(qilq5=f, gi=fs, g5=fs, gi=qs— (fs—qs), q. = q, for all i=7),
v’ =(v2|v',-=v,» for all i+3, v§=% (Eiq'.-—Ziv'.))

i=3 =4
and a' =, b'=0, ¢'=0.

Proof. According to the assumptions of the lemma, new triangles and (possib-
ly) a pentagon of a map M’ must be obtained from the quadrangles of the map M.

As (iii) is valid, we can use Lemma 4.2 ([%]—times) and, if s—¢;=1 (mod 2)

(and also fs— gs=1), Lemma 4.3 (if f;<2c+ ¢3), or Lemma 5 (if i=2c+ ¢;+1
and b+0).

Lemma 7.a. 1. There exists a trivalent map M(q, v, 0, 0, 3, 0) with q=
(q.~/q.-=0 for all i#4,6; q.=6, qgs=9 or 12).
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2. There exists a trivalent map M(q, v, 0, 6, 0, 0) with ¢ =(q:|q:=0 for all
i#4,6: qa=6, qs=t for all integers t=27).

3. There exists a trivalent map M(q, v, 0, 3, 0,0) with q=(q:|q:=0 for all
i+3,4,6, g3=2, qa=3, qs=1 for all integers t=18).

Proof. For a=1 see Fig. 10. Let a=2 or 3 (see Malkevitch [10]). We
observe that if there exists a trivalent map L containing a circuit » as drawn in
Fig. 11a, then there is a trivalent map L; with pe(L:)=pe(L)+2t, t=0 and
pi(L1) = p;(L) for all j#6.

Fig. 10
—_
N
9 b,
4
A F2 A
<) d)
Fig. 11
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The circuit » separates two submaps P and Q of the map L. If we add two
hexagons to the submap P as shown in Fig. 11b, we obtain a submap P; bounded
by a circuit »; which has the same properties as x». This properties of »; allow to add
two other hexagons to the submap P;. After t-times repetition of the above
procedure, we obtain a submap P, bounded by a circuit % with the same properties
as x. To receive the need map L, we join suitably the submaps Q and P, along their
boundary circuits. To obtain the propositions of the lemmas, it is sufficient to take
as the submaps P and Q the suitable ones among F), F>, F3 being drawn in Figures
1lc—e.

3. Proof of Theorem 5

For the case ¢ <2 the Theorem is a direct consequence of Theorems 2 and 4, for

ps=2 it is a consequence of Theorem 3. The case X p;=0 has been treated in

=7

Jucovi¢ [8] and Malkevitch [10] (cf. Griinbaum [5] or Jucovié [9, p. 60]).
There remains to be proved Theorem 5 in the remaining cases, i.e. for all
sequences p = (p;|3<i+6) with

ps<1, > p.#0, 0=3. 3)

1=7
We shall distinguish the following 16 cases:

p4?5.

ps=23 or 4, p;=2.

pa=1, p3=4, pe,+1=1 for some r=1.

ps=1, p3=4, ps,+a=1 for some r=1.

ps=0, p3=5, ps,+1=2 for some r=1.

pPs=0, p3=5, pe,+a=2 for some r=1.

ps=0, p3=5, per+1=Ppes+1 =1 forsome r, s, r>s=1.
ps=0, p3=5, pe,+1=pes+a=1forsome r, s, r=1, s=1.
P+=0, p3=5, pér+a=Ppes+a=1forsome r, s, r>s=1.

10. psa<1, ps=1, ps=S5, ps,+2=1 for some r=1.

11. pa<1, ps=1, ps=5, per+s=1 for some r=1.

12. p4$1, p5=0, p3?5, p6,+2?2 for some r=1.

13. pa<1, ps=0, p3=5, ps,+s=2 for some r=1.

14. pa<1, ps=0, ps=5, ps;+2=pes;+2=1 for some r, 5, r>s=1.
15. ps<1, ps=0, p3=5, per+2=pes+s=1 for some r=1, s=1.
16. ps<1, ps=0, p3=5, per+s=pes+s=1 for some r>s=1.

PN R LD

©

The conditions (1) and (3) guarantee that at least one of these cases will always
hold.
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Let 27(i—6)p,»=6(k— 1) + z for some integers k, z, k=1, 0<z<S5. We shall
=

now prove Theorem 5 in the cases 2 and 14.

Case 2. By Lemma 7.3 there exists a trivalent map My =M(q’, v, 0, 3, 0, 0)
with ¢’ =(q'| g'=0for all i#3, 4, 6; q5=2, gi=3, qé =1 for any integer +=>18).
Now we shall apply Lemma 3.a for suitable a. Consider a sequence f=(f;|f. = p:

for all i=7). Then j=6+ X (i—6)fi=6+ = (i—6)p;=6k+2z.If z=0,2 or 4 we
i=7 i=7

use Lemma 3.1, 3.4 or 3.7, respectively, if z=1, 3 or 5 and ps =0 (ps =1), we shall
continue by Lemma 3.2, 3.5 or 3.8 (3.3, 3.6 or 3.9), respectively.

Lete. 8. z=3 and ps=1. By Lemma 3.6 there is a trivalent map M, = M(q, v, 0,
2,1, k—1) with g=(qi|qi=pi for all i=7, ¢3=2, qa=3k+1, gs=1, gs=rs +1,
t=18). Consider M = M, and f5 = ps, fa= ps, fs = ps in Lemma 6. Since the terms of
the face-vector g or M, and the terms of the sequence p satisfy condition (1), we
have fulfilled condition (i) of Lemma 6. Conditions (ii) and (iii) are evidently
satisfied. Thus there exists a trivalent map M. = M(p*, v*, 0, a*, b*, c*) with
p*=(p*|p%=p: for all i+6, ps=t for any t, t=d=rs+18), a*=0, b*=0,
¢*=0. This map satisfies the assertion of Theorem 5. In the remaining subcases of
this case we continue analogically.

Case 14. By Lemma 7.1 and a repeated application of Lemma 1.13 we get
a trivalent map M, =M(q’, v', 0, 0, 1, r+s) with ¢’ =(q| q:=0 for all i#4,6,
6r+2, 65s+2; qi=3(r+s)+2, qg¢=10(r+s)—5 or qgs=10(r+s)—2, qérs2=
gés+2=1). An application of Lemma 4.1 implies the existence of a trivalent
map M;=M(q, v,0,0,1, r+s) with g=(q|q=q: for any i#6,
qs=10(r+s)—2+1¢ for any nonnegative integer t). Consider a sequence f=
(filfi=p: for all i=7, i+6r+2, 65+2, fors2=pPers2—1, foss2=pss+2—1). Then

j=6+E(i=6)fi=6+Z(i=6)p — (6r=4) — (65-4) = 6(k~r=s+1)

+ z+2. It follows from (1) for this case that z=0, 1,3 or4 only. If z=0 (i. e. j =2
(mod 6)) we use Lemma 3.13 in the sequel; if z=1, 3, or 5 we shall proceed by
Lemmas 3.14, 3.17, or 3.10, respectively. To finish the proof of Theorem 5 in this
case we use Lemma 6 as above.

To prove Theorem 5 in the remaining cases we proceed similarly as above. In the
following there are given Lemmas in the order in which they have to be used in
order to prove the theorem.

Case 1. 7.2-3.1,3.4,0r 3.7 if =0, 2, or 4, respectively, 3.2, 3.5, or 3.8 (3.3,
36 0r39)if z=1, 3, or 5 and ps=0 (ps=1), respectively —6.

Case 3. 7.3—-1.2—-3.40r3.7if z=3, or 5, respectively, 3.2, or 3.8 (3.3 or 3.9) if
z=2 or0 and ps=0 (ps=1), respectively —6.

Case4. 7.3—-1.7-3.4, or 3.7 if z=0, or 2, respectively, 3.2, or 3.8 (3.3),
or3.9) if z=5 or 3 and ps=0 (ps=1), respectively —6.
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CasesSand7. 7.3—-1.2—-1.2—-3.4,0r 3.7 if z=4, or 0, respectively. 3.2, or 3.8
(33o0r39)if z=3 or1 and ps=0 (ps=1)—6.

Cases 6 and 9. 7.3—1.7—1.7 — as in the case 5.

Case 8. 7.3-1.2—-1.7-3.4 0or3.7if z=1, or 3, respectively, 3.2, 0r 3.8 (3.3 or
3.9)if z=0, or 4 and ps=0 (ps=1).

Case 10. 7.1-5-1.13-4.1-3.16, 3.17, 3.11, or 3.13 if z=0, 1, 3, or4,
respectively.

Case 11. 7.1-5-1.17-4.1-3.11, 3.13, 3.16, or 1.17 if z=0, 1, 3, or4,
respectively.

Case 12. 7.1-1.13-1.13—-4.1-3.13, 3.14, 3.17, or 3.10 if z=0, 1, 3, or 5,
respectively.

Cases 13and 16. 7.1-1.17-1.17-4.1-3.10,3.13,3.16,0r 3.17if z=4,0, 2,
or 3, respectively.

Case 15. 7.1-1.13-1.17-4.1-3.17, 3.11, 3.13, or 3.14 if z=0, 2, 3, or 4,
respectively.

Note. The values z, which had been considered in the Table, cannot occur in
the corresponding cases. This follows from (1).
This completes the proof of Theorem 5.

4. Remarks

1. The main result of this paper — Theorem 5 — is mentioned (without a proof)
in the book of Jucovi¢ [9, p. 92].

2. A minor modification of the construction presented in this paper and
a detailed analysis of the number of hexagons formed (we omitted this because of
the great number of possibilities) shows that

d=<Zip: for 3<i#6.

Fisher’s results (cf. [2] and also Theorems 2 and 3) give a substance to the
conjecture that

d<3o.

For the sake of completeness Griinbaum’s result [5] must be mentioned: If
ps=psa=0, then d<8.

3. To prove the existence part of Theorem 5 in the cases (i) and (ii) it is
sufficient to start with a map in Fig. 12 and then proceed by Lemma 4.1,
Lemma 3.« for suitable a from among a =19—27, and Lemma 6.

We omit the proof for ps=2 because the paper in the present form is already
rather extensive.
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4. In this connection it is to be said that in the Theorem of Fisher [2,
Theorem 3.4] there is a mistake. I am indebted to professor Griinbaum for his
pointing out this mistake. By [3] the revised version of this result of Fisher is as in
Theorem 2 of the present paper.

1

Fig. 12
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O I'PAHEBBIX BEKTOPAX BbINTYKJIbIX MHOIO'PAHHHUKOB
C PETYJISIPHBIM IPA®OM TPETHEW CTEIEHU

Starislav Jendr 5l

PesoMe

[paHeBUM BEKTOPOM BBINYKIOTO MHOIOTP HHUki C Pery ispHbIM rpacOM TpeTbeH CTeNneHH
HA3bIBAETCS NMOCACAOBATENBHOCTL (p,(S)), riae p.(S)  UMC10 FPAHEH OTPAHMYEHHBIX [ PeOPAMH.

Kaxoil nocnefoBaTebHOCTH  HEOTPULATENBHBIX  Ledblx uucen p  (p |3<i=6) ypoB et-
BOPAIOLIEH CJIEACTBHIO TeopeMbl Jutepi (1), cTaBuUTCA B COOTBETCTBHE MHOXECTBO P(p), rie pis
A060ro ps € P(p) NOCAECHOBATENBH( CTh P JIONOJHEHAS Po ABISETCA IPAHEBBIM BEKTOPOM HEKOTOPOTO
BLIMYKJIOTO MHOTOTPAHHUKA C PETYJISIPHBIM IPiPOM TpeTbeu cTeNeHH. 3a1d4a X« PAKTCPHU3ALMHK BCEx
BO3MOXHBIX P IHCBbIX BEKTOPOB CBOANTCS K OMHUCAHUIO MHOKECTB P(p). B p1boTe x1pakTepusyioTes
MHOXECTBA P(p) jluist BLEX NOCNEIOBITCALHOCTEH P 31 UCK THOUEHUEM KOHEYHOTO KOJIMYECTBA YUCEN Po.
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