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ON m-JOINT DISTRIBUTION

ANATOLIJ DVURECENSKIJ

The m-joint distribution as a weak form of the compatibility of observables on
a logic is studied and some results are proved. This notion allows to introduce
multidimensional statistics of observables into the measurement theory of noncom-
patible observables.

Let L be a o-lattice with the first and the last elements 0 and 1, respectively, with
the orthocomplementation L: a~>a* for which there hold (i) (a*)*=a for all
aelL’ (i) if a<b, then b*<a*; (iii) ava* =1 for all a e L. Further we assume
thatif a<b,thenb=av(bAa"). A o-lattice L satisfying the above axioms will be
called a logic [5].

An element 0#a €L is an atom of L if b <a implies either b =a or b =0. We
say that the elements a, b € L,are (i) orthogonal and we write a Lb if a<b*; (ii)
compatible if there are three mutually orthogonal elements ai, b1, ¢ € L such that
a=aivc, b=>b,vc and we shall write a<b.

A state is a map m from L into (0,1) such that m(1)=1 and m(V ai)

= Zm(ai) if aiLa;, i#j. Anelement a € L is a carrier of a state m if m(b) =0 iff

b La. If a carrier of m exists, then it is unique. A logic is full if there is a system M
of states such that a =b iff m(a)=m(b) for all me M.
An observable is a map x: B(R,)— L such that (i) x(R:)=1; (i) x(E) Lx(F) if

EnF=@; (iii) x(UE,-) = Vx(E) if EnE;=0, i#+j. We denote by o(x) the

smallest closed set E = R, such that x(E)=1. An observable x is purely atomic if
(i) o(x) = {A1, Az, ...}; (i1) x({A}) is an atom in L for any A € o(x). The range of
an observable x is the set R(x) = {x(E): E € B(R:)}. The observables x and y are
compatible and we write x &y if x(E) < y(F) for all E, F e B(R,). If m is a state
and x an observable, then m.: E—>m(x(E)), E € B(R,) is a probabilty measure on
B(R)).

Let m be a state on a logic L. We shall say that the observables x1, ..., x» have an
m-joint distribution if there exists a probability measure u. on B(R.) such that
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n(Ei X ... xE..)=m<i/:\‘x,»(E,~)), )

E,'EB(R]), j=1,...,n.

In this case we may study the statistical properties of the observables x, ..., Xa.

It is evident that if x, ..., x. are mutually compatible and m is an arbitrary state,
then x,, ..., x» have an m-joint distribution [5, Theorem 6.17] ; in the opposite case
this does not hold in general (Theorem 7).

Theorem 1. Let L be a full logic, then x,, ..., x» have an m-joint distribution for -
every m e M iff xi, ..., x. are mutually compatible.

Proof. Let me M. It is easy to see that for all x;, x; there is the m-joint
distribution m..,. Then for all E, F e B(R:) we have

m(xi(E))=m(x(E)Axj(R1))=m.(E X Ri)=
= Mux(E X F)+ m( E X F) = m(x:(E)Ax(F)) + m(xi(E)ax;(F))=
=m([x(E)Axi (F)]v[x(E)Ax(F)].

Similarly, m(x;(F)=m([x;(F)Axi(E)] v [x:(E)Ax;(F)]). From the fullness of L
we have x;(E) o x;(F) for all E, Fe B(R,). Q.E.D.

We have seen that if xi, ..., x. have an m-joint distribution, then any pair x;, x;
has it. There arises a natural question regarding the converse implication. We shall
show in the following that the answer in some cases is positive.

A valuation on a logic L is a map v: L - R, such that

@) v(avb)+v(aanb)=v(a)+v(b),a,beL; 2)
(ii) v(a)<v(b) if a<b. (

(Any state on L has the property (ii).)

Then a functional g.: g.(a, b)=v(avb)—v(aab) is a pseudometric on L
[1, p. 230]. In this case we may define the quotient logic L = L/, identifying the
elements a=5b iff o.(a,b)=0, a, beL. If x is an observable on L, then
x (E)Exﬁ), E € B(R)) is an observable on L ; similarly, if m is a state on L, then
m defined by the subscription ri1(d@) = m(a) is a state on L. »

Theorem 2. Lét a state m on L be a valuation ; then the observables x and y have
an m-joint distribution iff X < y.

Proof. If x, y have an m-joint distribution, then for E, F € B(R:) we have (i)
m(x(E)) = m(x(E) A y*(F)] v [x(E)AyF)); (Gi) m(y(F)) =
= m([y(F)ax*(E)] v [x(E)Ay(F)]). If a=x(E) and b is the expression in
parentheses on the right-hand side in (i), then a >b and gm(a, b) =0. Therefore

2(E)=(x(E)Ay*(F)v (X(E)A¥(F)),
¥(F)=FF)AZH(E)) v(Z(E)A§(F)),
that is, X y.
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Let now X <y ; then for a state iz on L = L/p,, there is an rii-joint distribution p
such that u(EXF) = m(£(E)Ay(F)). But on the other hand i (£(E)A¥(F))
= m([x(E)Ay(F)]) = m(x(E)Aay(F)). , Q.E.D.

Theorem 3. If a state m is a valuation on L, then the observables x,, ..., x. have
an m-joint distribution iff any pair x:, xj, i, j =1, ..., n has an m-joint distribution.

Proof. The necessity is evident. ‘The sufficient condition follows from

Theorem 2, because then we have XX, i,j=1,..,n.and there exists

a probability measure u. on B(R,) such that u...(El X..XE,)) = rh(/n\ i,-(Ei))
i=1

= m(/\ x.-(E.-)). Q.E.D.
i=1 .
Remark. If any pair xi, x; from xi, ..., x» has an m-joint distribution, then m on
L"J R (x;) has the property (2) of the valuation. There arises the question whether m
i=1

has the property (2) on the minimal sublogic Lo, generated by R(x:),i=1, ..., n.In
the case of a positive answer the proposition of Theorem 3 holds without the -
assumption on the valuation. The partial answer is given in the following
(Corollary 6) and therefore the limitation on the valuation is not an extremely -
strong restriction in the study of an m-joint distribution.

" Theorem 4. Let a be the carrier of a state m. Purely atomic observables x and y
with the spectra o(x) = {Ai, Az ...} and o(y)={u, U, ...} have an m-joint
distribution iff

(i) there are the index sets I and J such that for any i€ I there is j e J with

b=y({wh=x({A}=a’ (3)
and for any jeJ there is i € I such that (3) holds; '

(if) a<\/ai=Vb,~.

iel jeJ

Proof. Let x and y have an m-joint distribution. Then we have 1= Y, m(a: A b;)
ij

= m(V aiA b,~). Hence a <\/ a; A b;. Since a;, b; are atoms of L, either aiAb; =0 or
ij . ij
a; = b;. Let us denote by I the set of such indexes i for which there is j such that (3)
holds. Analogically we define J. Hence (i) is satisfied.
The property (i) implies a<\/ ainb; = \Va: = \/b;.
ij

iel jelJ
Conversely, let (i) and (i) hold. Then X, m(a:ab;) = m(V amb,-) = m(V a.~)
i ij iel
= m(a)=1, which is the necessary and sufficient condition for x and y to have an
m-joint distribution. Q.E.D.
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Theorem 5. Let {x., t€ T} be purely atomic observables on a modular logic of
the rank 3 (i.e., any set of nonzero mutually orthogonal elements of L has at most
three elements). If there is a € L such that for any te T there is A € o(x.) with

x({A})=a,

then the minimal sublogic generated by Lo=|J R(x:) is equal to L.

teT

Proof. Let x and y be two arbitrary observables of the given system of
observables. If we show that for any a, be R(x)UR(y) avb* is an element of
R(x)UR(y), then R(x)UR(y) is a sublogic of L and consequently L is a sublogic
of L, too.
- There are two cases (i) x <y, hence R(x)= R(y) and the above proposition is
true; (ii) x<5>y. Let us put ai =x({A:}), bi=y({w;}), i,j=1, 2, 3. Let a, = b, ; then
a:Ab; = a:Abs = asAb, = asAb; =0 and the following table holds for the join v

v b, b, b, b,vb, bivb; bav b,
a a bivb; byvb; b,vb, bivb, 1
a. a\va a:vas a:vas 1 1 a»vas
as avas a:vas a:vas 1 1 a:vas
ava a,vaz 1 1 1 1 1
avas a>vas 1 1 1 1 1
avas 1 avas a»vas 1 1 a>vas

We show, for example, a.v b.=a,vas. Let v be a canonical dimension function
[S, p. 26]. Since a.lai, b.lai, then a:vb.Lla, and v(a:vb.va:)) = v(a:vb:)
+ v(a)) = v(a:) + v(b:) + v(a))=3. Hence a;vb.va,=1and a;vb,=ai=
a:vas. Similarly for other cases. Hence for any a, be R(x)UR(y) avb* is in
R(x)UR(y). Q.E.D.

Corollary 6. Let {x.,te T} be a system of purely atomic observables on
a modular logic of the rank 3. Let a € L be such an element that for any t € T there
is A€ o(x,) with x.({A.})=a. If, moreover, a is the carrier of a state m, then
(i) for any s, te T x, and x, have an m-joint distribution;
(iil) mon L0=L0<U R(x.)) is a valuation;
teT

(iii) every finite subsystem Xu, ..., X.., t: € T, has an m-joint distribution.
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Proof. The validity of proposition (i)—(iii) is obtained by using Theorem-
s4,5,3. QE.D.

One of the most important examples of logics is a logic L(H) of the separable
Hilbert space H (real or complex), where the elements of L(H) are all closed
subspaces of H. The Gleason theorem [5] asserts that every state m on L(H),

dim H=3, is of the form m(M)= > L(M®:, ®:), M € L(H), where 1;>0, X, A =

1, or equivalently, m(M) = mr(M) = tr(TM), where T=ZA.-(-, D)D; is

a Hermitian operator of the trace class ({®;}: is an orthonormal system).
Gudder [3] proved the following theorem:

Theorem 7. Let x,y be observables in L(H). Then x,y have an m-joint
distribution in a state m = mr iff

x(E)y(F)®: = y(F)x(E) . . 4)
for all E, FeB(R)), i=1,2, ....

We shall say that a subspace Ho reduces an observable x on L(H) if x(E)H,
= Hox(E) for all E € B(R:). Then the map xo: xo(E) = x(E)Ho = x(E)AHois an
observable on the logic L(Ho).

Theorem 8. If x, y have an m-joint distribution in a state m=mr and if
a subspace Ho generated by {®:}: reduces the observables x and y, then the
observables xo and yo are compatible on L(Ho). :

Proof. If M, Ne L(H), then M & N iff MN = NM [5] and therefore it suffices
to verify whether xo(E)yo(F) = yo(F)xo(E), E, F € B(R,). Due to Theorem 7 we

have xo(E)yo(F) = x(E)Hoy(F)Ho = x(E)y(F)Ho = y(F)x(E)Ho
= y(F)Hox(E)Ho = YO(F)XO(E). Q.E.D.

Theorem 9. Let a subspace Ho generated by {®:}:; reduce the observables
X1, ..., Xn. Then xu, ..., x» have an-m-joint distribution in a state m = mr iff any pair

xx, X, k,j=1, ..., n has an m-joint distribution.

Proof. Only the sufficient condition. According to Theorem 8, the observ-
ables xj0(E) = x;(E)Ho, j=1, ..., n are compatible on the logic L(H,). The state
m = mr may be considered on L (Ho), too. Therefore there is a probability measure
. on B(R.) for which we have p.(E1 X ... X E.) = mr(x10(E1) A ... A Xno(En)).
By using the methods of the Hilbert space [4] the right-hand side is equal to

Zli(x")(En)/\ .../\xno_(En)Cbi, ¢i)=
z A..'(Xl(El)Hol\ /\x,.(E,.)HOKD.-, @,) =
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Zli(xl(E.)AHoA...Ax,.(E,.)AHod).-, D)= : e
2 M(x(ED)A ... Axa(Ex) A Ho®i, D))=
SAGEIA...Ax(E)D, <D.-)=mr(i/:\‘x,-(E,~)). | QED.

Finally, an independence of observables in a state m will be investigated in this
contribution. The observables x,, ..., x. are independent in a state m if

m( An(ED) =TTm(x(E)), | 5)

for all E;e B(Ry), j=1, .., n.

If L is a sum logic [2, 3] we shall say that the summable observables xi, ..., X. are
strongly independent in a state m if for any finite system of bounded observables
fi, ..., fa there holds

mf|ex|+...+!,.oxn=mhoxl*...*mf,.uxn, . (6)

where the « is the convolution. (If f is a Borel function and x is an observable, then
amap fox: E~x(f'(E)), E e B(R)), is an observable.)

These two notions of independence coincide in the case of compatible observab-
les. Gudder [2] showed that the strong independence in m implies the independ-
ence in m. The equivalency was proved by him only for question observables in
a pure state on a logic L(H).

Theorem 10. Let the subspace Ho generated by { ®;}: reduce the observables x,
..., X». Then the independence of the observables in a state m = mr implies the
strong independence.

Proof. We may easily see that xi, ..., x» have an m-joint distribution in a state
m =myr. Therefore xio, ..., x1» are compatible on L(H,) and independent in
m = mr. Hence they are strongly independent, too, and there holds

mT, f|cx|+..A+[,.exn= mT, (f|ax|+...+f,.ex..)o=
MT, froxi0+...4fnoxno — MT, froxi10% + o« XMT, froxno =
M, froxi¥ ... *MT, froxn. Q.E.D.

REFERENCES

[1] BIRKHOFF, G.: Lattice theory. 3rd ed., 1967.

[2] GUDDER, S. P.: Hilbert space, independence, and generalized probability. J. Math. Anal. and
Appl., 20, 1967, 48—67.

[3] GUDDER, S. P.: Joint distribution of observables. J. Math. and Mech., 18, 1968, 325—335.

352



[4] PRUGOVECKI, E.: Quantum mechanics in Hilbert space. Acad. Press. N.Y. 1968.
[S] VARADARAIJAN, V. S.: Geometry of quantum theory. Van Nostrand N.Y. 1968.

Received June 29, 1979
Ustav merania a meracej techniky SAV,

Dudbravska cesta
885 27 Bratislava:

O m-COBMECTHOM PACIIPEJEJEHUA
AmHartonuit [IBype4yeHCKHN
Pesiome
HUccnepyercs m-cosMecTHoe pacnpefesieHue Kak cnabas ¢oopMa COBMECTHOCTH HaGnioflaeMbIx Ha

JIOTMKE€ U NOKa3bIBAKOTCA HEKOTOPLIE PE3YIbTATDI. ITO noHaTHE AONYCKACT BBCACHUE MHOI‘OMCpHOﬁ
CTATUCTUKH HaGJ’IIOIIaCMl:IX B TCOPUH HECOBMCCTHBIX HaGIHOIlaCMle.
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