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ON THE CONTINUITY FOR CONNECTED
' FUNCTIONS

MARTA CZAJKA-ZGIRSKA and JAN S. LIPINSKI

The presented paper deals with properties of sets of points of continuity of real
functions with a connected graph. These functions will be referred to as connected
functions. Garret, Nelms and Kellum [1] defined the connectivity points of
a real function and demonstrated that a function f: R — R is connected if and only
if each point of the line R is a point of connectedness. Bruckner and Ceder [2]
defined the Darboux points of a real function and noted that it follows from
a theorem of Csdszar [4] that the function f: R— R possesses the Darboux
property if and only if each point of R is a Darboux point. Ceder [3] has
demonstrated, among others, that for any set C of G5 type on R there exists a real
function possessing the Darboux property and such that C is the set of continuity
points of the function.

The aim of this paper is to deliver the proof of that theorem concerning the set of
continuity points of a connected function which is the analogon of Ceder’s theorem
on Darboux functions.

Notations. If M is a subset of the plane R?, then the projection of M onto the
Ox-axis will be denoted by (M):. A line perpendicular to the Ox-axis passing
through the point (x, 0) will be denoted by l. The set of continuity points of
a function f will be denoted by C(f) and the graph of f by G.

Definition 1. Let M = R>. The point (xo, yo) is said to be the limit point of M
from the right if for any 6 >0 the set { x, y): xo<x<x0+90, yo—6<y<yo+
+6}nM+#@. Analogously, if for any d>0 the set {(x,y): xo— 8 <x<xo,
yo— 0 <y<yo+ d}nM#@, then (xo, yo) is said to be the limit point of M from the
left. .

Definition 2 (Garrett, Nelms, Kellum). The point zeR is said to be
a left-hand (right-hand) connectedness point of a function f if the fact that a and b
are two left-hand (right-hand) limit values of f in the point z and that Mc R? is
a continuum such that (M), is a non-degenerated interval with the right-hand
(left-hand) end point in z and Mnl. = {(z, y): a<y < b} implies that MN G, # @.

Definition 3 (Garrett, Nelms, Kellum). The function f will be referred to as
connected in the point z belonging to its domain if f(z) is the right-hand and
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left-hand limit value of f in z and if z is a left-hand and right-hand connectedness
point of f.

Theorem. If Cis a set of the G, type on the line R, then there exists a connected
function f such that C = C(f).

Proof. If C=R, we take f(x)=const. Then, of course, C(f)= R = C. Assume
now that R — C#4.

Denote the interior of R — C by the letter B. Then CUB is a dense Gs-set and
A =R —(CuB) is a F,-set of the first category. Let F, be a sequence of closed,

pairwise disjoint sets such that A = JF..
Each F, is nowhere dense. For each F, there exists an open set G. such that
G.NF.=9, F, < G., F.cR —(F.UG,), R —(F.UG.,) is a union of closed non-

degenerated intervals and each component of G. is bounded. Let Ga.

= U (a!™, b™) where the open intervals (a!”, b{™) are pairwise disjoint. Take
N

T.(x)=0 for x e R — Ga, T.(x)=2"" for x =27"(a{” + b{) and 1.(x) linear on the
intervals (a{™,27"'(a{” + b{)) and (27'(a{” + b{™), b{"). Each function 1. belongs
to the Baire class 1, possesses the Darboux property and C(7.)=R —F,. As
0<1t.<27", the series 7(x)= 2, 7.(x) is uniformely convergent and the function
n=1
t(x) is also a Darboux function of the Baire class 1. As the sets F, are pairwise
disjoint, C(t)=()C(1t.)=R - A =CuUB.
n=1

Let dist (x, C) denote the distance of x from C. If C =0, we take dist (x, C)=1.
Let

P={(x,y): xeB, t(x)<y<t(x)+dist (x, C)}.

We form a transfinite sequence I, E<$, of all continua of R? such that
I':nP# 0. The projection of the set [:n P onto the Ox-axis will be denoted by IT:.
If Int I'T: # @, then we select by means of a transfinite induction the denumerable set

of points St = [x{®, x$¥, ...} dense in Int I in such a manner that Sgn(U S,,> =¢.
. n<g

We define now a function f(x) such that for x € S the condition (x, f(x)e I.NP
holds, whereas for x ¢ | Sz we take f(x)=t(x). We shall show that a function
E<Q

defined in this way satisfies the conditions of the theorem.

Let xe B and let M be the continuum occurring in the definition of the
right-hand connectedness point. Then there exists an § < Q such that M =T%. In
each interval (x, x + &) there exists a point x{¥ € St. According to the definition of
the function (/ﬁxfg’f, f(x®))eTI: and therefore x is a right-hand connectedness
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point.* The point (x, f(x)) belongs to the closure of P. The graph of f is dense in P.
Point x is an interior point of B. It follows therefrom that f(x) is the right-hand and
left-hand limit value of f in x.

Let xeC—C. If x is a right-hand continuity point of f, then it is also

a right-hand connectedness point of f, or otherwise ‘ll—m+ f(t) > lim f(t). As x ¢ B,
dist (x, C)=0 and ‘Tiarf(t) = E 7(t) and lim f(¢) = lim ©(t). Let M be the

continuum occurring in the definition of the right-hand connectedness point of f.
The functions 7(x) and 7(x) + dist (x, C) belong to the Baire class 1 and possess
the Darboux proprety. According to Kuratowskiand Sierpinski [5], the graphs
of both these functions are connected sets. Therefore by the theorem of Garrett,
Nelms and Kellum [1] each point of its domain is a connectedness point of both
these functions. For any & >0 there exist point @ such that @ € (x, x + §) and
(O, 1(O@)) e M. If even one of these points, say @' belongs to C, then f(©')=
7(@') and (@', f(O@')) e M. Otherwise no point © belongs to C and hence all @
belong to B.. Then all points @" such that ®"e(x,x+d) and (O", T(O")
+ dist (©", C)) e M must also belong to B. We shall show that in this case

(i) MAP+@.

For any te Cn(x, x + 8) let P.=(t, f(t)). For any te Cn(x, x + &) there exists
& >0 such that MNK(P,, &) =0, where K(P, &) denotes a sphere with its center in

P. and the radius ¢. Let Q = [(x,x+8)XR] n [PuUCK(P., &)]. The set Q is

open and each point of Q can be connected by means of a segment contained in Q
with points belonging to the graph of the function t(t)+27' dist (¢, C),
(x<t<x+ ), which has a connected graph. Therefore Q is connected.

Assume that (i) does not hold. Then there existsa ', 0< ' <6 such that for any
x' € (x, x + 8) there exist points (x', y1) € M and (x”, y.) € M such that y, < f(x')<
y2 and y;<y..

In fact, suppose on the contrary that there exists a sequence {x.} tending from_
the right-hand side to x such that for any n

{either Mn{(xn, y): y>f(xa)=0

(ii) or MnA{(xs, y): y<f(x.)=0

Choose x.,<x + &. Assume that
(iii) Mn{(xn, y): y>f(xm)} =90.

*) In a analogous way we can prove that x is a left-hand connectedness point.

343



There exists a point (£, ) € M such that x <& < x., and 1> f(). If this were not
the case, then in girdle {(f,y): x<t<x.) the entire continuum M would be
situated below Q and hence not above the graph of 7. Assume that it is not situated

above. Then there exists a sequence of points t. € (x, Xx,) such that 'l'irg T(tn) =

1%
= lim_(¢). For the points (&=, u.) € M the condption u. < 7(t.) holds. Select from ¢,

1—x+

a subsequence t, such that u, is convergent and let u =1lim w,,. Then (x, u)e M,

butu< 'linl (t) = 'l_i.nl f(t). This contradicts the choice of the continuum M. From

assumption (iii) there follows therefore the existence of (&, n). Choose a point x,,
such that x <x, <§&. If Mn{(xn, ¥):y <f(xn)} =9, then the set

{ Xy ¥) 1y > f(Xn0) YO { (Xis y):y<f(xm)}UP

divides the continuum M into two non-empty parts, no one of these parts has
a limit point belonging to the other part, which contradicts the definition of the
continuum. Hence from the alternative (ii) the condition MN{(x., y) : y>
f(xx)} =@ remains. However, in this case by (iii) the set

{(Xno Y)Y > f(Xn) } U{ (X, ¥) 1y > f(xn)}UP

divides M into two parts, as above, which is impossible. Thus we come to the
conclusion that the number &’ exists.

For any te(x, x+ ') there exist points (¢, w)e M and (¢, v)e M such that
w =<1(¢), 7(¢t) + dist (¢, C)<wv. Reasoning as in the case of point (x, u) we come to
the conclusion that there exist the points (x, w')e M and (x, v’')e M such that

w'<lim 7(f) = lim f(¢) and v'?ﬁ (t) = li_nlf(t), which contradicts the

choice of M. therefore (i) holds.

Hence there exists an & such that M = I';. If the measure of (I':).N(x, x + 8) is
positive, then there exists a point x{* € (I';). and then (x{*, f(x®) € I: = M. If the
measure of (I:)-Nn(x, x +98) is equal to zero, then the set H = InPn{(t, y)
:x<t<x+9d} is asum of segments I parallel to the Oy-axis and such that at least
one end point of these segments belongs to G or G, where t’ = 1(t) + dist (¢, C).
There exists among them a segment I such that I = {(c,y) : 1(c)<y<t(c)
+ dist (c, C)}, xo<c<xo+ 6, c € B. Indeed, should I not exist, then H= H\UH,
where HinH, =@, H, is the sum of intervals I possessing common points only with
the graph of the function t(x) + dist (x, C) and H; only with the graph of 7(x).

The set Q* = Q — H is connected. By the definition of H we have Q*nI: =0.
This, however, leads in a similar manner as the foregoing case with the assumption
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that PAM =@ to a contradition with the assumed property of M. Thus the
existence of I has been proved.

Clearly (c, f(c))e I =« M. The point x is therefore a right-hand connectedness
point of f.*) The number f(x) = t(x) is the left-hand and the right-hand limit value
of 7. In fact, for any sequence {x.}, x.— x € C the condition 7(x,) < f(x.) < 1(x.)

+ dist (x., C) is satisfied. As lim 7(x) = v(x) = lim [t(x.) + dist (xi, 0,

lim f(x.) = T(x) = f(x). Point x € C — C is therefore also a connectedness point of

f, which completes the proof.
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O HENPEPBIBHOCTHU CBSI3HBIX ®YHKIIUN
M. Yaiika-3rupcka,d.C. JIunuHckn
Pe3iome
O x. Cugep [3] nokazan, 4TO B NPOCTPAHCTBE BEILECTBEHHBIX YHCEN [JI BCAKOTrO MHOXecTBa E
tuna G, cywectByeT ¢ynkuua f: R— R o6napaiomas cBoiictBoM [ap6y, HenmpepbiBHas BO BCeEX

TOYKax MHOXeCTBa E W pa3pbiBHas B OCTAIbHBIX To4YKaxX. [Tob3ysch rUMOTE30# KOHTHHYyMa aBTOPBI
3TOil CTaTbH AOKa3bIBAIOT, YTO PyHKUMA f MOXeT GbITb BbIOpaHa Tak, YTO ee rpacuk CBA3EH.

*) In a similar way we can prove that x is a left-hand connectedness point of f.
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