Mathematica Slovaca

Miloslav Duchon
Remark on analytic functions in ordered spaces

Mathematica Slovaca, Vol. 31 (1981), No. 2, 133--139

Persistent URL: http://dml.cz/dmlcz/136263

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136263
http://project.dml.cz

Math. Slovaca 31, 1981, No. 2, 133—139

REMARK ON ANALYTIC FUNCTIONS
IN ORDERED SPACES

MILOSLAV DUCHON

Many concepts and propositions known for analytic (or holomorphic) functions
have been generalized for functions with values in a locally convex topological
vector space, cf. e.g. [1; 2]. Further properties can be obtained if the range space of
an analytic function has an order structure, cf. [8; 7, App. 2]. In this remark we
give a certain generalization to ordered spaces of the classical Vivanti—Pringsheim
theorem which asserts that a power series with nonnegative coefficients and radius
of convergence equal to a positive number d defines an analytic function that has
singularity at the point d, cf. also [8 ; 7, App. 2]. This generalization permits one to
consider, in particular, power series with coefficients from the weakly normal
positive cone of the ordered separated locally convex space, cf. [8; 7, App. 2] or
from the positive cone of the strong dual of the ordered barrelled locally convex
space with a generating positive cone.

1. Definition of a norming triple. Let E be a vector space over K (K being the set
of all real or complex numbers) and p a seminorm on it. Assume that there is given
a complete seminormed space (E,, || :||,) and a bilinear form (,), from the space
E X E, into K. We shall say that the triple (E,, ||* ||, {,),) is a norming triple for
the seminorm p if

p(x)=sup {|[{x,y),|: yeE, llyl, =1}

for all x in E, cf. [1].
Example 1. Let p be a seminorm on the space E. Let E, be the family of all
linear forms y on the space E such that

r(y)=sup {[{x, y)|: x€E, p(x)=1}

is finite number. Then y— r(y) is a norm on E, and E, is a Banach space with the
norm y—r(y)=|lyll, [4, 1.10.6, 1.10.10].
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Define the bilinear form by means

(x,y),=(x,y) forall xeE,ye€E,.

From the Hahn-Banach theorem it follows that the triple (E,, ||*|l,, (,),) is
norming for the seminorm p.

Example 2. Let E be a sequentially complete locally convex space. Consider
the strong dual F of E, F=(E')s. Denote by B(E) the family of all closed
absolutely convex bounded subsets in E. If we put, for each B in 8(E) and x’ in
E’,

ps(x')=sup {|(x, x")|: xe B},

then the set {ps: B € B(E)} determines the strong topology S(E’, E) on E’, cf. [6,
I1L.2].

Every B e B(E) defines a seminorm pp on the closed vector subspace Eg
spanned by B. With pp as a seminorm Ejp is a complete seminormed space.
Moreover B={x: ps(x)=1}. Thus we have

pa(x")=sup {|(x, x'}|: x € Ep, pa(x)=1}

for all x' in E’.
Now the triple (Es, || ||s, {,)s), where ||x||s = ps(x), (x, x')s = (x, x'), x € Es,
is a norming triple for the seminorm pjg, for every B € B(E).

2. Vector-valued analytic functions. Let E be a sequentially complete separated
locally convex topological vector space (biefly — semi-complete separated convex
space).over C (complex numbers). E’ will denote the topological dual of E. Recall
some concepts and facts concerning analytic functions with values in E cf. [1; 2].

Let D be an open subset of C. A function f: D—E is called analytic (or
holomorphic) in D if for every point d in D there are elements a, in E, k=0, 1,
2, ... and a positive number (radius) r such that

f(Z)=§0ak(z—d)" it |o—d|<r.

The function f: D — E is analytic if and only if the function f has at every point d in
D the derivatives f*(d), k=1, 2, ... and

@) =§:‘,ki fO(d)(z - d)*, |z—d|<e=dist.(d, 3D).

If a series > az”, ax€E, k=0, 1, 2, ... converges in the disk |z|<g, then it

k=0
converges uniformly on every disk |z|<r, where 0<r<p. The sum z—f(z)=
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= a.z* is analytic for |z| <. The function f: D— E is analytic if and only if for
k=0

every x' € E’ the function z— (f(z), x') is analytic.

Let f: D — E be an analytic function. A frontier point d of D is called a regular
point for f if there is an open neighbourhood V of d and an analytic function on
DuYV into E which coincides with f in D. A frontier point of D is said to be
singular for f (or is singularity of f) if it is not regular.

If p is a seminorm on a vector space E and (E,, ||-||,, {,),) is a norming triple for
the seminorm p, then it is easy to prove the inquality

[{x,y)s|=p()llyll, for xeE,yeE,.

It follows that the linear form x — (x, y),, y € E,, is continuous and therefore if f:
D — E, E being a semi-complete convex space, is an analytic function, then the
scalar function z— (f(z), y),, y € E,, is analytic in the classical sense.

Let D and D, be open connected subsets of C such that D = D,. We shall
essentially make use of the following result, cf. [1].

Theorem. Let E be a semi-complete separated convex space over C with the
topology generated by a family P={p} of seminorms. To every seminorm p let
there correspond a norming triple (E,, ||'|l,, (,),). Let f: D— E be an analytic
function and assume that for every seminorm p and every y in E, the analytic
function z— (f(z), y ), has an extension to an analytic function on D,. Then there
exists an analytic function f,: D,— E such that f,(z)=f(z) for all z in D.

3. Ordered vector spaces [7, Ch. V.; 8]. Let E be a separated topological vector
space over R (real numbers). Recall that E is said to be ordered (i.e. partially
ordered) if a convex cone E* of vertex 0 is specified in E which is closed and
proper (i.e. E*n(—E")={0}). The order relation x<y in E is then defined to
mean y—x e E* and E" is referred to as the positive cone of E.

Let (E, F) be a dual pair over R. If E* is a cone in E, the dual cone F* in F is the
set of all y of F such that xe E* implies (x, y)=0. A cone E* in E is called
generating in E if E=E*— E". If E is a vector space over C (complex numbers),
then E is said to be ordered if its underlying real space E, is ordered [cf. 7, Ch. V.].
If (E, F) is a dual pair denote by F, the subset of F consisting of all y in F
corresponding to the real linear forms on E. Let F* be the set of all y in F, such
that x e E* implies (x, y)=0.

We shall need the following resulit.

Lemma. Let E be an ordered semi-complete separated convex space over K with
the topology generated by a family P = {p} of seminorms and with a positive cone
E*. To every seminorm p let there correspond a norming triple (E,, ||‘|l,, {,)»)
with a positive cone E,. Suppose that for every p there exists q in P such that
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E,cE;—E;. Letay;, i,j=1,2, ... be elements of E* such that for every p in
P and every y in E, there exists a finite limit

2 E(au, Y)p - hm th E(au’ Y)p

=1 j=1

Then for every p in P and every y in E, the equality holds:

S S v =3, 3 a v

Proof. For every p in P and every u in E, we have

<a;,,u),,.—>=0, i,j=1,2,...
Hence we have

S (ay, u)y = zz<a.,,u>,,

1j=1

'M8

Since E,oc E; —E, for some g in P, we have for every y in E,, the equality
y=u—v, where u, v belong to E, and hence

S (@)= 3, 3 (@ ),

i=1i=1

™M s

i

It
~—
~

It follows that

S 5@ 1) =3 S, v,

i=1 j= j=11i=1

for all y in E, because every linear form on E can be written in the form y = u +iv,
where u and v are uniquely determined real linear forms on E [7, 1.7.1].

4. A generalization of the Vivanti—Pringsheim theorem. The generalization that
will be established contains as a particular case the generalization given in [8; 7,
App. 2] and gives a new proof of this result.

Theorem. Let E be an ordered semi-complete separated convex space over
K with the topology generated by a family P={p} of seminorms and with
a positive cone E”. To every seminorm p let there correspond a norming triple (E,,
Il-1l,, (,)») with a positive cone E;. Suppose that for every p in P there exists q in
Psuch that E,cc E; — E;. Let r >0 be the radius of convergence of a power series

>a.z", a.€E*, n=0,1,2,...
n=0
Then the point z = r is singular for the function f defined by

fz)= ZoanZ", lz]<r.

Proof. One may suppose that r is equal to 1. If z =1 were a regular point for f,
there would exist an open disk D with the center in 1 and an analytic function g:
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UuD — E which coincides with f in U= {z: |z| <1}. Since g is analytic in D there
are points x of D with 0<x<1 and z;=1+d of D, d>0, such that

0= 3, 2 4°0)e —x)"

Since

9Px)=*@x), k=0,1,2,..,
we have
M 0= 3, 15 1) -2

But we have

f""(x) 2( ) ax"*, k=0,1,2, ...

n=k

Hence the series (1) has the form

g9(z)= Z E( )aux""‘(z—x)", z=1+d.

k=0 n=k

By the lemma for every p of P and every y of E, we have

(9(2),y)p= g ;:‘,k (Z) (an, y)ox" " (z—x)=

=i i(an,y)p( )(z x)x" =

n=0 k=0

= 3w, Y0l = D)+ 31 = 3, (a0, 1) 2"

In this way for every p of P and every. y of E, the series >’ (aa, y),z" is convergent
n=0

for z=1+d and hence for all z, |z|=1+d. It follows that the analytic function
z—(f(2), y)», z in U, has an extension to an analytic function on the disk U, with
the centre O of the radius greater than 1 for every p of P and every y of E,. But
then there would exist an analytic function f; on U, into E such that f,(z) = f(z) for
all z of U according to Theorem in Section 2. This contradicts, of course, the
assumption that the radius of convergence of the series >, a.z" is equal fo 1, and the

n=0

theorem is proved.

Corollary 1. Let E be an ordered semi-complete separated convex space over
K with a positive cone E* and a dual cone E'* such that Ec=E'* —E'*. Letr <«
be the radius of convergence of a power series

> a.z", a,€eE*, n=0,1,2, ..,

n=0
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of one complex variable. Then the point z =r is singular for f;

f2)= ianzﬂ |z| <r.

The proof of Corollary 1 follows from Example 1. If Ef=E'* — E'*, the cone E*
is said to be weakly normal [7, V.3.3]. We have obtained another proof of the result
from [8, Th. 1]. ’

Corollary 2. Let E be an ordered Banach space with a positive normal cone E™.
If r <o is the radius of convergence of a power series

>az", a.€ET, n=0,1,2,...,
n=0
then the point z = r is singular for f,

fx)= éloanzﬂ lz|<r.

This corollary is a particular case of the preceding one since for the normed
spaces normality of the cone E” is equivalent to E¢=E'"—E'", i.e. to the weak
normality of E* [7, V.3.3].

Corollary 3. Let F be an ordered semi-complete barrelled convex space over
K with the generating positive cone F* and let E be its dual endowed with the
strong topology, E =(F')s. Let r<o be the radius of convergence of a power
series

Y az", a€E*, n=0,1,2,..
n=0
Then the point z = r is singular for f,

f2)= goanZ", lz|<r.

The proof of this corollary follows from Example 2. Recall that since F is
barrelled, the space E is semi-complete (even quasi-complete) [5, p. 218]. F* is
generating, for example, if the topology of F is decomposable in the sense [3,
p. 61]. Note that in this corollary we may take for F a quasi-complete bornological
space since such a space is barrelled [7, 11.8.4].

Corollary 4. Let F be an ordered semi-complete bornological convex space with
a B-strict positive cone F*. Let E be its strong dual. Then the same assertion as in
Corollary 3 is true.

The proof of this corollary follows from Example 2. The space E is complete in
the strong topology [S, p. 223]. Since the cone F* is B-strict, the topology of F is
‘decomposable, hence F* is generating [3, p. 67].
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! Obrancov mieru 49
886 25 Bratislava

3AMEYAHHE Ob AHAJIMTNYECKHUX ®YHKIHAX
B YNIOPAOOYEHHBIX IMPOCTPAHCTBAX

Munocnas [IyxoHb
Pesome

B pa6ore n1ano 06061enre Ha hYHKIMH CO 3HAYEHMSIMH H3 YTIOPSOYEHHOTrO OTAEAMMOrO JIOKAJILHO
BbINYKJIONO BEKTOPHOIO NMPOCTPAaHCTBA KJIACCHYECKO# TeopeMbl BuBanTu—IIpuHrcxeitma, no KOTopoi
CTENEHHOM pAfl C HEOTPMUATENbHBIMY KOI(DULMEHTAMN H PAiMYCOM CXOAMMOCTH OIMH OmpefenseT
AHAIUTHYECKYIO DYHKIMIO, U1 KOTOPOIi x = 1 sBisieTcss 0c060# TOUKOM. ITO 060611eHHE OXBATHIBAET
KakK CTeneHHble psAabl ¢ Ko3dduimenTamMm U3 c1aGo HOPMAIBLHOTO MOJIOXHUTENBHOTO KOHYCa, TaK H U3
MOJIOXKHTENBHOTO KOHYCA CHJIBHOTO COMPSAXXEHHOro GO0YE€YHOro NPOCTPAHCTBA C MOPOXAAIOLIMM
KOHYCOM.

139



		webmaster@dml.cz
	2012-07-31T23:06:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




