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COVERING AND PACKING IN GRAPHS III: 
CYCLIC AND ACYCLIC INVARIANTS 

JIN AKIYAMA1—GEOFFREY EXOO—FRANK HARARY 

Dedicated to Crispin St. John Alvah Nash-Williams 

Abstract 

It is possible to define many variations of packing and covering invariants for 
graphs which involve paths and cycles. These can be given terminology which is 
sufficiently intuitive that one can remember the definitions, e.g., arboricity, linear 
arboricity, point arboricity, point linear arboricity, anarboricity, path number, 
unpath number, point anarboricity, and cyclicity. Most of these concepts are 
fundamental but it is not easy to determine the value of these invariants for general 
graphs. We investigate these concepts and relations among them for specific 
families of graphs. In particular, we determine them for complete graphs, complete 
bipartite graphs, and their line graphs. 

1. Cyclicity 

The cyclicity of a block G, o (G), as introduced in [3] is the minimum number of 
cycles, not necessarily line-disjoint, needed to cover all the lines of G. Let [x] be 
the greatest integer n^x, and {x} = — {— x]. All other terminology and notation 
used here can be found in [2]. 

Theorem 1. For the complete graph Kp with p^3, the cyclicity is given by: 
o(Kp) = [p/2]. 

Proof. Since the degree of each point in a cycle is 2 and since Kp is regular of 
degree p — 1, we need at least {(p — l)/2} cycles to cover G. When p is odd, the 
graph Kp is the sum of (p - l) /2 spanning cycles [2, p. 89] which meets the lower 
bound. When p is even, the line set of Kp can be covered by p/2 spanning paths as 
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determined in [4, Theorem 4] or in [7]. We thus obtain p/2 cycles whose union is 
G, by adding a line joining two endpoints of each spanning path. • 

Theorem 2. For the complete bipartite graph Kw,n with m ^ n > 1, the cyclicity 
is given by: 

n(K ì = í { ш / 2 } П 

V m-"<' \{m(n + l)/2n} n 

n even, 
odd. 

S k e t c h of proof. Let the point set of Kw,n be W={wx, ..., wm} and U = 
{u\, ..., un}. If n is even, o (Km, n)^{mn/2n} = {m/2} holds, since the length of 
any cycle in X w, n is at most 2n. 

We now construct {m/2} cycles whose union is Kw,n. 
Case 1. m even, n even. As illustrated in Figure 1, define m/2 cycles C , i = 1, 

..., m/2, by: 

Ci = {w2i-\U\W2iU2 ... W2i.2+iUj ... W2i+n-2UnW2i-\), 

where j =1, ..., n and subscripts are taken modulo m. 

Figure 1. Cycles in a decomposition of K6,4. 

Then we see that the union of m/2 line-disjoint cycles O of length 2n is Km,n. 
Case 2. m odd, n even. We add a new point wm+l to W so that the cycle 

construction in Case 1 can be applied. We now alter these (m + l)/2 cycles O 
whose union is Kw+l,n to construct cycles C\ such that none of them cover the lines 
incident to wm+x. For each O containing wm+l, there is a point w, not covered by O 
since m >n. By replacing wm+x with wf in C, we have a new cycle C\, that is, 

C\ = ... ukWjUk+\ ... if 0 = ... ukwm+\Uk+\ .... 

When this procedure is repeated for every cycle containing wm+l, this point 
becomes isolated and then we may omit it without destroying cycles. 

It remains to handle the proof when n is odd. In this case, at least one line 
incident to each point w, must be covered by two distinct cycles, because deg w, is 
odd. Hence we may conclude that o (Km,n) ^ {m(n + l)/2n}, since the length of 
a longest cycle in Kw,n is 2n. 

The brutal construction which establishes equality is omitted. • 
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2. Linear arboricity 

In a linear forest, each component is a path. The linear arboricity E(G) of 
a graph G as defined in [3] is the minimum number of linear forests whose union is 
G. Note that the Greek letter, capital xi, looks like three paths! 

Theorem 3. If T is a tree with maximum degree AT, then 

(\) S(T) = {AT/2}. 

Proof. The lower bound S(T)^ {AT/2} is obvious. Since tree T has maximum 
degree AT, its line chromatic number x'(T) is equal to AT. Each subgraph induced 
by subsets of lines with two colors is a linear forest. Thus we obtain the upper 
bound S(T) g {x'(T)/2} = {AT/2}. • 

The linear arboricity of the complete graph coincides with its path number which 
was determined by S t an ton , Cowan and J a m e s [7]. We also calculate this for 
complete bipartite graphs. 

Theorem 4. For the complete graph Kp, S(KP) = {p/2}. 
The notation d(m, n) is the conventional Kronecker delta. 

Theorem 5. For the complete bipartite graph Km,n with m^n, the linear 
arboricity is given by: 

(2) S(Km,n) = {(m + d(m, n))/2}. 

Proof. For a star Km, i, it is obvious that S(Km, i) = {m/2}. Before handling the 
general complete bipartite graph Km, „, let us determine S(Km, m) first. We write 
V(Km,m) = UKJW, where U= {ux, ..., um} and W= {wu ..., wm}. As m2 = 
q (Km, m) and the number of lines in a spanning tree of Km, m is 2m — 1, it follows at 
once that 

(3) S(Km,m) i= {m2/(2m - 1)} = {(m + l ) / 2} . 

We will now show the converse inequality. 

Case I. m even. 
The line-set of Km, m can be partitioned into m/2 line-disjoint spanning cycles Q, 

i = \, ..., m/2, which can be written as: 

Ci = (ulW2i+lU2W2i+2 ... M/Wa+z ... umw2i+mux), j=\, ... m, 

where subscripts are taken modulo m. 
Let [u, v] denote the line joining u and v. As illustrated in Figure 2, define m/2 

paths Pi, i = \, ..., m/2, and one linear forest F by: 

Pi = Ci-[um/2-i+u wm/2+i], i = \, ..., m/2, 
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F = - U [ M m / 2 - i - M , Wm/2 + i\. 
i = l 

Thus we have S(K m , m ) = {(m + l)/2}. 

Case 2. m odd. 
The line-set of Km,m can be partitioned into (m - l)/2 cycles G and one linear 

forest F as follows: For each / = 1, ..., (m - l)/2, 

Ci = (u]w2i+iU2w2i+2 . . . UjW2i+i . . . umW2i+mux), / = 1, . . . , m , 

m 

where subscripts are taken modulo m, and F = U[wi> w,]. Of course F is just 
i = i 

a 1-factor of Km,m. 

U 1 u 2 u 3 u 4 u 5 u 6 

У"Z1 

Figure 2. Decomposition of K f tA into paths. 

Now we construct (m - l)/2 paths P£, i = 1, ..., (m - l) /2, and one linear forest 
Fo, whose union is K m m as illustrated in Figure 3 : 

and 

Pi = Ci-[uim-lV2-n-\, w(fn-,)/2+il, i = l , -.., ( m - l ) / 2 , 

( m - l ) / 2 
F( )= U [И(m-l)/2-i+l, W ( m _i ) / 2 + i]uF. 

i = l 
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U1 U2 U3 Uд U 

w 2 w 3 w4 w 5 

Figure 3. Decomposition of K 5 5 into linear forests. 



Thus we have 3(Kmm)= {(m + l ) /2}. Now we will use this result for Km,m to 
derive the more general equation (2). 

By the hypothesis that m^n, we have the inequalities: 

(4) {m/2} = 3(Km,l)^3(Km,n)^3(Kmm) = {(m + l)/2}. 

Here again we divide the proof into two cases, depending on the parity of m. If m 
is odd, then 3(Km,m) = {(m + l)/2} follows from (4). 

If m is even, the line set of Km,m can be partitioned into the m/2 line-disjoint 
cycles d of Case 1 above. To complete the proof, we shall construct m/2 paths P,, 
i = 1, ..., m/2, whose union is Km.m-\. For each / = 1, ..., m/2, let 

P'i = Ci~[Um ?i + uWl]-[um 2i + 2 , H > i ] . 

Therefore we have 3(Km,m-x)^{m/2}. This equality together with (4) implies for 
all n<m: 

{m/2}^3(Km^)^3(Km,n)^3(Km,m^)^{m/2}. 

That is, 3(Km,n) = {m/2} if m is even and n<m. 
Combining the odd and even cases, we obtain precisely the equation (2). • 
Having determined the linear arboricity of a complete graph trivially, of a tree 

easily, and of a complete bigraph more tediously, we now turn our attention to 
cubic graphs G and find that a rather pictorial proof serves to show that the linear 
arboricity of G is 2. 

Given two families of graphs, N and H, we say that N is a set of necessary 
subgraphs for H if every graph in H has a subgraph in N. For example, the family of 
all subdivisions of K3,3 and K5 is a set of necessary subgraphs for the nonplanar 
graphs. In the study of the linear arboricity of the family C of cubic graphs, we 
found it necessary to consider a family of necessary subgraphs of three subfamilies 
of C, namely, C-, containing cubic graphs of girth 3, C4 for girth 4 and C = 
C - C, - C4 of girth at least 5. 

If FT is a subgraph of G, then the points of attachment of H in G are those points 
of H which are adjacent to points not in H. A shrinking of a graph G at a subgraph 
H is obtained on replacing H by a smaller graph H' such that H' and H have 
precisely the same points of attachment in G, with the proviso that for each point of 
attachment v, deg(v,H) = deg (v, H'). For example, in Figure 4 we show 
a graph G' obtained by shrinking G at H, replacing it by H'. In Theorem 6 and the 
preparatory lemmas we can assume G is connected with no loss in generality. 

Lemma 6a. A necessary subgraph for the family C of cubic graphs having girth 
g=5 is the tree T of Figure 8a. 

Proof. Let G e C. Since the girth of G is at least 5, we can find a smallest cycle 
of length n ^ 5 in G. Let vx to v5 be consecutive points on this cycle. Then as G is 
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cubic, v2, v3 and v4 are adjacent to points u2, u3 and u4 not on this cycle, for 
otherwise a smaller cycle would result. Since g = 5 the ut are distinct and so T is 
a subgraph of G with these 8 points as its point set. D 

Lemma 6b. The four graphs of Figure 7a are a family of necessary subgraphs for 
C4, the family of cubic graphs with girth g = 4 . 

Figure 4. G' is a shrinking of G at II. 

Proof. Let vu v2, v3, v4 be consecutive points of a 4-cycle in G. Then each vt is 
adjacent to exactly one point in G, not on this 4-cycle. Let u{ be the point adjacent 
to Vi, for i = 1 to 4. Then Ui±Ui+x, for / = 1, 2, 3, 4, where addition of subscripts, is 
modulo 4, since g > 3 . So the possibilities are: (1) the ut are all distinct, (2) w, = u3 

and u2, u4 are distinct nonadjacent points, (3) ux = w3 and u2 = w4, and (4) ux = u3 

and w2, u4 are adjacent. 

4 3,3 

Figure 5. The cubic graphs with p ^ 6, colored to exhibit the linear arboricity. 

These four possibilities determine the graphs Iu I2,13 and I4 of Figure 7a, as the 
labeling of the points vt in the figure shows. D 

Lemma 6c. The three graphs of Figure 6a are a family of necessary subgraphs 
for C3, the family of cubic graphs with girth g = 3 and p=6. 

Proof. Let vu v2 and v3J>e the points of a 3-cycle in G. Each vt is adjacent to 
a point Ui not on the cycle. There are three possibilities for the distinctness of the 
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points Uii. If ux = u2 = u3, then G has K4 as a component, contrary to the convention 
that G is connected. If uu u2 and u3 are distinct, then H^ (see Figure 6a) must be 
a subgraph of G. The only remaining possibility is that ux±u2 = u3. If this holds 
then there is a point w, different from the vi9 adjacent to u2. If w=j-= ux then we must 
find H2 in G ; but if w = ux we can find H3, as can be verified with the help of the 
labeled points of Figure 6a. • 

(Q) 

• " ^ N OR 

A 

(c) ^ * ^ -H®-** 0R 

Figure 6. The necessary subgraphs for p ^ 8 and g = 3. 

Theorem 6. Every cubic graph has linear arboricity 2. 
Proof. Let g be the girth of G. We divide the proof into three cases: Case 3, 

g = 3 ; Case 4, g = 4 ; and Case 5, g=S. We use induction on even p , because all 
cubic graphs have even order. The induction begins easily for p = 4 and p = 6; see 
Figure 5 in which lines with one slash are red while those with two are green, noting 
that the lines of each color form a linear forest. 

For each of the cases we proceed along the same lines. We have already 
identified a set of necessary subgraphs for each of Cases 3, 4 and 5. Figure 6a 
shows N3 consisting of the three subgraphs Hu H2, H3 for Case 3, g = 3, Figure 7a 
gives Iu I2 and I3 for Case 4 ; Figure 8a has the necessary subtree T for Case 5. 

Then we show in Figures 6b, 7b and 8b how to shrink G to a smaller cubic graph 
G by replacing the necessary subgraphs with smaller subgraphs. 

We take as the hypothesis of complete induction that any cubic graph with at 
most p — 2 points has linear arboricity 2. So in each of the three cases (_J can be line 
colored to exhibit S ( ( J ) = 2 . We show in Figures 6b, 7b, 8b all the essentially 
different ways in which the smaller subgraphs can be colored. Of course it is 
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sufficient to show the coloring of the lines of the smaller subgraph incident with 
points of attachment. 

Finally we indicate in Figures 6c, 7c, 8c how to color the original subgraph, 
consistent with the coloring of the rest of G given by the coloring of G .D 

- 1 1. 

(b) 

(c) 
tґ 

џ*r 

" У 

•xjx" 
vj^ 

Figure 7. The necessary subgraphs for p & 8 and g = 4. 

T 

(a) TTГ 

(ь) \ rx \ f\ 

( c ) •-+• m i t . • • i r н m H » II • 

Figure 8. The necessary subgraph in a cubic graph with p ^ 8 and g =t\5. 
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3. Path numbers 

Related to the linear arboricity, there are two covering invariants involving 
paths: the path number and the overlapping path number. We shall compare these 
three acyclic invariants for a tree, a complete bipartite graph and a cubic graph. 

Nash-Wil iams [6] derives a criterion for a graph G to have a partition of E(G) 
into a prescribed class of open trails. In this sense, he anticipated the concept of the 
path number of a graph. 

The path number of G, JI(G), is the smallest number of line-disjoint paths which 
cover all the lines of G . Similarly, the overlapping path number of G, Jt(G), is the 
minimum number of paths, not necessarily line-disjoint (so that overlapping is 
admitted), needed to cover the lines. These two invariants were introduced in [3] 
and studied by S t an ton , Cowan, J a m e s [7], [8] and Hara ry , Schwenk [4]. 

We require some results due to Lovasz [5]. 

Theorem L. Every graph G of order p has a partition ofE(G) into [p/2] paths 
and cycles. 

Corollary L. If every point of G has odd degree, then n(G) = p/2. 
It follows at once that the path number of a tree T with p0 points of odd degree is 

given by jt(T) = p0/2. This little result was independently discovered later in [4] 
and also by others. 

We will also need two results from [4] which we now call Theorems 5HS and 
7HS. 

Theorem 5HS. If m^n, the path number of Kmn is given by: 

( Am + n)/2, mn odd, 
m,n' {mn/(2n — 6(m, n))},mn even. 

Theorem 7HS. The overlapping path number of a tree T with e endpoints is 
given by: ft(T) = {e/2}. 

A starlike tree T is homeomorphic to. a star Kh n. Thus T has one point of degree 
n and all its other points have degree 1 or 2. For any tree T, we denote by T" the 
subtree obtained on deleting the endpoints of T, [2, p. 35]. A double star is a tree 
T such that T' =K2; it is denoted by S(m, n) when m endpoints are adjacent to 
one point of this K2 and n to the other. 

By applying Corollary L and Theorem 7HS to Theorem 3, we easily obtain the 
following results. 

Corollary 3a For a tree, 

(a) jz(T) = g(T) if and only if T is starlike, 
(b) Jt(T) = S(T) if and only if Tis starlike or homeomorphic to a double star of 

the form 5(2, 2n). 
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It is easy to see that Jt(G) = JT(G) = E(G) when G is a complete graph Kp and 
that their common value is {F/2}. 

By applying Theorem 5HS to Theorem 2, we get the next result at once. 

Corollary 3b. For a complete bipartite graph Km, „ with m^n,the path number 
Ji(Km, n) coincides with the linear arboricity E(Km, „) if neither m nor n is odd and 
m^n^3. 

4. Point arboricity 

Next we shall note that the linear arboricity of G is precisely the point arboricity 
of the line graph of G. 

The point arboricity Q(G), as defined by C h a r t r a n d , Ge l l e r and 
H e d e t n i e m i [ l ] , is the minimum number of subsets \7 into which the point set V 
of G can be partitioned so that the subgraph (Vt) induced by each subset is 
a forest. Analogously, the point linear arboricity Qo(G) is the minimum number of 
subsets Vi with every (V;) a linear forest. 

Theorem 7. For any graph G, the linear arboricity of G equals both the point 
arboricity and the point linear arboricity of its line graph: 

(5) 3(G) = Q(L(G)) = QO(L(G)). 

Proof. If one colors all the lines of G so that the subgraph induced by lines of 
each color is a linear forest in G, then the points of L(G) corresponding to lines in 
G of one color induce a forest in L(G) , in fact, a linear forest. Hence 

Q(L(G))^Q0(L(G))^S(G). 

We now show the opposite inequality. 
Let Q(L(G)) = r, so that by definition there exists a partition of the point set of 
L(G) into r subsets Ui9 i = 1, ..., r, in such a way that each induced subgraph ( ^ ) 
of L(G) is a forest. The maximum degree of every induced subgraph (Ut) is at 
most 2, since otherwise there would be a point of ( ^ ) whose degree is at least 3, 
contradictiong the fact that Ki,3 is a forbidden induced subgraph for line graphs. 
Thus, each component of (W) is a path. Since the lines of G corresponding to the 
points of (Ui) induce a linear forest, we see that r = Q(L(G))^E(G). Further­
more, exactly the same discussion can be applied to the point linear arboricity 
Qo(L(G)). 
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5. Unpath number 

To indicate that a graph (or digraph) has no cycles (or dicycles), we call it acyclic. 
The opposite concept to arboricity (which is the minimum number of forests 
needed to cover the lines of G) has been humorously called the anarboricity, T, 
(meaning the maximum number of nonforests which can be packed into the lines of 
G) by the great wit R o n a l d Read . Similarly in [3], the packing invariants opposite 
to the path number jt(G) were introduced. Thus this is the maximum number of 
line-disjoint connected non-paths which can be packed into G; it was called the 
"apathy" of G in [3] but we now call it the unpath number and write it Y(G), as 
the letter Y looks like KU3 which is not a path. 

It is quite easy to prove the following results. 

Theorem 8. The unpath number of the complete graph Kp and of the complete 
bipartite graph Km,„ are given by: 

(6) Y(Kp) = [p(p-l)/6], 

(7) Y(Km,n) = [mn/3]. 

The point anarboricity, T0(G), as introduced by C h a r t r a n d , G e l l e r and 
H e d e t n i e m i [1] is the maximum number of disjoint subsets in G so that the 
subgraph induced by each subset is a nonforest. 

Theorem 9. The unpath number of a graph G is equal to the point anarboricity 
of its line graph L(G): 

(8) y ( G ) = f„(L(G)) . 

Proof. This follows immediately from the fact that either a cycle or a point of 
degree at least 3 in G will give a nonforest in L(G). • 

6. Unsolved problems 

We have obtained the cyclicity, the linear arboricity and the unpath number for 
some specific families of graphs. 

I. It follows from Corollary L above that the path number of a cubic graph with 
p points is p/2. We showed in Theorem 6 that if G is cubic, then the linear 
arboricity of G is 2. As a generalization of this theorem, a stronger statement can 
be formulated. 

Conjecture. The linear arboricity of an r-regular graph G is {(r + l ) /2} . 
This is obvious for 2-regular graphs and we have seen that it also holds for 

complete graphs (Theorem 4) and regular complete bipartite graphs (Theorem 5). 
We have recently proved this conjecture for r = 4, but do not know whether it holds 
for r^5. 
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II. The path number of a complete tripartite graph and more generally of 
a complete n -partite graph were studied in [8]. The linear arboricity, the unpath 
number and the cyclicity of these graphs have not yet been determined. 

III. It is known that JZ(G) = E(G) for those trees specified in Corollary 3a, for 
all complete graphs Kp, and for those complete bipartite graphs Km,„ specified in 
Corollary 3b. Characterize the graphs for which JT(G) = E(G). 

IV. Some relations among cyclic and acyclic invariants are known, e.g., those in 
Theorems 7 and 9. Are there other relations among them? 
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ПОКРЫТИЕ И УПАКОВКА В ГРАФАХ III : 

ЦИКЛИЧЕСКИЕ И АЦИКЛИЧЕСКИЕ ИНВАРИАНТЫ 

Джин А к и я м а , Джефри Эксу, Фрэнк Х а р а р и 

Р е з ю м е 

Существует несколько инвариантов графов, касающихся простых цепей и циклов, связанных 

с упаковками и покрытиями графов, напр. дрсвесность, линейная древссность, вершинная 

древесность, вершинная линейная древесность, антидревесиость, цепное число, антицепнос 

число, вершинная антидревесиость и цикличность. Эти понятия по большей части являются 

фундаментальными, однако найти значения этих инвариянтов вообще не легко, В статье это 

сделано для специальных классов графов, именно для полных фафов, полных двудольных 

ф а ф о в и их реберных графов. 
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