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NONLINEAR PARABOLIC EQUATIONS
WITH
THE MIXED NONLINEAR
AND
NONSTATIONARY BOUNDARY CONDITIONS

JOZEF KACUR

This paper deals with the initial boundary value problem for the nonlinear
parabolic equation

ou
ot

(T <), where A is a nonlinear elliptic operator (see Definition 1) generated by

EE-))c, ( g;‘>’

Q c E" is a bounded domain with Lipschitzian boundary 3Q, x =(x,, ..., x~) and
ou ( u ou )

—+Au+bo(x,u)=f(x,t), xe€Q, te(0,T) (1)

ax ax1 9 asey a_xN'
We consider nonlinear boundary conditions of the form
ou_ _g‘—‘—bi(x, u) for xel,, te(0,T)
ot 3
(2)
0= _g_:_bz(x u) for xel, te(0,T),

where ou is defined by
v

N
a—qu (x u, a;l)cosm,x.-) for xedQ

(u is the outward normal vector with respect to 3Q2) and I, I, are two open
subsets of 32 with the properties I'UILUA =382, I''nI, =@ and mesy_,A =0.
All results hold true also in the cases I'1 =@ or I, =§.

The initial condition is of the form

u(x,0)=¢(x) for xeQ, 3)
where @(x) is sufficiently smooth (see (11)).
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In § 1 the existence and uniqueness of a generalized solution (see Definition 2) is
proved under monotonicity assumptions on A and b;(x,s) (j=0,1,2). An
arbitrary polynomial growth of a;(x, &) in E€E™*' and b,(x,s) in seE" is
considered. In'§ 2 we investigate (1)—(3) under different assumptions on A and b;.
We assume that A is a linear second order elliptic operator and b; are of the form

b(,(t,x,u,g—;l), bt x,u) (=1,2).

In this case we suppose that b;(¢, x, §) (j =0, 1, 2) are Lipschitz tontinuous in ¢ and
&. We prove the existence, uniqueness and regularity of the generalized solution
which satisfies (1) for a.e. (x, )€ Q X (0, T) in the classical sense. Moreover, we
prove the convergence of an approximate solution u,(x, t) (see (16)) which is
constructed by means of the solving of linear elliptic boundary value problems
corresponding to (i), (2). :

A similar boundary value problem was investigated by V. V. Barkovskij and
V. L.Kul¢ickijin[1, 2] in the following special form: A is the Laplace operator,

bi(t,x,u)=c¢(x,u+fi(u,t) (G=0,1)

and b,(t, x, u)=0, where c,, c;>0 and f,(u, t) (j =0, 1) satisfy certain additional
assumptions.

In this paper an elementary method is used based on Rothe’s method developed
in papers [4—8]. The results obtained can be generalized to nonlinear boundary
value problems of the type (1)—(3) of higher order.

§1
Assumptions and definitions
For simplicity we assume that a;(x, &) (=1, ..., N) and b;(x, s) (=0, 1, 2) are

continuous in all their variables. The growth of a;, b; in the variables Ee E™"',
s € E' is assumed in the form

la:(x, &)|<sCA+|EP™) (p>1), i=1,..,N 4)
and
[bi(x,s)|[sC(1+]s]"™") (p>1), j=0,1,2. (5)

In §1 we assume that b; are nondecreasing in s, i.e.,

__ab,-é);,s)>0 for xel;(j=1,2), xeQ(=0), |s|<x. (6)
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Ellipticity and coerciveness of the operator A are guaranteed by the algebraic
conditions

i;(&—n.)[a.-(x,E)—a.-(x,n)]>0 (7

Stax, H=Cilgl -, ®)

for all xe Q, |&| <.
If p,>2 (for certain j), then we assume

sb;(x, s)=C,|s| — C,, 9
f(x, t) is supposed to be Lipschitz continuous from (0, T) into L,(2), i.e.,
If(x, £) = f(x, )| <Clt —2'|. (10)

Let us denote r,=max (p;,2) (j=0,1) and r,=p,. We construct the space
V=W,(2) n L,(Q2)n L,(I') n L,(I;) with the norm

-l =1l-llw +1I-

where W, = W,(Q) is the Sobolev space with the norm |- ||w and || -
are the norms of the spaces L, (Q), L, (I',), L,,(I";), respectively.

nt -

I’Z’

nt -

I.

l-

I'l’

o’

Definition 1. Let A be an operator (generally nonlinear) A : W,— (W,)* (W,)*
is the dual space to W,) defined by the form

- v du
[Au, v]= A ; 3x % (x, u, ax> dx

for all u,veW,.

Owing to (4) and (7) the operator A is a continuous, bounded and monotone
operator.

We suppose @ from (3) to be an element of the space VNL3,0-2(2) N Lap,_»(I7y)
N L,,,—»(I;) with the properties

?a%)= —by(x, @) (in the sense of L,(I2)); (11a)

Green’s theorem can be applied to the form [A@, v], i.e.,

[Ap, v]= (Z—(p v)aa—(-vﬁp, v) (11b)

v ’

holds for all v € V, where
_x29 9
Ap =", 3 @ <x, P, 3x>
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and moreover

Ap e L(Q), %%"eLz(rz). (11c)

For simplicity we denote by b;(u) (i=0, 1, 2) the nonlinear operators from
L,.(I}) into L, (I;) for i = 1, 2 and from L,,(2) into L, (Q) fori=0(p; "+ q; ' =1),
which are generated by the corresponding functions b,(x, u).

We denote (u,v)= fuv dx, (u, v)r—f uvds (i=1,2) and (u.v)sq

= (u,v)r, + (u, v)r,. For simplicity we denote by |[-||, || |Ir, || - ||~ the norms in

the spaces L,(L2), L,(I';), and L,(I3), respectively.
Let u(t) be an abstract function from (0, T) into V. The trace of u(t)e V (¢ is

fixed) on 3Q is denoted by uz(¢).

Definition 2. Under the solution (weak) of (1)—(3) we mean an abstract
function u € L..({0, T), V) with properties

1) SEeL((0, T), (@), GEeL-((0. T), LiT).

2) The identity

(12)

, U

(d”(’) 0)+[Au(0), ]+ (bo(u(t), v)+

(dua(t) + 2 (bi(us(1)), v)r, = (f(2), v)

ry  i=1.2

holds for all v eV and a.e. te(0, T).
Remark 1. Owing to Green’s theorem we find out from (12) easily that
u(x,t)=u(t) is a classical solution of (1)—(3) provided u(x, ¢t) is sufficiently

smooth.
Let € () be the set of all functions defined on £ having derivatives of all orders

extendable continuously on Q. By #(£) we denote a subset of all functions from
& (L) which have support in Q. We denote the strong convergence (in the norm)
by — and the weak one by —. By C with or without indices we denote the positive

constants.
The constant C can denote also different constants in the same discussion.

A priori estimates

By means of the form

(A, v)s% (u, v) +[Au, v]+ (bo(u), v) +
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+4 (o, v+ 3, (b))

forallu,veV,h =§ (n is a positive integer) we define an operator A,: V— V*

(V* is the dual space to V). From (4)—(9) we conclude that .4, is a bounded,
continuous and monotone operator. Due to (8), (9) we find out easily that .4, is
coercive, i.e.,

(A, u)([Jullv) " @ for lullv—ce.

Hence using the results on monotone operators (see [3]) we find out that there
exists the unique solution u; € V of the equation Au =f, for each fe V.

Successively for j=1,...,n we construct u;€ V (they exist because of the
properties of +4,), the solutions of the equations

(u_—}% , v) + [Au, v]+ (bo(u), v)+

(13)
+ (ui—% ’ va>r,+i=2.2(bi(us)s UB)F-' = (ff’ v)

for all v e V, where f, =f(jh, x), uo=¢ and h=I

pe
Lemma 1. There exist ho>0 and C so that the estimates

Up,i — Up,i—1

A <C

r

Ui — Ui
ol < o
h “ ’

hold for all h<ho, i=1, ..., n.
Proof. Consider (13) with u=u for j=i and j=i—1. Subtracting these
inequalities and putting v = (4 —w;,_1)h~" we obtain

U — Ui

|+;11' [Au, — Auiy, i — i ]+

h
1 Ug,i — Up.i-1 2
+-- (bo(u,-) —bo(ti-1), u; — i) + |————| +
h h r
2 %(bi(uﬂ.i)_bi(uﬂ.i—l)a Up,i “ua.i—l)r,- =
i=12
(Ui~ Uiy, Ui T Ui Up,i-1 —Up,i—2 Up,i ~“UB,i-1
= (=5 R T A e )n+
_f WU,
+ <fl fl—b h ) .

217



Hence, owing to (6), (7) and (10) we deduce

2

(1-Ch)+

2
<
ry

U — Ui,

h

Up,i — Up,i-1

h

'ui—l

| A

2
Up.i—1 — UB.i—2

h

=

+ C:h,

2
=2 + ”
I

r,

where h <h,=C7". From this inequality we obtain successively

u —ui | ”uBi_uB,i | i-1
( A +“ A n) (I—C,h) <
| (14)
Up 1 (p
< + +C
h IS
forall i=1,...,n. From (13) for j=1, u=u,, v=(u,— ¢)h~" we deduce
—o|f 1 1
]+ (A= Ag, = @1+ (o) = bu(@). 1~ ) +
uB_1 “(p 2 1
+ h + E Z(bi(uﬂ,l)_bi((p), uB,l_(p)ri:
ry  j=12
u u,—
= (1. "570) = | A0 150 (o). “5) + S ), 42427
n
Owing to the assumptions (11a), (11b) we have
u—@|_ (3¢ ”B.l_(P> (% u31—(;0> ( u—Q
[A(p, h ] (81/’ h n+ v’ h rz+ A, h )
and
S ) b ) -
(av h r r2—0.
Then, due to (11c), (6) and (7) we obtain successively
— 2 _ 2
”h—"’“ (1= Cie)+ [f22=® Cie) <
2 2 2 2 (15)
<A@+ l4@ " + Ibo(@)I* + 1bu(@)]I7],
a2 Zb
where £ >0, A(g)— » for e >0 (because of the inequality ab < <2 T+ 5 ) Let
1 . -1
us choose ¢ 3C+C) Then from (15), (14) and the estimate (1 — Cih)

=exp (— C,T) we obtain the required result.
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Lemma 2. There exist C and no> 0 such that the estimate ||u;||v < C holds for all
n=nyandi=1, ..., n.
Proof. Owing to Lemma 1 we have the estimates

lull<llell+C and |lus.:lr<|l@lll+C
foralln,i=1, ..., n. Hence, from (13) for u = u;, v = u; and Lemma 1 we deduce
[Aul, ui] + (bo(ui), ui)+ E (bi(uB,i)9 ua,i)r,« <C
ji=1,2

foralln,i=1, ..., n. From this estimate and (8), (9) we obtain the required result.
Now, by means of u; (i=1, ..., n) we construct Rothe’s function u,(¢):

()=t + (1=t )h (s — wiy) (16)

for (i—1)h<t<ih,i=1, ..., n. Analogously we define the step functions x,(¢):
(0, TY>V, f.(t): (0, T)>L,(2)

x.t)=w, f.()=f for (i—1)h<t<ih, 17)

i=1,...,n and x,(0) = @(x), £.(0)=£(0).
As a consequence of Lemma 1 and Lemma 2 we have the a priori estimates

lin () = 5 OIS E, Nt () =500 Ol < (18)
lun()llv<C, |lx(®llv<C; (19)
lua(t) —un (I Clt =t]",  |up.n(t) = us.n (¢l <Clt =1’ (20)

forall n and ¢, t' €(0, T).

Lemma 3. There exists a u € L.({0, T), V) such that
i) u,(t)>u(t) in L,(2), up .(t)>us(t) in L,(I';) for n— o uniformly for
te{0, T);
du(t) dus(t)

i1) The (strong) derivatives TR,

exist for a.e. t€ (0, T) and

%GL,,((O, TY, L(Q)), —d(;l—tBEL,,((O, TY, Lo(I")).

Proof. The identity (13) (for u =u,) can be rewritten in the form

(d'u,.(t)

D, 0)+[Ax (@), V] + (Bolxa (1), 0) +

- (21)
+ (d ug;(l') , v)n + Zz(b,(x,,‘,.(r)), V), = (f.(z), v)

1=1,

219



for t€(0, T), where g—_E is the left hand derivative. Subtracting (21) for n =r and

n=s and putting v =x,(7) — x,(r) we obtain

(d_(u' (T(z‘[— u:(r)) > U (T) — U (t)) + [AI,(T) - Ax, ('l'), X, (T) — X5 (t)] +

+ (Bl (1) = bulx (D), %, (1) =, () + (D=t (E)).

s (2) =t (5)) + 5 (b2, (2)) = by (2. (1), 30, (7) = s (D), =

1

(@£ @.x @ -x @)+ (DD ) (1) - (- w@)) +

+ (d_(“&'(’;; Us.s (7)) . Xp.(T)—up. () — (x5, (7) — ua,,(t)>

r.'
Let us integrate this inequality on the interval (0. t). Owing to (6), (7), (18) and
Lemma 1 we deduce successively

1,1

4 (0)~ )1 +5 . ()~ wn (OIS C (345 (22)

1
2
Thus, there exists a u € C({0. T), L,(£2)) such that w,(t)—u(t) in L,(Q) for
n— o uniformly in ¢ € (0, T). Due to the a priori estimates (20) we have

llu(®) —u@)<Cle-1'|. (23)

Then, owing to (19) and the reflexivity of V we conclude u € L..({0, T), V) and

u,(t)—u(t) in V. Hence, ug .(t)—us(t) in L,(382) where q -——pl—pT_l (N-1)
because of the imbedding W,(2)— L,(3€2). From this fact and (22) we obtain

ug..(t)— us(t) in Lo(I'y) uniformlyin ¢ € (0, T'). Moreover, from (20) the estimate
llus(t) —us (t)||n<Clt—¢'| forall t,¢t'e(0,T). (24)

Owing to (23) and (24) and the result of Y. Komura (see [10]) there exist
du Up

@€ L.({0, T),L,(R2))and dd—te L.({0, T), L,(I'})) and the proof is complete.

Lemma 4. Let u(t) be as in Lemma 3. Then
i) AueL.((0, T), L,(Q))
ii) Ax,(t)—Au(t) in L,(Q) for all te (0, T).
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Proof. From (21) and Lemma 1 we obtain

[[Ax.(t), v —v']|<Cl|lv=v'|| forallnand v,v’'eP(RQ). (25)
Thus, Ax,(t)€eL.({0, T), L.(£2)) and we estimate
|Ax.(8)||<C forall te(0, T). (26)

Hence there exists a g, € L,(£2) and a subsequence {x,,(¢)} of {x.(t)} (¢ is fixed)
such that Ax,, (t)—g. in L,(€2) (also in V*). From the estimate

(A% (£), %n, (D] = [g:, u(O)]] <
<|[A%o (8) = 6o, uO]] + |[Ax, (8), 2, () —u (D],

Lemma 3 and (25) we deduce
[Axe (1), Xn (D] [g:, u(D)].
Due to the monotonicity of A we have
[Av — Ax, (2), v —x,(t)]=0 forall veV

and hence passing to the limit for k— o we obtain [Av —g,, v — u(¢)]=0 for all
ve V. Thus, putting v=u(t)+Aiw, where A>0, weV for A—0 we obtain
[Au(t)—g,, v]=0 for all v € V and hence Au(t)=g,. From this fact Assertion ii)
follows. Assertion i) follows from (26), Assertion i) and the Pettis theorem.

Existence and convergence results

Theorem 1. 'Thc function u(t) from Lemma 3 is the unique solution (see
Definition 2) of the problem (1)—(3). The estimate ||u,(t)— u(t)||2$§ holds for
all n and te (0, T).

Proof. Let us integrate (21) over (0, t). We have

a0, )= (@, ©)+ (a0, VI = (@, V)i, + [ {{AR (D), 0]+
0
27
+ Bl (@). )+ 3 Gl v~ ((0), v)] de=0
for all v € V. Since x, (t)—;u (t) in V for n— o and the imbedding W, L. (3£2) is
compact (q <Il7 — p_;_ 1 (N- 1)), we have x5 ,(t)— us(7) in L,(3Q). From (5)
and (19) the estimate
. 16, (x5 (0)) ||, < C
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holds for all n, j=0, 1, 2, where s; = .p 1>l From these facts we conclude

b;(xp..(t)) = b,(us(1)) for n— in L (F) for j=1,2 and in L,() for j=0.
Hence and from the last inequality it follows that

(bi(xB.n(r))’ v)l‘,—)(bi(uﬂ(t))’ 'U)ri (.’ = 1’ 2)

(bo(x.(1)), v)—> (bo(u(t)), v) for all ve V and 7€ (0, T). Due to Lemma 4 and
(19) we have

[[Ax.(2), v]I<Cllvll, [(b(xa..(v)), V)I<Gllvllv j=1,2,
|(Bo(x. (7)), V)| <Cllv]lv

for all e (0, T), v e V. Then, using Lebesque’s theorem and passing to the limit
n—» in (27) we obtain

(u(t)’ U)_(q)’ v)+(u5(t),v),—1—((p,v)rl+ (28)

+J: {[Au(r), v]+ (bo(u(r)), v) + ~=§l:2(b"(""(r)’ v)r, — (f(1), v)} dr=0

for all t € (0, T) and v € V. Hence, we deduce u(0)=@ in L,(2) and us(0) =@ in
L,(I',). Differentiating (28) with respect to ¢, owing to Lemma 3 and Lemma 4 we
conclude that u € L.({0, T), V) is a solution (see (12)) of (1)—(3). The unique-
ness of the solution is a consequence of the monotonicity assumptions (6) and (7).
Indeed, if u,, u, € V are two solutions of (1)—(3), then the inequality (u« = u, — u,)

(du(t) (t)) <du§t(t)’ B(t)) <0 for a.e. t € (0, T) takes place because of (6),
(7) and (12). If we integrate thlS inequality in (0, t) we obtain
lu (@) + llus ()17, <0,

since u(0)=us(0)=0. The rest of the proof follows from (22).
Actually, the following regularity properties for u(t) can be proved:
Lemma 5. Let u(t) be the solution of (1)—(3) and u,(t) be as in (16). Then
i) Au(t) and the weak derivatives 3 , ddt are defined for all t € (0, T) and are
weakly continuous in t in the space L,(Q), L,(I';), respectively.
ii) The estimate

=C

Idu(t)“ dugt(t)

r

takes place for all t € (0, T).
iii) The identity (12) holds for all t € (0, T).
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d u.(¢) du. d us . (¢)  dus(?)

iv) ar ! inL,(Q2), ar a1 in L(I'y) forall te(0, T) if n— .
Proof. From (19) and x,(¢)—u(t) in V we obtain
lu(®)|lv<C forall te(0,T). (29)

Lett,—»>tforn— o, ¢, te (0, T). Using the argument from Lemma 4 we prove the
weak continuity of Au(t) (instead of x, (¢) we consider u(t,)). From (23), (24) and
(29) we deduce easily (bo(u(t.)), v) — (bo(u(t)), v) and (b;(us(t.)), v)r, —
(b;(us(t)), v)r, for all v € V by the same arguments used in the proof of Theorem 1
(instead of x,(t) we consider u(t,)). Thus, from the continuity of [Au(t), v],
(bo(u(t)), v) and (b;(us(t)), v)r, ((=1,2) in ¢ for all veV we deduce

(u(1), v)+ (us(t), v)r, € C'((0, T)) (30)
for all v € V because of (28). On the other hand from (28) for v € 2(£2) we deduce
(u(t), v)eC'((0, T)) and the estimate dit (u(t),v)| < C|lv|| holds for all

v e P(R2). Thus, (u(t),v) € C'((0, T)) for all veV and hence (us(t), v)r, €
C'((0, T)) for all v € V because of (30). From this fact the existence of the weak

derivatives %%, % follows for all ¢ € (0, T). Differentiating (28) with respect to ¢

we find out that (12) holds for all ¢ € (0, T) and thus Assertion iii) is proved. From
(12) and (21) we conclude that

, (d_—i;"t(t—), v>—><deSt—), v) forall ve%(Q).

Hence, owing to Lemma 1 we obtain that

du(t)”<C forall te(0, T).

From these facts and from (12), (21) and Lemma 1 we deduce similarly

d_uB.n (t) duB (t)
dt de

du,;(t)"<c forall te€(0,T) and

for all ¢t e (0, T). Thus, Assertions ii) and iv) are proved. From the continuity of
du(t) ) (du,,(t)
( a "’ and dr
the rest of Assertion i) follows.

If the operator A is strongly monotone, then we can prove more regularity
properties of u(¢) and stronger convergence of {u,(t)} to u(t).

s v) in t € (0, T) for all v € V and from the estimates in ii)
n

223



We assume the algebraic condition for strong monotonicity in the form

;[a.(x,E)—af(x,n)](E.-—nf)?CIE—nV (7a)

for all £, ne E™™"'.

Theorem 2. If (7a) holds instead of (7), then the estimates
i) [lx.(0) = u(@)|lw<Cn "
i) [lun(6) —u(®)||lw=<Cn™*
iii) lu()—u(@)wsCle—r'|"”
take place for alln =noand t,t' € (0, T), where u(t) is the solution of (1)—(3) and
u,(t), x.(t) are from (16) and (17), respectively.
Proof. Subtracting (21) and (12) for v =x,(¢t) — u(¢t) we obtain

[Axn ()~ Au(0), %, (1)~ (o)) <[ O o - uioy +

[ QO s () - wa Oll + g IO o ()= O]

for all n, t € (0, T) because of Lemma 5 and (6). Owing to Lemma 1, (10), (18),
Theorem 1 and (7a) we conclude

l1.(6) = u(0) |5 < Cn=

and Assertion i) is proved. Due to (7a) we find out easily that the estimate
" ||u —u_,||%<C forall n,i=1,..,n

can be proved (see the proof of Lemma 1). Thus we have the estimate
|22 (8) = un (£) || w < Cn =",

From this and from Assertion i) Assertion ii) follows. Similarly from (11) and
Lemma 5 we have

[Au(t) - Au(t’), u(z)—u(t')]s(

L“(’ld“t_'&” llee(®) —ue)|| +

+ ”d(ua(t)(; ua(t'))”r lus(t) = us (¢l + L1t =] |lue) —u()]|

and hence using Lemma 5, (23) and (24) Assertion iii) follows. The construction of
an approximate solution u,(t) of the problem (1)—(3) is interesting from the
numerical point of view, too. However, in practice we can construct only an
approximation &, (¢) of w.(t) since only some approximations of the elements u,
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(i=1, ..., n) can be obtained. Now, the problem of the convergence of &,(t) to
u(t) will be investigated.
Let z e V and let u=u[z] be the solution of the problem

u—z
h

+Au+bo(x, u)=f(x,1t) 1)

3
u+h 5%=z—hb,(x, u) on I,
(2"
du

3= —by(x,u) on I,

By #[z] we denote an approximate solution of this problem. We construct u;
successively for i =1, ..., n putting z = _, and & =i[z], where i, = ¢. By means
of &, (instead of u;) we construct i,(¢) (see (16)). Let us denote

(lu, = | + llus.. — s ||2)" = 0 (ulz], d[z]).
Theorem 3. Let u(t) be as in Thgorem 1. Then
) (=2l + N~ i )< S0 (ulc], )
ii) If o(ula], a[a])<d for all i=0,1,..,n—1 and § = O(n"®?), then
lun (2) = u(®)|ceco. 75, Lo =O (n ™)

iii) If o(u[@], dl@])<Sforalli=0,1,..,n—1,8=0(n"“")and A is strongly
monotone, then

i, (t) — u(t)lcwo. Ty, wian =0 (n~
. (£) = u(2)|| O(n=")

Proof. Using our notation we denote i&; =u[# ], i=1, ..., n (the solution of
(1"), (2') for z =4a,_,). Thus, the identity

(Z__hau , v) +[Ag;, v]+ (bo(i,), v) +
(13%)

+ (“B_'—ﬁ-‘?.';‘ , U)n +i=§1_‘42(b.-(123.,-), v), = (i, v)

holds for all v e V. From (13) and (13’) for u =u and v =u; — i, we obtain

<ui ; “ > Ui~ ﬁ,-) + [Auf _Al_‘i’ u; — ai] + (bo(ui)~ bo(b_l;), u — 12,-) +

+ <M » Us,j— aBJ) + 2 (bi(uB.i) _bi(ai)’ U~ ), =
h r =Lz
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Uj—1 — Uj— _ Up ;j-1— Up j—1 _
:(—71—’ U —u)+ Ui T Uit

r
hence

“”i - aillz'*' “uB.i - ﬁs.iuzns ”ui—l - ﬁ;-lllz + “uﬂ‘i—l - ﬁB-i—lni‘n

because of the monotonicity properties of A, bo, b; (i =1, 2). The last inequality
and the triangular inequalities imply

Ul = |1+ s ; — s ; ||7)"* < (& — u:_“z + s, — uslI7)" 7+
+o(uw], al@) < (w1 — &-ll* + |lus; — us ;-1 |IF)"* + 0 (ul&], ala]).
From this reccurent inequality we deduce Assertion i).
Assertion ii) is a consequence of Assertion i), Theorem 1 and of the inequality

. (1) — u(®) || < M (1) = (@) || + || uaa () = 2 (1)

Assertion iii) is a consequence of Assertion ii) (for the details see the proof of
Theorem 2).

§2.
In this section we consider the boundary value problem (1)—(3) under the
following assumptions:
A is a linear elliptic operator of the form

- 9 du
Au = _;g (a,'j(x) 5) )

where a; € C*'(2) and

2 a.—,—(x)E,«E,-ZCEIEP forall EeE". (31)

i,j=1

Instead of the operator bo(u) we consider the more general operator b, (t, u, g_;l)

which is generated by the function b, (t, x,u, —g—;‘) . Instead of the operators b;(u)

(j=1, 2) we consider operators of the form b;(¢, u) which are generated by the
functions b;(t, x, u). We assume that b,, b,, b, are continuous in all their variables

and moreover
bi(t, x, )= by(t', x, s <C(t—t'| + s |t —2'| +|s = s']) (32)
forallt,t'e(0, T),xe Qand |s|, |s'| <o (s,s'€eE'forj=1,2ands,s’ e EN"' for
j=0).
In this section we construct the Rothe.function u,(t) (see (16)) by means of the
elements w;(i =1, ..., n) which solve the following linear problems
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U—u— aul'—l
(—h s v) +[Au, v]+ (bo(t,, Ui_1, 3x ), v>+

(33)
+ (—uB _:B‘i_l , v)n +i=Z_2(bi(ti, uB.i—l)’ 'U)r, = (ﬁ’ U)

for all v € V, corresponding to the linear elliptic boundary value problems

U— Uy Qu;_y\ _

_h +Au+bo <t(, Ui-1, ax >—f,

h e —hby(t, ) on T

u av—ui—l Wi, Ui—1 1
ou

£= —bz(tg, u;— 1) on Fz
where

= 2 a,,(x) cos (u,x;) and ve Wy(Q).

i,j=1

Thus our scheme (33) is interesting from the numerical point of view. Howewer,
the existence and uniqueness of the solution u(¢) and the convergence of u,(¢) to
u(t) will be proved under a certain additional assumption. We shall assume

Ot s)|< Ce
=\ 7 Co
c

forall te(0,T),xel,|s|<o, (34)

I

where Cg is from (31) and C; is the smallest constant in the imbedding inequality
lv||,02< Cillv|lw. The conditions (11a) and (11b) are satisfied if we assume

peW3(Q) and g—(5= —b,(0,x,9) for xel,. (35)

In this section (4), (31), (32), (10), (34) and (35) will be assumed.

A priori estimates

Lemma 6. There exist C,, C, and ho>0 such that the estimate

2
i — Ui— 1
S (4 DT o

2
Up,i — Up,i-1

h

=

r

i
<C+C Shlluly
j=1

holds for all h<h,, i=1, ...,n
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Proof. From (33) similarly as in § 1 we deduce

”u. - Ui—‘uz “uB i — U1 g_ _ 2 36
|| h + |i h + h |ul u:—l“W\ ( )
1 ||u,71—ui_z 21 llu.- 1 "us i-1 " Up i~2|:
S + = | = +
20 2 h 2] h r
l Upg,i — U -1 ( AU, _ ( Ui,
+ 2 h + “bo L, U, ax ) bo | t-1, U—2, 3x )
l_"( -ul—l

i N+ S 1,0t~ st 2l
j=1.2

Up.i— Up.,1| 2
I S )
b’
By a suitable application of the inequality ab < <-—
we obtain
Ju, . ou,-» "u. —ui-2|l<
b() (tu U1, a ) b’) ( l 1, Ui-2, ax ) ” h ==
- 2 _ 2
<Ch+C:h E%" + Cahllui_y ||+ Coh i“—h”—’—z +C, % et — sl

where C; =% (Ce — CiCo) (see (34)). Similarly we estimate

Hb!(thuB.i—l)_bl(tt—l?uB.i—Z)“rl uB'%uR'M' =
Ir‘
i C 5
$C1h+C2h l—#‘—l +C3h”u3. 1” = ”un. 1~ Upi-2|[r =
Up,i —Up.i-1 : C, 2
SC1h+C2h —h_— +Ch”u, ||lw+ ”u‘ 1— U, 2”W

because of the imbedding Wé(.Q)—»Lz(aQ). Owing to (32), (34) and the imbed-
ding W3(£2)— L2(3€2) we conclude

”bz(l.', Ug.i-1) — ba(t; -y, uB.i—Z”r‘z

Up i — Up -1

h

<<

=
r;

Upg.i — Up..-1

SC.h‘*‘CzhHUB.i—lerz'*'CO h

”uB.i—l —Usg,, 2||,—:$
r

,  CiC, 2
u,_lll;v+ 2’h0 ”u,_x—u—z”;v-

<Ch+ CSh”ui—IH%V C CO ”



From the estimates obtained and from (36) we have

_ ”u.- - } "ua i —Us.ii’ Q _ 2 ]
(1 Clh) [” h ” A r,+h ||ui U-llw [=
_ -1 — thi—z : lus.i—1 — s 2"

<(1- G [ e o

C
AR u.qna] + Co ||t |Po+ Cah

where C=Cg — Ci C">O and h<ho= 1 . By a successive application of this
2 Ci+GC
recurrent inequality we obtain
_ i—1 “u. - "uB i —Upi| g _ 2 ]
(1-Ch) [” h " % Lt e — vl < (37)

_ i1 ||ul'°‘ph [lus.. — @
<(1-Gh) [n h “*u Z

2
+— lu,— @l +
r‘] h”u' ‘P”w

i—-1 i-1
+ C3 2(1 - C]h)i_lh ”u,”:y'v'*' C4 2(1 - C]h)i—l.
j=1 j=1

Now, from (33) foru =u,, v = 4 ; ? and from (35) we conclude (see the proof of
Lemma 1)
_ 2
l'1 q)N +_£ llu:— @3+ uB.lh Pl <
ry
‘p" bo t, @, aq)) 4
3
+1b2(t1. @) = b2(0, @)Ir, uB'lh—q} +1b:(t1, @), _lm%ﬂ
Ip) I
and hence owing to (34), (35) and (32) we have
2 2
u,—Q _% _ 2 U1 — @
h + h ”ul (p”W+ h r,s

<Cillfs+ Cob 5=+ Cllb,(0. )P+ 5 s = @lf+ Coh.

From this estimate we obtain

u,—(pz
h

2

=<C,

r

Up,1— @
h

1 2
T
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where C is independentonn,i=1, ..., n. Thus, due to (37) we obtain the required
result since there exist K,, K,>0 such that the estimates

K1<(1"C1h)i, (1‘_C2h)'<K2
hold for all h<h,, i=1, ..., n.
Lemma 7. There exist C,, C,, no>0 such that the estimates
. : G
i) [[Au, w]|<Ci+ Co Shllu | +T¢ lluills
j=1

.. : G
i) [1(b2(t, wi-1), w)nll < Cit Co Zhllw I+ Nl
i=1

hold for all n=n,, i=1, ..., n.
Proof. From (33) for u =u;, and v € () we obtain

u,' —u,'_
[Aw, v]|< _T*l o]l + (Ci+ Calluillw) v | (38)
and hence |Aw || < _“'_—hLl”+ C,+ C,||ui_1||w. From Lemma 6 we have
i 1/2
lull<Ci+ G (Shllulli) (39)
i=1

foralln,i=1, ..., n. From these estimates we obtain the estimate i). Similarly from
(33) for u =u;, v =u; we have

|(b2(t:, wic), wi)r, < fluai || + (40)

h

Ui _ui—l‘

+

Yot ZUnot gy e + AW, w]] +

h n
+(C+ Cz||ui—1||w)”u.- || +(C+ Cz””i—l”h)”“i ”n + ”f- ” ””i ”

From Lemma 6 we have

1/2

lulle<Cit s (Shllwli)
“
Applying (39), (41) and the estimate i) in (41) we obtain the estimate ii).

Lemma 8. There exist C and n,>0 such that the estimates
. U, — Uu;_
i) u ‘lsc, <C

r
i) ||Au||<C

Up,i —Up.i-1

h h
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iii) Jluflv<C
1
n ||u,» - ui-1||€\/$c
are valid for all n>n,, i=1, ..., n.
Proof. From (33) (for u =u;, v =u;), Lemma 6, Lemma 7 and from (31) we
conclude

iv)

G
CE”ui” <C+GC Zh”u "2 + = “u, 1”2

Hence, using the estimate

C G G
7 Nl 57 Hlaw I+ 57 Mo — il

and Lemma 6 we obtain

lwllw<Ci+C, Zlh Il 1%
b=

foralli=1, ..., n, n >n,. From this estimate we obtain successively (0<h <hy=

c)
C.

Czh i—-1
el sy o < (14 755)
Ch ! . . .
But (1 +m) <C holds forall i=1, ..., n, n>n,, where C is a suitable
- 2

constant. Thus the estimate ii) is proved. ‘The estimates i), iii) and iv) are
consequences of ii), Lemma 6 and Lemma 7.
Let Q' be a subdomain of 2 such that Q' < Q.

Lemma 9. There exist C(Q'), no>0 such that ||u;||w, < C(R') for all n > n,,
i=1,..,n
Proof. The element u; € V satisfies the identity

l _ U — Ui ( au,‘_1> ( >= (i)
[Au,v]+h(u,v)— ( h +b0 tiyui—l, ax + ﬁ"v _(Fh9v)9
i.e., u; is the solution of the equation Au +% u =F} in the sense of distributions.
The operator A + ;ll-I (I is the identity operator) is W} elliptic (see [9]) because of

(31). Thus, using the results on regularity in the interior of the domain Q (see [9])
we obtain

||| wy2an < C(")(llwllw + IF1D-

Hence, owing to Lemma 6 we obtain the required result.
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By means of w; (i=1,...,n) we define u,(t) and x,(¢) by (16), (17) As
a consequence of Lemma 8 we have the following a priori estimates

d u. (1) d us ()

'—dt “sC, 5] =c (42)
lu.Ollv<C, |x.()ilv<C (43)
||u,.(t)—x,,(t)||$g, fx,,(t)—x,. (t—%)lsg (44)
“xn(t)“sz(n')SC(Q')’ ”un(t)Hsz(rzvsC(-Q') (45)
() —w. (< Cle=t'|, Nup.n(t) = us.. ()|l <Clt —1|. (46)

Now we define

b.(t.x, &) = bj(ti.x.&) for t,_,<t<t.i=1,...,n b ,(0,x,&) = b(0,x,E&),
j=0,1,2(EeEN"'forj=0andEe E'forj=1, 2).

Using our notation we can writc

(d___l:int_(t) ’ v) + (d_uda—tn(t) ’ v)r +[Ax. (1), v] + (bo.n (t, X, X, <t—;> .
1 @)

Rl I S

dx
for all %Sts T, v e V and then we pass to the limit for n— o in (47).

Lemma 10. There exists u € L..((0, T), V) such that

i) There exists a subsequence {u,,(t)} of {u.(t)} satisfying u,, (t)— u(t) in L.(Q),
Up n (1) > ug(t) in Lo(T") for k— = uniformly in t € (0, T'|.

ii) There exist derivatives g—:leLw ({(0. T, Ly(R)), %ut—BGLm ({0, T), Lo(I)).

Proof. Owing to the compactness of the imbedding W3(Q) into L,(3Q), (43)
and from the reflexivity of W3(2) we conclude: there exist u(t)e L.(R2),
g(t)e L,(38) (t is fixed) and a subsequence {u,, (t)} such that u, (¢1)—u(t) in
L,(), up. ., (t)—g(t) in L,(3L2). By the method of diagonalization we can f{ind
a subsequence of {u.(#)} (denoted again by {u,(t)}) such that u,{(t)—u(?) in
L»(2) and ug..(t)—g(t) in Lo(I",) for all rational points ¢ € (0, T). Then, from
(46) we find out easily that u,(z)—u(¢) in L.(2) and up_.(t)—g(t) in L,(I',) for
all te (0, T). From the reflexivity of V and from (43) we conclude that u(¢t)e V.
w,()—u(t) in V and us ,(t)—> us(t) in L,(32). Thus us(t)=g(t). Owing to the
Borel covering theorem and (46) we deduce that u,.(t)—u(t) in L,(£2) and

232



us..(t)—> up(t) in L,(I') uniformly in ¢ € (0, T']. From u,(t)—u(t) in V and (43)
we deduce the estimate

lu@®)|lv<C forall te(0, T

from which ueL.({0.T), V) follows and thus Assertion i) is proved. From
Assertion i) and from (46) we have

lu@)—u@)<Clt=r'|. |lus(t) = ua(t)llr <Clt 1| (48)

for all ¢, t'€(0, T). Assertion ii) follows from (48) and from the result of
Y. Komura [10] similarly as in §1.

The subsequence {u,, (t)} from Lemma 10 and the corresponding subsequence
{x, (2)} will be denoted by {u,(¢)}, {x.(t)}, respectively.

Lemma 11. Let u(t) be as in Lemma 10. Then, u(t) e W3(') and x,(t)— u(t),
Xn (t—%)—»u(t), u,(t)— u(t) in the norm of the space W3(Q') for all t € (0, T)

and Q',Q' Q.

Proof. Due to (45) and to the reflexivity of W3(£2’) we have the following
assertion: there exist w, € W3(Q’) and a subsequence {x,,(¢)} of {x.(¢)} such that
X, (£~ w, in W3(2’) and hence x, (t)—>w, in W3(Q'). On the other hand
X (1)>u(t) in L,(22') because of Lemma 10 and (44). Thus, w,=u(t) and also
X, (£)—u(t) in W3(2"), x,(t)— u(t) in W3(Q"). Similarly we prove the analogical

assertion concerning the sequences {x,, (t —%-)} and {u.(t)} because of (43) and
(44).

Theorem 3. The function u(t) from Lemma 10 is the unique solution of (1)—(3)
and u(x, t)=u(t) satisfies (1) for a.e. (x,t)€Q x (0, T) in the classical sense.

Proof. Integrating (47) over the interval (-’7{, t) we have

(un(2), v) = <un (%-) v) + (us.n (), V)r, — (ua,n (9 v)n +
+JT’/" {[Axn(t), v]+ (bo,n (‘t, Xn (r—%), ii(ﬂ(%ér—)), v)+ (49)

+i;2 (b,;n (r, XB.n (r—%)), v)ri —(fu(2), v)} dr=0

for all veV and te (;17: T). As a consequence of Lemma 8, Lemma 10, Lem-
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ma 11, (38), (32) and the a priori estimates (42)—(46) we deduce the following
assertions:

[Ax. (1), v]=[Au(2), v], [|[Ax.(7), v]|<C]]v||
for all Te(0,¢) and ve V;

bo.. (r, o (1-3), M)—wo (7. %, u(@), a”—(f)>

n ox ox
in L,(2') and

_ox, r—%)
!b°-~ (””‘" (==2) _—<8x——>
which imply that
(bo,,. (r x.(*), ax,,( )> > (bo (r u(t), (T)>, >

forallveV and t€(0,T);
(81 (00 (7=7)) v)ri—>(b,-(r, s (7)), V) (=1, 2)
and by (5,500 (7)) i
(e (7))@ 0) and (., (). v) —Co0)

for all v e V. On the basis of this assertion and of the Lebesque theorem we can
pass to the limit n— % in (49). We obtain

=C

<C forall n, re(%, T);

(u(®), v)— (@, v)+ (us(t), v)r,— (@, V)r, +
f {[Au(r) v]+(bn (r u(t), au(r))’v>+

+ S (b(r, us(7)), v)r,.}d17= L (f(x), v) dt
j=1,2

for all ve V. Hence, we conclude that u(¢) is a solution of (1)—(3). The
uniqueness of u(¢) can be proved similarly as in [8]. Let u,, u, be two solutions of
(1)—(3). Then the element u = u, — u, satisfies the inequality

(0, (440.,)
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+[Au(), v]= Cillullwllvll = Cllul vl = Collullr,llvll, <0

for all v eV because of (12) and (32). Putting u =€*v (A>0) we obtain the
following inequality for v

2 li 2 2 l_d_ 2
A.”U” +2 dt ”'U” +l”v”rl+2dt ”v”l‘1+
+Cellvlli = Gillv[I% = Cllv[I? = Calv |7, — CoCllv [[2<0,

where C,= Cs — CoCi. If A >max (Cy, C,), then we have
g_ 2 i 2
dt ”U(t)” +dt “UB(t)”rxso'

Integrating this inequality over (0, ¢) we obtain ||v(¢)||=0 because of v(0)=

=UVUs (0) = 0.

3—?6 L.({0, T), L,(2)) we deduce easily that there exists the distributive

du(x,t)
ot

fora.e.x €2 andfora.e.t € (0, T) (see [9]). Further, fromu € L. ({0, T),

Since

derivative € L,(22% (0, T)). Hence there exists the classical derivative

du(x,t)

ot
W3(2')) (Q' is arbitrary with Q'c Q) we deduce that there exist partial
2
derivatives ai E;‘x (i,j=1, ..., N) in the classical sense for a.e. x € Q and for a.e.
i OX;

te (0, T). Then, from (12) for v € () and Green’s theorem we obtain that (1) is
satisfied for a.e. (x, t) € 2 X (0, T) in the classical sense and the proof is complete.
Remark 2. As a consequence of the uniqueness of the solution we obtain that
the entire sequences {u,(¢)} and {x,(t)} (see (16), (17)) converge to the solution
u(t) of (1)—(3).
We can prove the results contained in Lemma 5 similarly as those in § 1. Instead
of Theorem 2 we can prove

Theorem 4. Let {x,(t)}, {u.(t)} be as in (16), (17), respectively. Then
i) x.(t)>u(t) in W3(2) uniformly for t € (0, T1);
ii) u,(t)>u(t) in W3(Q) uniformly for te (0, T) ;
iii) there exists a Csuch that |lu(t)—u(t’)||v <C|t—t'| holds for all t,t' € {0, T/|.
Proof. From (47) and (12) for v =x,(¢) —u(t) we estimate

Cellx. (1) = u (@)l < Cillxa (£) = u ()| + Callxs, . () — us ()|, +

to.n (1= 1) - a0

because of (31), (32), (34) and the estimates

(50)
+ Co

o () = us (D)1
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lldu(t)“ + 4 un 0]

IFll +

+ bO.n (t9xwxn <t_%>, ax
dug (1)

dt r + (b].n (t’ X, XB.n (t_g) -

for all n, te(0, T'). Due to (43) and Lemma 8 iv) we have

rl

+[|bo (t, x, u(?), a—g—)(ct—))”scl

and
d_uﬂ,n (t)
i ar

+1b1(t, x, up ()|l < C:

”xB.n(t) - uB(t)”l"g = Cnci(“xn (t) - “(t)”a""

Co ||X5.n (t —%-) —Up (t)’rz

T
+ le,, (z —;) - (t)”W”x,, () = u(®)llw) < CoC2(llxn (1) — u (0) o+ CVR)

and hence, owing to (50) we have

I (0) = < - (Culen (0= 0Ol + Colltnn(0) = a0+ )

d

Assertion 1) follows from this estimate, Lemma 10 and Remark 2. Assertion ii)
follows from i) and the estimate

letn (1) — ()| <210 (6) — () 2+
+ 205 (0) = 1 (Ol <2]xn (6) — u() o+ -5

because of Lemma 8 (iv)). From (12) we deduce similarly as in § 1 the estimate

Ce wS<Ci([lu(e) —u(t)ll +
+lus (1) = us ()| + Calt = t] Jlu ()| + Calt — '] + (51)
+ Cllu@)lrle = "1+ Csllu(@)llnlt = [+ Collu(e) = u(e)|I2.

Using (47) and the estimate
Collu(®) = u ()7, < CoCillu () — u(t)||

in (51) we obtain the required result iii) and the proof is complete.

2
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HEJIUHEVHBIE ITAPABOJIMYECKUE YPABHEHUSA C HEJIMHEWHBIMU -
’ CMEIIAHHBIMH
H HECTAIIMOHAPHBIMU 'PAHUYHBIMH YCIIOBUSIMU

Hoszedp Kauyp
Pesome
B pa6oTe paccMaTpHBaeTCs HEIMHEHHOE MapaGoINYECKOe ypaBHEHUE BTOPOTO Nopsaka i, + Au(t) =

=f(t) B o6nactu 2 X (0, T) c HeCTaUMOHAPHBIMU U CMELIAHHLIMM MPAHMYHBIMH YCIIOBHAMH

du du
u=———+by(t,x,u) u 0=——+b,(t,x,u
g Va l( ’ ) aVA 2( ’ )
Ha yacTax rpaHuubl 9S2. Jloka3sIBaeTCH CyIIECTBOBAHHE M €NMHHCTBEHHOCTH pemémm. ITocTpoeno
NPUOMIKEHHOE PEIICHHE 3alayd M MCCIIENOBaHA €ro CXOAMMOCTb B OTBEYAIOUMX (PYHKIHOHANLHBIX
NPOCTPAHCTBAX.
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