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EXTREME ESSENTIAL DERIVATIVES OF BOREL
AND LEBESGUE MEASURABLE FUNCTIONS

LADISLAV MIS{K

1. It is well known ([1] and [7]) that the Dini derivatives of Borel (Lebesgue
measurable) functions are Borel (Lebesgue measurable) functions. Let B,, respec-
tively L, denote the family of all real Borel functions of a real variable of the
class a, respectively the class of all real Lebesgue measurable functions of a real
variable. Let a be an ordinal and 8(a) be the least upper bound of the set of all
ordinals y for which there exists a Borel function f € B, with one of the Dini
derivatives in the Borel class y and not in the Borel class 6 for 6 <y. It is known
that a =6(a)=a +2 holds ([1], [5] and [7]). From an example of J. Staniszewska
([8]) one can easily see that 8(0)=2. For a>0 we do not know whether the
equality 6(a) = a+2 holds. In [5] we have proved actually that the upper,
respectively lower, Dini derivatives of a Borel function of the class a are upper,
respectively lower, semi-Borel functions of the class a + 1.

Let a be an ordinal and §..(a), respectively ...(a), be the least upper bound of
the set of all ordinals y for which there exists a Borel function f € B, with one of the
extreme unilateral, respectively bilateral, essential derivatives in the Borel class y
and not in the Borel class 6 for 8 <y. Recently ([6]) we have proved that
2 =6..,(0)=3. From the cited example of J. Staniszewska and from corollary 2 in
our paper [4] (Folgerung2, p.158) we get that 2=4..(0). The inequality
S.(0)=3 gives that also 5..,(0) =3 holds. In the presented paper the proof is given
that for a >0 the upper (lower) unilateral essential derivatives of Borel functions
of the class a are the lower (upper) semi-Borel functions of the class a +2.
Therefore d..(a)=ca+3 holds and S..(a)=a+3. It is also proved that the
extreme unilateral essential derivatives of Lebesgue measurable functions are
Lebesgue measurable too.

In [3] O. Hajek proved that extreme bilateral derivatives of an arbitrary function
are in the Borel class two. A similar theorem for extreme bilateral essential
derivatives of functions does not hold. For any ordinal a there holds a =d..a) and
a=4..(a). There are Lebesgue measurable functions having extreme unilateral
and also bilateral essential derivatives which are not Borel.

25



2. The set of all real numbers is denoted by R, the set of all positive integers is
denoted by N. In the sequel a will mean an ordinal of the first two classes. A real
function ¢ of a real variable is a lower (upper) semi-Borel function of the class a iff
the sets {x e R: p(x)>P} ({x e R: p(x)<fB}) are of the Borel additive class o for
all B € R. The system of all lower (upper) semi-continuous functions is the system
of all lower (upper) semi-Borel functions of the class zero.

We will denote by f a real function of a real variable, by x and 3 real numbers, by
r a real number strictly between zero and one, by w and 7 real numbers which
satisfy the inequality 0=w<m, by n and k positive integers and by |A| the
Lebesgue outer measure of the set A.

We set:

AL B 0, m)= (h: @ <h=n, f o+ )| s, [EEZI0) S gy

B.(x; B; w,m)={h: 0<h=n, |f(x +h)|=n, f(x+h)—f(x)>B},
Cx; B;w,m)={h: o<h=n, |f(x+h)|=n, f(x +h)>p},

Ax;Bsw,n)={h: w<h§n,w>ﬁ},
@udx; @, M) =sup {B: |A(x; B5 @, n)|>r(n —w)},
Ya {x; @, m)=sup {B: |B,(x; B;w, n)|>r(n—w)},

Xn.Ax; @, n)=sup {B: |C.(x; B; w,n)|>r(n —w)},
@ (x; 0, n)=sup {B:|A(x; B; 0, n)|>r(n—w)},

1
@n (X)) =sup {@ruw+n(x;0,m): 0<n é;}
It is obvious that @,(x; ®w,n) = @.(x;w,n) for 0<r'=r<l1, @..x) =
@ k+1(X)y Qurr(x) =@, (x) for all xeR and 5, k € N. Therefore there exists
lim @, «(x) for every k € N. For all k € N we denote the limit lim @, «(x) by @ (x).

There holds @« (x) = @r+1(x) for all xeR and k€ N.
Let now 0<w, 0 = wo<w, <w:<...<w,=n and ry, 2, ..., 1« € {0, 1). Then we
set:

D (X5 Wo, Wiy eevy WiFL P2y ooy 1) = min {@, (xX;@i—, w): >0, i=1, 2,
.k},
o (X5 01, ©)
W, (X5 Wo, Wiy <oy W5 Fiy P2y ooy i) = min {mm(w" p” 2,
i—1
(X5 0y, )
"’——(’U%): n>0,i=1,2,.., k),
w; —W;- .
Ux = Max {———‘: r>0,i=1, 2, ..., k} .
W; -1 ;

Let {n:};Z, be a decreasing sequence of positive numbers with the limit equal to

zero, i. e. 0<n,,,<m; for each i e N and l_i_r}(} 1n: =0. Let {r.};Z, be such a sequence
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of non-negative numbers less than one that the set {i € N: r, >0} is finite. Then we
set:

D(x{n}ize; {n}z)=min {@, (x; Nir, 0): r:>0,i=1,2,...}.

We recall the definition of the upper right essential derivative of a function of
a real variable in a point. The upper right essential derivative fi(x) of a real
function f of a real variable in a point x is the least upper bound of the set of all

+h)— .
such numbers 8 for which the set {heR: h>0, w>ﬂ} has in

0 positive upper outer density.

3. Proposition1. x, ,(x;w,n) = ¢. (x;0,n) + f(x)and |x, (x; ®,n)|=n
if Xu (X @,n)>—.

Proof. If x...(x; w,n) = —, then|C.(x; ;w,n)| = r(n—w)forall feR.
But B,(x;B;w,n) = C.x;B+f(x);w,n) for al peR. Therefore
|B.(x;B; w,n)| = r(n—w) for all B € R. This implies that ¢,, ,(x; w,n) = —
and the equality x. (x; w,n) = . (x;®,n) + f(x) holds.

Let ¥, (x; w, n)>—, Then |[{h: 0 <h=n, |[f(x +h)| = n, f(x +h) Z—-n}|
> r(n—w) as the sets {h: o <h=n, |f(x +h)|=n, f(x +h)<-n} and {h: 0 <
h=n, |f(x +h)|=n, f(x + h)>n} are empty. From this we see that there holds:
—n = x..(x;w,n)=n. Since B.(x;B;w,n) = C.(x;B+f(x);w,n) for all
B €R, it is obvious that the inequality |B.(x; B; @, n)| > r(n —w) holds iff the
inequality |C,(x;B+f(x);w,n)| > r(n—w) holds. Therefore x, (x;w,n)
= sup {B: |Cu(x; B5 0, )| > r(n—w)} = f(x) + sup {y: |B.(x;v; @, n)| >
rn=w)} = yalx;0,n) + f(x).

Proposition 2. The function ¥, (x ; @, n) is lower semicontinuous and conse-
quently x,. (x; w, n)€B,.

Proof. Let BeR and .. .(x; w,n)>pB. Then there exists such a yeR that
XnAX;0,m) > y>p and |C.(x;7; o, n)| > r(n —w). It is obvious that there
exists such a positive & for which |C.(x;7; @+, n—=08)| >r(n—w).

Letue(x—9,x+0). ThenforheC,(x;y;w+8,n—3)there holds: w +8 <
h=n-30, |f(x+h)|=n and f(x +h)>y. There exists such a ve(—4, ) that
u=x+v. Then there holds: w = (w+8) — 6<h — v = n—-6+4d=n,
[f(u+h—v)|=n and f(u+th—-v)>y. We have proved that
h—veC,(u;v;w,n)and therefore —v +C.(x; v; 0+, n—8)cC.(u; v; o,
n). From this it follows: |C.(u; v; @, )| = [-v+C.(x; v; 0+, n—9)|
= |Cu(x; v; w+d, w—08)| > r(n—w). Therefore x, (u; w, n) = y>p.
Therewith we have proved that x, (x; ®, n) is lower semi-continuous. Conse-
quently x,. (x; w, n)eB,.

Proposition 3. Let o >0. If fe B,, then ¥, (x; w,n)eB,; if f is a Lebesgue
measurable function, then vy, (x ; @, n) is also a Lebesgue measurable function.
If ¥, (x; @, n)>—oo, then Y. (x; 0, n)| = |f(x)|+n hold.
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Proof. According to proposition 1 ¢, (x; w,n) = X..(x; w,n)—f(x) and
according to proposition 2 v, (x; w, n) € B, if f € B,, respectively y, (x; w, n),
is Lebesgue measurable if f is Lebesgue measurable.

If ¢, (x; w, n)> —oo, there is also x,, (x; w, n)> — o and from proposition 1
we get that |y, (x; w, n)| = |f(x)|+n.

Proposition 4. Let 0<w <n and x € R. Then there holds:
A,.(x;g; w,n)cB,(x;; w, n)CA,.<x;§; w, n) for (>0,
A (x;0;w,n)=B,(x;0; w, n),
An(x;g;w,n)cBn(x;ﬁ;w,n)CAn(x;g
Proof. Let 3>0.

For each heA,.(x;g;w, n) we have: w<h=n, |f(x+h)|=n, f(x+h)

- >

An(x ; g; w, n)cBn(x ;85 0,1).

; @, n) for B <O0.

h>f. Therefore h e B.(x; B; w, n). Consequently

For each h e B,(x; B; w, n) we have: w<h=n, |f(x +h)|§n,f(x—+h%€@

B _ Bn.p ( B, Y
> n- nhon and therefore heA, x,n,w,n). Thus B,(x;f3;w,n) <
A,,(x, ,w,n).

As, for o <h =n), the inequalityw>0 holds iff f(x +h) — f(x)>0

holds, we have that A,(x;0; w,n) = B.(x;0; w, n).
The relations for the case 3 <0 are proved analogously as those for >0.

Proposition 5. Let 0<w <n.
For wn,r(x ; @, n)> — o there holds:

(wn r(x w, 71)’ w" ’(x w, n)) = @, r(x w, n) =

@ n
é max (w".r(x s @, n)’ w,,,,(x s @, n))
w n )
and
max (u)n,r(xa',) w, n), w::,r(xr; w, T’)) _

—min(

Yo x50,1m) Yaulx;o,n)\ n-w
o RSl
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If Y, (x;w,n)=—co, then @, (x; W, N)= — oo,

Proof. Let ¢, (x; w, n)>0.

Let B be such a real number which satisfies 0<fg <, (x; w, ). Then there
exists such a y that <y <y, (x; w,n) and |B.(x; y; w, n)| > r(n — ). From

this and from propostion 4 we get that |A,.<x ; %; w, 'l) Z |B.(x; v; w,n)| >

/

rin—w). Thus @, (x;w,n) = %>§ Therefore @, (x;w,n) =
n,AX; W,
sup (£ 0<p <y s 0, m) = YndEi 1)

Let ¢, (x; w,n)<pB. Then |B.(x;B; ®w,n)| = r(n—w) and, according to
An(x;g;w, n)’ = |Bu(x; 85 0,m)| = r(n - ).

/

proposition 4, this implies that

From this @, (x; 0w, n) = g Thus @., (x; w, n) = inf {g Yulx; w,n) < B}
_ Yndx;0,1m)
- .

The inequality 0<”’""(xa;)“” n _ ¥adxiw.n) _on

-
: =
0 _— Yo x;0,n) =

n—w

Il + mie

Yo lx; w,n)>0.

Let vy, (x; w,n)=0.

Then for every B less than v, (x; w,n) there exists such a number y that
B<y<y..x;w,n) and |B.(x;y; w,n)| > r(n—w). From propostiion 4 and
A,.(x;ﬁ; w, n)' Z |B.(x;v;0,m)| >

vy B

finishes the proof of the assertion of proposition 5 for

from the last inequality we get that

r(n—w). Thus @, (x;w,n) = 5>5 for each B less than vy, (x;w,n).
Therefore @, (x; w,n) = sup {g— B<Y. . (x;w, n)} = w_nw

Let now ¥, (x;w,n)=0. Then we have: |B.(x;f;w,n)| = r(n—w) if

.B. <
An<x, (U’ (l), n) =
|B.(x;B;0,m) = r(n—w) if Y, (x;w,n) < B. Thus @, (x;w,n) =

inf {E wn'r(x s, n)<ﬁ} = Wn.r(x s W, 7]) = wn.r(x s W, 7]) AS now also
() w n
Yo lX;0,m) _ Yulx;0,m) _ o = n-w
- ” 0 = (f)l +m
proposition 5 is proved for ¥, (x; w, n)=0.
Let —o<y,/ (x;w,n)<0. Then |B,(x;B;w,n)| = r(n—w) if

Y. x;w,n)<pB. This and propostiion 4 imply that

, the assertion of
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Yo lx;w,m) < [ <0. Consequently, by proposition4, there holds:

’A..(x;g;w,n)’ = |B.(x;B50,m)| Sr(n-w) if v, (x;0,1) < <0

Therefore @, (x; w,n) = inf {g Yulx;0,n) < B < O} = w"—'(xL’n)

n
wn.r(x 5 @, n) _ wu,r(x , W, ") — - . n_—w <
As o<tedriond) LAEON e T? =
(fx)|+n) nn_a)w’ the assertion of proposition5 is proved for —oo<

Y. (x; w, n)<O.

It remains only to prove that @, (x; w,n)= —o if Y, (x; w,n)= —. But
this is a consequence of proposition 4 and the inequality |B.(x;f; ®,n)| =
r(n — w), which holds for all <0 if ¥, (x; w,n)= — .

4. Let 0<0=wo<0,;<W:<...<Wi 1 <w,=7n. Let 0<r<1. We set A

{(ri,ras ..., re): 0=r; <1, r. is a rational number for i=1, 2, ..., k and

i}::lr,-(w,- —w;-)>r(n—w)}.

Proposition 6. Let 0<w <n.

1. Then for each (ry, 1, ..., 1) € A there holds:

a) Yu(X; Woy W1y ey Wiy Fry Fay oy 1) = DX Woy W1y ooy Wiy Fry Fay oees T

b) If @.(x; Wo, W1y ..., Wiy iy Tay ..y 1) > —o, then D, (X; Wo, Wy, «..; Wk
FiyFay ooy 1) — Wo(X 5 Woy Wiy veny Wi Fiy oy ooy 1) = ([f(x)| + 1)k

c) If feB,, then W,(x ; Wo, W1, ..., Wi ¥, T2y ..., ) € By,

d) If f is Lebesgue measurable, then W,(x; Wo, Wy, ..., W Fiy F2y -y Tk) IS
Lebesgue measurable.

2. We have:

a) @ (x;0,1n) =sup {DP,(x; W0, W1, ..., O 31, Tay ooy i): (F1y T2y ooy T) EA}.
b) ¥,(x) = sup {¥,(x; wo, Wy, ..., Wi5 FiyTay ooy 1i): (P ¥ay o, ) EAY =
@n. (x5 0, 1).

0 If @, . (x;0,m)> =, then @, ,(x;0, n)—P.(x) = (|f(x)| +n)vs.

Proof. 1. a) The assertion in a) is a direct consequence of proposition 5.

b) Let @,(x; Wo, Wy, ..., W5 T4, T2y ..., 1)> — . Then min {@,., (X ; ©i—1, @,):
r;>0, i=1, 2, ..., k}>—o. Thus we have: @, . (x; w1, ®;)>—o for each
i=1,2, ..., k for which r,>0. From proposition 5 it follows that w"‘,,(x W, 1,

. wor(X; @1, wor(X; i1, W
®,)>— and @, ,(x; @i, @)= min (w of = 1) Wl . J) =
i—1 i

(|f(x)l+n)% = (|f(x)|+n)v, for each je{1, 2, ..., k} which satisfies
i-100;

r;>0. From this @,(x; wo, Wy, ..., W}
Fisra 0 t) = (|[f(X)] +n)oe.
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c) Let feB,. It follows from proposition 3 that Y., ,(X; w._i, @) is a Borel
function of the class a if >0 and i=1, 2, ..., k. Since W, (x; w,, Wy, ..., O ;

. . nr-x.wi— wi nr-x.wi—ywi .
iy F2, ...y i) = min {mm (‘I’ .x{ (;) = ), Yo ,a) . )): r>0,i = 1,2,
i—-1 i !

. k} , it is obvious that ¥, (x ; e, W1, ..., Wy} F1, P25 -.., k) € By,

d) This is also an immediate consequence of proposition 3.

k
2. a) First it is obvious that UA,(x; f; wi—1, @) = A.(x; B; ®, n) for each
i=1

real number f3.

Let (r, 12 ..., i) €A and B<P.(x; Wo, Wy, ..., Wi Iy, T2y ...y Ti)- Then B<
min {@,,(x; wi-, ®): >0, i=1, 2, ..., k}. Therefore |A.(x; B; wi-1, w,)| >
r{(w; —w,_,) for each i = 1, 2, ..., k for which r,>0. From this [A,(x; 8; w, n)|

K
= E{lA"(X;ﬂ; Wi-1, wi)l: r>0,i =1,2, .., k} = zri (wi—wi—l) > r(n —w).
i=1

Therefore B=@, (x;w,n). Thus we have that @,(x;wo, Wy, ..., w;
FisT2 c.oli) = @ux;w,n) and therefore sup {D.(x; wo, Wy, ..., wy;
FisTas e 1) (Fis T2y oo, R)EA} = @ (x; 0, 1).

There holds sup {D,(x; wo, W1, ..., Wi T1, T2y ooy 1)t (F1, T2y ooy, T)EA}
= @nAx; 0, ) if @nx; @, M)=—00.

Let @, (x; w, n)>—. Let @, (x; w, n)>B. Then |A.(x; B8; w, n)| >

r(n—w).Fori=1,2,..., k, we denote by gq; the numberw—_—lw—i—1 |A.(x; B; Wi,
w,)|. If g: =0, we set r; =0. It is obvious that Z{q:(w; —w;_,): q¢;:>0,i=1,2, ..., k}
= Z{|A.(x; B; wiir, @)]: . >0,i=1,2, .., k} = |A.(x; B; 0w, n)| >r(n —w).
Therefore, for each i=1, 2, ..., k satisfying g; >0, there exists such a positive
rational number r; that r,<q; and Z{r(w;—w-): >0, i = 1, 2, ..., k}
>r(n—w). Thus (ry, rs ..., )€A. For r,>0 we have: |A.(x; B; wi-1, w)|
= qi(w; — w;—,) > ri(w; — w;_,). From this it follows that @, ,(x ; Wi-, w;) = B if
r;>0and B = min {@, (x; 0., @): 1>0,i = 1,2,.., k} = @u(x; wo, 0y, ...,
W3 T1y T2y ooy Te) = SUP {D,(X 5 Wo, Wy, ..., Wi 5 Sty S2y 2vvs Si): (S15 825 oo, SK)EA}L
Therefore there holds: @, (x; @, n) = sup {DP.(x; Wo, W1, ..., Wi F1, Fay oons Ti):
(ry, 12 ..., )EA). )

b) This is an immediate consequence of 1 a) and 2 a).

¢) Let @,..,(x; w, n) > —o and £>0. Then, according to 2 a), there exists
sucha (ry,7,...,r) € A that @,(x ; W, Wy, ..., Wk 371,725 o3 Tk) = Pn, r (x;0,m)—€.
Since, according to 1 b), W, (x) = W, (X ; Wo, W1y .y Wi 5 F1s T2y s i) = DX ;5 o,
Wiy ooy Wi 1y P2y ooy Ti) — (If(x)|+n)vk, we have ¥, (x) > @, (x;0,m) — €
— (Jf(x)| + n)vi. As € is any positive number, there is @, (x; @, ) — Wa(x) =

(f)l +nyve.
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Let 0<w<mn, 0<r<1 and k be a positive integer. We set .

l
=ot+sz(m-w)fori=0,1,2,..,2% Let, for k=1,2,3, ..., Ac = {(ri, 7, ...,

2k
r»): 0=r,<1 and r, is a rational number for i =0, 1, 2, ..., 2% Zr,» u
i=1

r.(n —w)}. We denote by @, ,(x; 7y, 72, ..., rx) the function min {@,. ,,(x; wi_y, «,
W) >0,i=1,2, ..., 2X}, by W, «(x; 1y, T2y ..., r2x) the function

o fmin (Lol 0 00) Yo s ) o g, ]

Wi-1,xk @, k

and by F the system {¥, «(x; ri, Fay ..., 12%): (P1y Fay ooy Fx)EAL, k=1,2,3, ...},
We remark that the system F is obviously countable.

Theorem 1. Let 0<w <n and 0<r<1. If f € B,, then the function @, (x; w,
n) is a lower semi-Borel function of the class o ; if f is a Lebesgue measurable
function, then @, (x; w, n) is a Lebesgue measurable function.

Proof. Now, from propostition 6 1a) and 2a), it follows that ¥, (x; ry, ro, ...,
rx) = @, (x; o, n) for k=1, 2, 3, ... and (r,, 72 ..., rx)€A.. From this
sup {g(x): geF} = @a.{x; w, n).

If @, .(x;w,n)= — oo, the equalitysup {g(x): geF} = @.. (x;w,n)holds.

Let .. (x; w, n)> — and £€>0. We choose such a positive integer k that

(f()]+n) =2 <e. By proposition 6.2. ¢), @y, (x5 @, 1) = SUp { Wil 11y 1

n—w

l’(llk

1) (Fyy T2y oo T2¢) € A} = (|f(x)] + 1) max{ TR >0,i =1,2,

...,2"} = (|f(x)|+n) 22k <e. Hence we get that @, (x; o, 1)

— sup {g(x): geF}<e. The last inequality holds for all positive £ and therefore
sup {g(x): g€F} = @, (x; o, n).

Let now f € B,.. By proposition 6.1. c), every function g € F is in B, and therefore
the set {x e R: g(x)>p} is a set of the Borel additive class a for each g € F and
eachBeR.Since {xeR: @, (x;w,n)>p} = U{{xreR:g(x) > B}:geF}and
since the system F is countable, the set {x € R: @, (x; w, n)>p} is of the Borel
additive class a. This proves that the function ¢, .(x ; w, n) is a lower semi-Borel

function of the class a.
Analogously, we prove that the function @, .(x ; w, n) is a Lebesgue measurable
function if f is a Lebesgue measurable function.

Proposition 7. Let 0<w<mnand 0<r<1. Then forn=1, 2,3, ..., B€eR and
x € R there holds :

a) Au(x; B; @, N)cA,u(x; B; o, ),

b) @nAx; ©, N)=@ai{x; @, N),
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©) @(x; @, M)=lim @, (x; w, n),

d) The function @,(x; w, n) is a lower semi-Borel function of the class a if
f€B,.

e) The function @,(x ; w, n) is a Lebesgue measurable function if f is a Lebesgue
measurable function. '

Proof. a) This follows at once from the definition.

b) From a) it follows that |A ,..(x; B; w, n)| > r(n —w) if |A,.(x; B; w, n)| >
r(n — w). Therefore f < @1, (x; 0, n) if B <@, (x;w,n). Thus @, (x;w,n) =
@Prir x5 ©, N). .

¢)Since A, (x;B;w,n) =« A(x;B;w,n)forn=1,2,3, ... and B € R, one can
zasily prove that ¢, (x; w, n) = @,(x;w,n)forn=1,2,3,.... Thus ’l‘i_r_llq/,.,r (x5
, n) = @(x; o, n).

Let now <@, (x ; w, n). Then there exists such a y that <y <¢,(x ; , ) and
|A(x; v; o, n)| > r(n—w). Since {A.(x; y; @, n)};-, is a non decreasing
sequence of sets converging to the set A(x; y; w, 1), there exists such a positive
integer n that |A,.(x; v; w, n)| > r(n —w). But this gives that ¢, ,(x; w, n) =
y>p. Therefore lim@, (x; w, n) = @.(x; w, n).

n—o

d) By theorem 1, for n=1, 2, 3, ..., the function ¢, (x; w, n) is a lower
semi-Borel function of the class a. Therefore, for n =1, 2, 3, ... and 8 € R, the set
{xeR: @..(x;w,n)>pP} is of the Borel additive class a. Since {x e R: ¢,(x ; w,

n>p} = G {x€eR: @, (x; w, n)>pB} for each f € R, the set {x e R: ¢,(x; w,
n=1

n) >} is of the Borel additive class a for each f8 € R. Therefore the function ¢, (x ;
w, 1) is a lower semi-Borel function of the class a.

e) Using theorem 1, we prove easily that @.(x ; w, ) is a Lebesgue measurable
function if f is a Lebesgue measurable function.

Let now 0<n and {n:};~, be a decreasing sequence of positive numbers which

converge to zero and n, =1, 1. e. n=n,>n,>n;>...>0 and limn, =0. Let A be

i—o

the system of all such sequences {r;};~, of rational numbers that 0=r;<1 fori =1,
2,3, ..., theset {i e N: r;>0} is finite and Zr,-(n,- —Ni+1)>rn. Let F be the system
i=1

{(D(x; {(n}izy; {ri}2): {r.}izi€ A}. We remark that it is obvious that the system F
is countable.

Theorem 2. Let n>0 and 0<r <1. Then there holds:

a) @.(x; 0, n)=sup {g(x): geF}.

b) The function @,(x ; 0, ) is a lower semi-Borel function of the class a if f € B,,.

¢) The function @,(x ; 0, n) is a Lebesgue measurable function if f is a Lebesgue
measurable function.
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Proof. a) Let g e F. Then there exists such a sequence {r,};2,e A that g(x)

= @(x; {n.}Z; {r}iZ1)- Let now B € R and B<g(x). Then B< g, (x ; n,.4, n;) for
each i € N for which r,>0. Thus |[A(x; 8 niv, 0)| > ri(ni—n..)) for each i e N

for which 7, >0. Since A(x;3;0,1n) = U A(x; 85 0i+1, n), there holds: |A(x ; B
i=1

0,n)| = Zr,»(n,- —Ni+1) >rn. Therefore B=q¢,(x;0, n).From this g(x) = ¢,(x;
0,n). Hence we get that sup {g(x): geF} = @, (x;0,n).

LeteR and B <@,(x;0, n). Then |A(x; 80, n)| >rm. Obviously there exists
such an n, that |A(x; B; 1., n)| >r. For each i=s we choose r,=0. Since

EIA(X ﬁ Nity, nl)l(n'

—Niv1) = |A(x; B n,, n)| >m, there exist such rational

nl+|
numbers ri, s ..., Fs_; that, fori=1, 2, —1, there holds: r,=0 if |A(x; 8
A i+1s l
N, M) =0, 0<r, < | (Xnﬁ: 17))| if |A(x; B; Nie1, M)|>0 and
i+1

s 1

zr,-(n,- —1Nix1) > rm. Obviously {r;}2,€ A. Thus @(x; {n;}=; {r:}i=1) e F. As for
i=1

each i € N for which r, >0 the inequality |A(x; 8; Ni+1, n:)| > r:.(n: —Ni+y) holds -
we have B <@, (x; n:+1, n:) for each i e N for which r,>0. Therefore S =P (x;
{n:}Zi; {r:}iZ1) = g(x). From this ¢,(x; 0,n) = g(x) = sup {h(x): heF}.

Thus we have proved that ¢,(x; 0,n) = sup {g(x): g e F}.

b) By proposition 7 d), each function @, (x; ni.i, n:) is a lower semi-Borel
function of the class a. As each function of the system F is a minimum of a finite set
of functions @, (x ; 1.+, n:) for some appropriate i, each function of F is a lower
semi-Borel function of the class a.As the system F is countable and {xeR: ¢,(x;
0,7)>pB} = u{{xeR: g(x)>p}: geF} foreach f € R, the function ¢,(x ; 0, n)
is a lower semi-Borel function of the class a.

c) This is a consequence of the countability of the system F, of the equation
@ (x;0,n) = sup {g(x): g € F} and the Lebesgue measurability of each function
@n(X 5 Moty M)

5. Proposition 8. Let n and k be positive integers.

1 . )
a) Then @, (x) = sup {@uu+n(x;0,1): 0<n=;, 7 is a rational number}.

b) If feB,, then @n.«(x) is a lower semi-Borel function of the class a.
c) If fis a Lebesgue measurable function, then @, «(x) is a Lebesgue measurable
function, too.

1 . .
Proof. a) Since {@uw+n(x;0,n): 0<n é;,n is a rational number} <
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{cpll(k+1)(x; 0,1m): O<n§%} it holds sup {@uw+»(x;0,n): 0<n é%, n is a ration-
al number} = sup {(p,/(kﬂ)(x;O, n): 0<n é%} = @ni(X).

Let now 8 <@..(x). Then there exists such a § that 0<d é% and @+ 1(x;

0,8)>p. Hence |A(x; B; 0, d)| >E%T' It is obvious that there exists such
1

1
a rational number ¢ that *<e¢ =4 and |[A(x; 30, )| > T+ 1 6= )

€. From

1 .
this @uu+n(x;0,e)=B and then also sup {@uu+n(x;0,717): 0<n _S_;, n is
a rational number} = @41 (x; 0, €)=p. But this proves that sup {@wi(x;

0,n): 0<n é%, n is a rational number} = @, «(x).

1 .

Thus we have proved that @, «(x) = sup {@uu+n(x; 0,n): 0<n é;, n is
a rational number}.

b) Let feB,. Since the system {@,+(x;0,n): O<n§%, n is a rational

number} is a countable and since each function .1, (x; 0, n), according to
theorem 2 b), is a lower semi-Borel function of the class a, the function @, « is the
least upper bound of the countable system of lower semi-Borel functions of the
class a and therefore it is a lower semi-Borel function of the class a.

c) If f is a Lebesgue measurable function, then the function @, . is the least
upper bound of a countable system of Lebesgue measurable functions and
therefore it is Lebesgue measurable.

Theorem 3. a) There holds: fi(x) = lim (lim @, (x)).

b) If f € B,, then f;;s is a lower semi-Borel function of the class a + 2 and thus it
is a Borel function of the class a + 3.

c) If f is a Lebesgue measurable function, then fl, is a Lebesgue measurable
function.

Proof. a) Let B<fX.(x). Then there exists such a positive integer p that the
h: h>0, fGe+h)—f(x)

A >[3} in the point 0 is

upper outer density of the set {

1
1 Therefore, for each positive integer n, there exists such
a number 7 that 0<n 5’% and [A(x;B;0,n)| = |{h: 0<h=n, MM>

greater than
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B} > [ﬁ n. Since for all positive integers n and k there holds: @, (x) =

@neri(x) and @uu(¥) = @uun(x), we have lim@, (x)=p for j=p. Thus

+

,](Lnl (']zll]: @ (X)) ZB. As 21_{2 ('lll_xg @n. (X)) ZP if B<fi(x), there holds: fZ(x) =
fim (lim @,..(x)).

If B <,!Lr2 (’{ﬁ @n.«(x)), then, foreach n =1, 2, 3, ..., there exists such a number
n. that O<n,,_S_% and @441 (x; 0, n,)>pB. From this O<nn§% and |A(x; 8;

0,n.)| > k%n,, for n=1, 2, 3, .... But this implies that the set {h: h>0,

f(x—+h}3—_—fﬁl>ﬁ} has in 0 the upper outer density not less than X i I Therefore

B=fa(x). Hence we have proved that 11_12 (11-12 @ni(x)) = fil(x). Thus the
equality fi(x) = lim (’1.112 @ (x)) is valid.

b) Let f € B,. Since for each ke N, ’lll_rg @., «(x) is the limit of a non-increasing
sequence of lower semi-Borel functions of the class o, the limit 'l'm @n. (x) is, for
each k € N, an upper semi-Borel function of the class a + 1. Since ,l.l_r.?n @ni(x) =

lim @, «..(x) for each k € N, the function fZ, is the limit of a non-decreasing

sequence of upper semi-Borel functions of the class o + 1. Therefore fZ is a lower
semi-Borel function of the class a +2 and thus fZ, is a Borel function of the class
a+3.

c) This is a consequence of the equality fi(x) = Zim (lim @, «(x)) and

proposition 8 c).

6. Theorem 4. a) There holds: a =0d..(a) and a =J..(a) for a =0.

b) There exists a Lebesgue measurable function the upper right essential
derivative and the upper bilateral essential derivative of which are not Borel
functions.

Proof. a) For a =0 this is obvious.

Let C be the Cantor set in (0, 1). The characteristic function c¢ of the Cantor set
is a Borel function of the class one and its upper right essential derivative, and also
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its upper bilateral essential derivative are Borel functions of the class one, since
Coa(X) = — 0, Cooo(x)=00 for xeC and Cchi(X) = Cce(x)=0 for x ¢C.
Therefore 1=0.(1) and 1=48..,(1).

It is obvious that for a >1 it suffices to prove this only for a non-limit a.

Let a >1 and non-limit. From the existence theorem (Theorem I. in [2], p. 182)
we get: For the Cantor set C there exists a subset A for which there holds:

(1) A is a Borel set in C of the additive class a —1,

(2) A is not a Borel set in C of the additive class less than a —1,

(3) C—A is not a Borel set in C of the additive class a —1.

It is obvious that the set A is a Borel set in (— o,) of the additive class o —1
and not of the additive class less than o — 1, the set (—,0) — A is a Borel set in
(— o, ) of the additive class a and not of the additive class a —1.

The characteristic function c, is therefore a Borel function of the class o and its
upper right essential derivative and its upper bilateral essential derivative are Borel
functions of the class a, as Ca (X)) = — 0, €4 eu(x)=00 for x € A and Ca tu(x)
= Caes(x)=0for x ¢ A. Thus we have proved that a =..(a) and a =4..(a) for
a>1 and the proof is finished.

b) Let A be a non Borel subset of the Cantor set C. Then c, is Lebesgue
measurable. AsCat(X) = — 0, Caes(x)=0forx €A and Ca tu(X) = Ca es(x)=0
for x ¢ A, the functions ¢ 4 & and ¢ 4 . are Lebesgue measurable functions, but not
Borel functions. :

7. We add another remark.

S. Banach in [1] gives the following two theorems:

If the set of all numbers in which one of Dini’s derivatives of a function f is
infinite is at most countable, then the function f is a Borel function of the class 2.

If one of Dini’s derivatives of a function f is almost everywhere finite, then f is
a Lebesgue measurable function.

Are there any analogies to these theorems ? Is the following assertion true : If the
extreme unilateral essential derivative of a function f is almost everywhere finite, is
then f a Lebesgue measurable function?
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EKCTPAMAIJIBHBIE CYWECTBEHHBIE MPOU3BOJHBIE BOPEJIEBCKHUX
W JIEBETOBCKUX MH3MEPUMBIX ®YHKLWN

Janucnas Muuwink

Pe3tome

B 3T0#t paboTe nokasbiBaeTcs, uTo @ <O (a)<a +3 v a <. (a)<a + 3 s KaKIoro nopsgKoBo
YMCIa o U3 NepBbIX ABYX KJIACCOB, KOTAA O (a) = sup {y: cyuiecTByeT GopesneBckas yHKLMs Kacca o,
KOTOPOIl OfIHA IKCTPaMajibHas OJJHOCTOPOHHSS CYILIECTBEHHA NPOU3BOAHAS NMPUHALIEXKHUT OopeneBc-
KOMY KJIacCy Y M He NMPUHAAIexXUT 6opeaeBckoMy kiaaccy & ansi O <y} u o (a) = sup {y: cywiecrByer
GopeneBckast (PyHKUMS Kllacca o, KOTOPOH OHA IKCTPaMalibHas ABYCTPOHHSS BYILECTBEHHAs POU3-
60HAA IPUHAMJIEXKUT GOPENEBCKOMY KJIACCY Y M HE NMPUHAJIEXHUT GOPEeBCKOMY Kiaccy O anst O <y).

Kaxkpas akcTpeManbHas CyLleCTBEHHas NPOU3BOHAs GopeneBckon (1eGeroBckon n3mMepumoit) yHk-
M — GopeneBcks (JederoBckas u3Mepumast).
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