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A REMARK ON THE CEBYSEV PROPERTY

BOHDAN ZELINKA

At the Fifth Hungarian Colloquium on Combinatorics in Keszthely in 1976 B.
Uhrin has proposed the following problem [1]:

Let A cR" be a set of finite cardinality |A|=m=n+1. The set A is said to
have the Cebysev (T —) property if the points of A can be indexed (i.e. if A can be
written in the form A ={a;}/L,) so that the condition

sgndet [a;, a,, ..., a, ] =const #0

for all {i }ioy, 1=i,=i,=...=i, =m holds.

Problem : Find some (fairly simple) sufficient (and, or) necessary conditions for
A to have the T-property.

He we shall solve this problem for the particular case of n =2. We shall always
use the term the Cebysev property, not the T-property.

If [a,, a,], [b1, b,] are two elements of R X R (where R denotes the set of all real
numbers), we write [a,, a,] & [b,, b,] if and only if

a, a;

b, b, >0.

The relation p> is evidently irreflexive and antisymmetric; it is not transitive on
R X R.

Suppose that A is a subset of R X R with the property described in the text of the
problem. We put [a,, a,]>[b,, b,] if and only if [a,, a,] and [b,, b.] are elements of
A and the element [a,, a,] has a greater index than [b,, b,] in the described
indexing. The relation > is a linear ordering and must coincide with the restriction
of ‘> onto A. Therefore the restriction of &> onto A must be transitive. On the
other hand, if the restriction of & onto A is transitive, it is a linear ordering and A
can be indexed according to that ordering and this indexing has the required
property. Thus we need to find all subsets A of R X R with the property that the
restriction of > onto A is transitive.

The set R of all real numbers can be partitioned into three sets P, N, {0}, where
P is the set of all positive real numbers and N is the set of all negative real numbers.
On the set R X R we have a partition

FP={PxP,PXN,Px{0}, NxP,NxN,Nx{0},{0}xP,{0} xN, {0} x{0}}
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I9A3U 12A9U 19A3U I3A3u 19A3U 19A3U 13A3U 13A3U 12A3U {0} x {0}
19A9U 19A3u 195U 1aA5u 19A%U 1aA2U skemje skemje shkem[e N x {0}
19A3U IaAau 19A3U skem[e skemie skem[e 13A3U 13A3U BETE d x{0}
19A3U skem[e 19A3U 19A3U skem|e 1aAdu 13A3u shkemje 19A3U {0} xN
19A9U skemje J9A3U 12A9U E.\_QANES 19A0U skem[e 13A3U q/'q>n/'p NXN
1aA0uU skem[e 19A3U skemje skemje ‘q/rq<tn/'p 13A3U tq/'q>/'p 13A3U dXN
19A3u 19A3U skeme 19A3U 19A0U skemje 19A3U 12A3U sheme {0} xd
19A0U 19A3U skemje 19A0U skemje q/'q>%n/'p skemje _ q/'q<in/'y skemie NXd
19A3U 19A%U skemje skemie tq/'q>%p/'n skemje SEVE} 19A0U g 'gq<in''p dxd

{0} x {0} N x {0} d x {0} {0} xN NXN d XN {0} xd Nxd dxd

1 2198l
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The sets from & correspond to the rows and the columns of Table 1. If S,e€,
S, e ¥, then at the intersection of the row corresponding to S, and the column
corresponding to S, it is written, when for an element [a,, a,] €S, and for an
element [b,, b,]eS, we have [a,, a;] > [b,, b.]. The reader may verify the
correctness of these data himself.

Evidently A cannot contain any pair of linearly dependent elements ; in this case
the determinant of this pair would be equal to zero. In Table 1 and in the following
text we shall tacitly suppose that A does not contain such pairs.

Now if A contains some elements from P X P and some elements of N X N such
that either a,/a,<b,/b, for each [a,, a,]e AnNN X N and each [b,, b,] e AnP X P,
or a,/a; > b,/b, for each [a,, a,]e AnNN X N and each [b,, b,] € AnP X P, then
the restriction of t> onto AN(P X PUN X N) is transitive. If A contains elements
[a,, a;] € PX P, [b,, b;] € NXN,[ci, c;] € PX P such that a,/a, < b,/b, < c,/cs,
then [a,, a;]>[b1, ba], [bi, bs] & [ci, ¢, [c1, ¢;] & a1, a,] and the restriction of ©
onto A is not transitive. Analogously in the case when A contains [a,, a,] € N XN,
[b1, b2] € PXP, [cy, c2] € NXN and a,/a, < b,/b, < c,/c,.

Similarly if A contains some elements from P XN and some elements from
N X P, then the restriction of > onto A n(P X NUN X P) is transitive if and only if
either a,/a, < b,/b, for each [a,, a,] € AnP X N and each [b,, b,] e AN X P, or
a,/a, > b,/b, for each [a,, a,] € AnP XN and each [b,, b,] € ANN XP.

Fig. 1

Now for two elements S,, S, from & we write S,— S, if and only if [a,, a,] >
[b4, b,] for each [a,, a,] € S, and each [b,, b,] € S;. We construct a mixed graph G
whose vertex set is & — {{0} X {0}} and in which there is a directed edge from S,
into S, if and only if S,— S, and there are undirected edges joining P X P with
N XN and P x N with N X P. The graph G is in Fig. 1; the undirected edges are
drawn by dashed lines.
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We omit the set {0} X {0}, because every determinant containing its element as
a row is equal to zero.

The pairs P X {0}, Nx {0} and {0} X P, {0} X N are not joined by an edge,
because the determinants from elements of sets of any of these pairs are equal to
zero.

Now let A =« R X R. By G(A) denote the subgraph of G induced by the set of all
vertices corresponding to the sets with which A has non-empty intersections.

Let T ={{PxP,PxN,Nx{0}}, {PxP, {0} XN, Nx{0}}, {PxP, {0} XN,
N x P}, {PXN, Nx{0}, {0} xP}, {PXN, {0} XN, NXN}, {Px{0}, NXN,
{0} x P}}. This is the set of all triples of vertices of G which induce directed
circuits. Evidently A must have the property that in each triple from T there exists
at least one set disjoint with A ; otherwise the restriction of > onto A would not be
transitive. .

Now consider the undirected edge of G joining P X P with N X N. There are
three directed paths of the length 2 from N XN to P X P; they go through the
vertices N X P, N x {0}, {0} X P. Further there are two directed paths of the length
2 from P X P to N X N ; they go through the vertices P X {0}, {0} X N. Therefore if
A has non-empty intersections with P X P, NX N and at least one of the sets
N x P, Nx{0}, {0} x P, then A must be disjoint with P X {0} and {0} X N and
a,/a, > b,/b, for each [a,, a,] e AnP X P and each [b,, b,] e AN XN. If A has
non-empty intersections with P X P, N X N and at least one of the sets P x {0},
{0} X N, then A must be disjoint with N X P, N x{0} and {0} X P and a,/a, <
b,/b, for each [a;, a;] € AnP X P and each [b,, b,] € AnNN XN,

Similarly, if A has non-empty intersections with P X N, N X P and at least one of
the sets P X P, P x {0}, {0} X P, then it must be disjoint with N X {0} and {0} X N
and a,/a, < b,/b, for each [a,, a,] € AnP X N and each [b,, b,] e ANNXP;if A
has non-empty intersections with P X N, N X P and at least one of the sets N X {0},
{0} X N, then it must be disjoint with P X P, P x {0} and {0} X P and a/a, > b,/b,
for each [a,, a;] € AnP XN and each [b,, b,] € AnN XP.

We have listed some necessary conditions for A to have the Cebysev property.
Now suppose that A fulfills these conditions. Then the graph G(A) contains no
directed circuit. If G(A) contains P X P and N X N and we have a,/a, > b,/b, (or
a,/a, < b,/b,) for each [a,, a,] € AnP X P and each [b,, b,] € ANN XN, we
direct the edge joining P X P with N X N towards P X P (or N X N respectively). If
G(A) contains P X N and N X P and we have a,/a, < b,/b, (or a,/a, > b,/b,) for
each [a,, a,] € AnP x N and each [b,, b,] € AnN X P, we direct the edge joining
P X N with N x P towards P X N (or N X P respectively). Evidently we obtain an
acyclic digraph. As > is transitive on each set from S, it is evidently transitive an
A. Therefore our conditions are also sufficient.

Thus we have proved a theorem.
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Theorem. Let AcR xR be a set of finite cardinality |A|=m=3. The set
A has the Cebysev property if and only if the following conditions are fulfilled :

(i) A contains no pair of linearly dependent pairs.

(ii) A does not contain [0, 0].

(i) If 7 = {{PxP, PxN, Nx{0}}, {PxP, {0} xN, Nx{0}}, {PxXP,
{0} X N, Nx P}, {PxN, Nx{0}, {0} xP}, {PxXN, {0} xN, NxP}, {PXN,
N x {0}, {0} x P}, {Px N, {0} x N, NX N}, {Px{0}, NXN, {0} X P}}, then in
any element of J there is at least one set disjoint with A.

(iv) IfFANP X P+0, AnN X N+0, then either a,/a, > b,/b, for each [a,, a.] €
€ ANP X P and each [b,,b,] € ANNXN, or a,/a, < b,/b, for each [a,, a:] €
€ANP X P and each [b,, b,] € AN XN.

(v) If AnPXN#0, AnN X P+0, then either a,/a, < b,/b, for each [a,, a;] €
€ AnP XN and each [b,, b,] € AnNN X P, or a,/a, > b,/b, for each [a,, a;] €
€ AnP XN and each [b,, b,] e AN XP.

(vi) If A has non-empty intersections with P X P, N X N and at least one of
the sets N X P, N x {0}, {0} X P, then A is disjoint with P X {0} and {0} X N and
a,/a, > b,/b, for each [a,, a,] € AnP X P and each [b,, b] € ANNXN.

(vii) If A has non-empty intersections with P X P, N X N and at least one of
the sets P x {0}, {0} XN, then A is disjoint with N X P, N x {0}, {0} x P and
a,/a, < b,/b, for each [a,, a,] € AnP XP and each [b,, b,] € AnNXN.

(viii) If A his non-empty intersections with P X N, N X P and at least one of the
sets P x P, P x {0}, {0} X P, then A is disjoint with N X {0} and {0} X N and a./a,
< b,/b, for each [a,, a;] € AnP x N and each [b,, b,] e ANNXP.

(ix) If A has non-empty intersections with P X N, N X P and at least one of the
sets N x {0}, {0} X N, then A is disjoint with P X P, P X {0} and {0} X P and a,/a,
> b,/b, for each [a,, a,] € AnP XN and each [b,, b,] € AN XP.

This theorem is very complicated. But most of the troubles are caused by the
pairs of numbers which contain zero. If we exclude them, we obtain a corollary.

Corollary. Let Ac (R —{0}) X (R —{0}) be a set of finite cardinality
|A|=m=3. The set A has the Cebysev property if and only if the following
conditions are fulfilled:

(a) A contains no pair of linearly dependent pairs.

(B) If AnP XP#0, AnN X N+#0, then either a,/a, > b,/b, for each [a,, a,] €
€ ANP X P and each [b,, b;] € ANN XN, or a,/a, < b,/b, for each [a,, a;] €
€ ANP X P and each [b,, b,] € AN XN.

(y) If AnP X N+0, then either a,/a, > b,/b, for each [a,, a,] € AnP X N and
each [b,, b,] e ANN X P, ora,/a, < b,/b, for each [a,, a,] € AnP X N and each
[b1,b,] e AP XN.

(6) f ANPXP#0, ANNXN+0, AnNN XP+0, then a,/a, > b,/b, for each
[ai, a;,] € AAP X P and each [b,, b,] € AnNNXN.
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(e) If AnPXP+0, ANPXN+#0, AnNN XP+0, then a,/a, < b,/b, for each
[ai, a;] € AnPx N and each [b,, b.] ¢ AnNXP.

The subgraph of G induced by the vertex set {P X P, P X N, N X P, N X N} isin
Fig. 2.

PxP PxN
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Fig.2
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3AMETKA O CBOVICTBE YEBBIUIEBA
Bornan 3enuHka
Pe3rome

Mycts A cR"™ ecTb MHOXECTBO KOHEYHOH MomOCTH |A|=m=n+1. Msl roBopum, uto A
o6nagaet cBoicTBOM YeGbiuleBa, eciu AMOXeET GbITh HAMUCAHO Kak A = {a,}7., TaK, YTO yCIOBHE

sgn det [a,,, a,, ..., a, ] =const # 0
BBITIOJIHEHO AN BCEX
{ix}r=1, 1<i,<i<...<i,<m .

[NpuBenensl HeOOXONUMBIE W JOCTATOYHBIE YCIOBMA [UIS TOrO, 4TOGLI MHOXECTBO 0Glajano
cBoiicTBOM YeObIlIeBa B cinyyae n = 2. IT0 ABNAETCH YaCTHYHBIM pelueHueM npobnemsl B. Ypuna.
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