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Math. Slovaca 28,1978, No. 3, 289—295 

ON CONVERGENCES OF SIGNED STATES 

ANATOLIJ DVURECENSKIJ 

In the paper the notion of the uniform and weak convergences of signed states on 
a logic will be studied. Some theorems about convergences will be proved. 

1. Uniform convergence 

Let L be a a-lattice with the first and the last elements 0 and 1, respectively, and 
an orthocomplementation l ^ ^ a 1 , a, a±eL such that 

(i) (aL)L = a for all aeL\ 
(ii) if a<b, then b±<a±; (1) 
(iii) ava± = l for all aeL. 

An orthocomplemented a-lattice L satisfying the condition if a<b, then b = 
= flv(fcAfl1) is called a logic. 

Two elements 0, b of a logic L are orthogonal and we write a Lb if a<b±. 
A nonzero element a in a logic L is called an atom if for any element b < a 
either b =a or b =0. An observable is a map x from the Borel sets B(RX) of 
Rx into a logic L such that (i) .*(#,)= 1; (ii) x(E)±x(F) if EnF = Q; (iii) 

CO CO 

x({jEf) = Vx(Ei) if {Ei} is a sequence of disjoint elements of B(RX). We de-
i » i i -= i 

note by a(jc) the smallest closed set CczRx such that x(C)= 1. If there is a com­
pact set KaRx such that J C ( K ) = 1 , x will be called bounded. For a bounded 
observable JC we denote ||JC|| =sup {|A|: A ea(x)}. 

A signed state on a logic L is a map m from L into i?,u{-oo}u{ + °°} such that 

(i) m(0) = 0; ^ 

(ii) m(\/ai)=^m(ai), a.la,, /=£/, { a J c L ; 

and from the values ± °° it may obtain at most one value. A signed state m on L 
such that m: L—>(0, l ) , m ( l ) = l is called a state. We denote by S(L) the set of all 
states on a logic L. It may be empty ([4]). A logic is quite full if the statement 
m(b)= 1 whenever m(a)= 1 implies a<b, where m is a state. 
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Let M(L) be the set of all bounded signed states on L. M(L) is a real Banach 

space with respect to the norm ||m|| = sup |m(a)|, the usual addition and the 
a eL 

multiplication by real scalars of signed states. The convergence with respect to this 

norm is called uniform (in symbols mn-^m). 

If JC is a bounded observable and m be a signed state on L, then the function 

m,(JE) = m(jc(E)), EeB(R{), (3) 
is a signed measure on B(RX). Therefore it may be written as a difference of two 
measures, that is mx=m+

x—m~. If the sets A, B eB(Ri) form the Hahn de­
composition of a signed measure mx, then m+(E) = mx(EnA) = m(jc(EnA)), 
m~(E) = —m(x(EnB)) for all EeB(Rx). Hence for the norm of m+ we 
have ||m + || = sup{m+(E): EeB(Rx)} = sup {m(x(EnA)): EeB(R,)} ^ 

^ sup|m(a)| ^ ||m||. Likewise | | /n"| |^| |m||. 
aeL 

Lemma 1.1. Let Lbea logic and xbea bounded observable, then the function x 

x(m) = JA dm, = JA dm+ —JA dm", m eM(L) , (4) 

is a bounded real linear functional on M(L) and 

IMI<2|M|. (5) 
If L is quite full, then 

IMI*PII*-2|M|. 
Proof. The function JC is well defined. It is homogeneous and linear as it follows 

from the equality 

(m+n)x=(m+nyx-(m + n)~ = m+
x+n+

x-(m~ + n-). 

For an estimate of JC we have i (m) = JA dm, = JA+ dm+ -JA~ d m + - JA+ dm" + 
+ JA~ dm~, where A+, A~ are the positive and the negative parts of /(A) = A. 
The first and fourth member is positive, the others are negative. Therefore 
a = jA+dm+ + jA~dm~ ^ ||JC|| (m+

x(Rx) + m~(Rl)) ^ 2 ||JC|| ||m||, likewise 
0 = jA+dm~ + jA-dm + ^ 2 ||JC|| ||m||. But |jc(m)| ^max{a, j3} ^ 2 ||JC|| ||m||, 
hence | | JC | |^2 ||JC||. 

Let now L be a quite full logic. In [4, Theorem 6.1] it is shown that 
||JC|| = sup{|jXdmJC| : m eS(L)}. This equality implies || JC | | ^ || JC ||. q.e.d. 

The logic L(H) of all closed subspaces of a separable Hilbert space H (real or 
complex) is one of the most important examples of a logic. A signed state m of the 
form 
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m(M) = tr(TPM), MeL(H), (6) 

where PM is the projector of M and T is the Hermitean operator of the trace class, 
is called a regular signed state. Theorem 3.4([2]) asserts that every bounded signed 
state on a logic L(H), where H is a separable Hilbert space of a dimension at 
least 3, is regular. 

Because of a one-to-one correspondence between the set of all bounded 
observables x on L(H) and the set of all Hermitean operators A on H, and by 
using the theorems about operators of the trace class, it may be shown that every 
bounded real linear functional on M(H) = M(L(H)), dim H ^ 3 , is given by the 
formula (4) and therefore x(m) = tr(TA), where x corresponds to A, and m to T, 
by (6). 

In [6] there is given the characterization of the uniform convergence of regular 
signed states on L(H): A sequence of regular signed states mn(M) = tr(T„PM), 
n = 1, 2, ... converges uniformly to zero iff the following condition is satisfied 

l imtr |T„ |=0. (7) 

2. Weak convergence 

A system of seminorms {||m||0 = \m(a)\: aeL} defines the weak topology on 
M(L). We obtain a locally convex Hausdorff topologic linear space. The Weak 

convergence in this topology of a net {ma} to a signed state m (insymbols ma—>m) 

is given by ma(a)-*m(a) for all aeL. If mn-+m, then mn-*m. The converse 

implication does not hold in general. For example, let Q = {1, 2, . . . } , L = {0, Q, 
{1, k}, {1, k}c, k^2}. Let us define a sequence {mn} of states by mn(a) = Xa(n), 

a eL for n = 1, 2, .... Then mn-^m, where m({l, k}c) = m(Q) = 1, m(0) = 

= m({l, k}) = 0, k = 2, 3, ..., but \\mn - m | | = 1 for every n. 

Lemma 2.1. Let there be a constant K>0 for a net {ma} of M(L) such that 

\\ma || <K for all a. Then ma-±m iff x(ma)-±x(m) for each bounded observable x 

on L. 
Proof. The sufficiency is trivial because of defining an observable qa (i.e. such 

an observable that qa({0}) = a±, qa({\}) = a) for all aeL. 
The necessity. Let x be a bounded observable, then there is a sequence of simple 

kn 

observables {xn} such that xn = ^h"qa„, where a", a" an
kn are orthogonal 

» = - 1 ' 
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elements for every n = l,2, ... and 11JC„ — JC11 —>0 [5, Lemma 7.1.] (If x, y are 
simultaneous observables, then x—y has the sense and x(m) — y(m) = 

= (x~y) (m) [5]). Hence 

\x(ma)-x(m)\^\x(ma)-xn(ma)\ + \xn(ma)-xn(m)\ + 

+ \xn(m)-x(m)\^\(x-xn)(ma)\ + ^ZXUmЛaD-mial)) 

+ | ( x „ - x ) ( m ) | ^ 2 | | m a | | | |x-x„ || + ||x|| £ |ma(«7)-m(a?)| + 
1 = 1 

+ 2 | | w | | | | x . - x | | ^ 2 ( K + ||/n||)||jc.-Jc|| + | | x | | ^ K ( f l 7 ) - m ( a 7 ) | , 
i = l 

and Lemma 2.1 is proved. q.e.d. 

Theorem 2.2. Let {m„} be a sequence of finite signed states on L. If there is 

a finite limit m(a) = lim mn (a) for all a e L, then m is a finite signed state on L and 
n 

the o-additivity of a sequence {mn} is uniform with respect to n. 
Proof. It is evident that m is a finite finitely additive real valued function on L, 

and m(0) = 0. We can show that m is a a-additive function, that is, if {a,}r=i is 
oo 

a sequence of mutually orthogonal elements from L with a lattice sum a = \J aiy 
i = i 

oo 

then m(a) = y^Jm(ai). Without the loss of a generality we may assume that a{ + for 
, • = 1 

all i. 
Let us denote by 2/ the Boolean a-algebra composed from elements of the form 

V 0i, where D is an arbitrary subset of Q = {1, 2, ...} (if D = 0, then \Ja,= 0). 
ieD i e 0 

The measurable space (Q, 2a) is isomorphic to .s#. The prescription */>({/}) = «, 
defines uniquely an isomorphism and hence ip(Q) = a. A sequence of signed 

measures (in(A) = mn(ip(A)) has a finite limit p(A) = lim /i„(A) for all A aQ. 
n 

By Nikodym's theorem ([1]), \i is a finite signed measure on (Q, 212). Therefore 
oo oo 

m(a) = lim mn(a) = lim ^(£2) = p(Q) = ^fi({i}) = ^m(at). 
n n , = i i = i 

The a-additivity of {mn} is uniform with respect to n because of the uniform 
a-additivity with respect to n of {^n} on (£?, 2a) (Nikodym's theorem [1]). q.e.d. 

Corollary 2.2.1. TTie cone of all positive negative bounded signed states is 
sequentially weakly complete. 
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Proof. Let {mn} be a Cauchy sequence of the elements of the cone. Then there 

exists lim mn(a) for all a eL and therefore m is an element of the given cone, by 

Theorem 2.2. 
q.e.d. 

Corollary 2.2.2. The set S(L) is sequentially weakly complete. 

Theorem 2.3. Suppose that L is such a logic that for any element b£0 there 

exists a countable system of orthogonal atoms {at} from L such that b = V#i- Then 
i 

the sufficient and necessary conditions for a sequence {mn} on finite signed states 
to converge weakly to a signed state m are the following 

(i) the sequence {mn(a)} has a finite limit for any atom a eL; 

(ii) for every orthogonal sequence {ak} of the atoms of L the series ]>}mn(ak) 
k 

converge uniformly with respect to n. 

Then the limit m(b) = lim mn(b) exists and it is finite signed state on L. 
n 

Proof. The necessity. The condition (i) is evident and (ii) follows from 
Theorem 2.2. 

The sufficiency. A sequence {mn(b)} is a Cauchy one for any b eL because if 

\Jak = b , where {ak} are orthogonal atoms for b, then 

\mn(b)-mm(b)\ mn(b)-mn(\/ak) + 

ml% 
k 

Vak) - mJV<tk) + mj^ak\-mm(b) 

Theorem 2.2 ensures that lim mn (b) = m(b) is a finite signed state on L. q.e.d. 
n 

Theorem 1 of [6] follows from the above theorem, as it can easy be seen. 

Theorem 2.4. Let a logic L satisfy the finite chain condition (f.c.c), that is, if 
{an}czL with ax>a2>... implies that there exists an integer N such that an = aN for 
n>N. Then the unit sphere <S = {meM(L): | |m | | ^ l} of M(L) is weakly 
compact. 

Proof. Let us assign an interval Dx = {teRx: | t | ^ 2 ||x||} to every bounded 

observable x. The cartesian product D= f j D*> where 0(L) is the set of all 
xeO(JL) 

bounded observables on L, is a compact space in the product topology. 
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A map <5 : ^ - + D , defined by 6(m) (x)^x(m), x e0(L) is a homeomorphism 
between the sphere » (in the weak topology) and its image d(^) (in the product 
topology). Indeed, <5 is one-to-one, because if <5(m,) = <5(m2), then x(mx) = x(m2) 
for any xeO(L). Especially, there holds qa(mx) = mx(a) = m2(a) for any 

observably qa, aeL. 6 and 6~l are continuous maps because of ma^>m iff 

6(ma) (x)-*d(m) (*), by Lemma 2.1. To prove that ^ is a compact set, it is 
sufficient to show that the image of ^ by 6 is closed, because then d(<S) will be 
a compact set. 

Let us <5(ma)—>§ e D in the product topology. We define m(a) = lim ma(a), 
a 

aeL, that means %(qa) = m(a). Then m is a signed state in the norm ||m|| ^ 1. 
We shall show that <5(m) = £. We may assume that xeO(L) is of the form 

k k 

x = ^2JkiX{ki)oX because L satisfies f.c.c. Then 5(m) (x) = x(m) = ^A I m(a{) = 
i=i -• . = i 

k 

= lim ^jhma(ai) = limjc(ma) = %(x), where a( = JC({AJ). q.e.d. 

If H is a real separable Hilbert space, then the cone of all positive (negative) 
regular signed states is weakly metrizable ([6]). For the space M(H), dim i L ^ 3 , 
the problem of metrizability seems to be open. 

Theorem 2.5. Let R(H) be a space of all regular signed states on L(H). Then 
R(H) is sequentially weakly complete. 

Proof. Let {mn} be a weakly fundamental sequence of regular signed states on 
L(H) and {Tn} be a corresponding sequence of operators of the trace class. There 

is a finite limit m(M) = lim mn(M) for every MeL(H). m is a finite signed state 
n 

on L(H), by Theorem 2.2. 
We shall show that m is regular. Denote by / the onedimensional subspace of H 

generated by a unit vector / . Then m(f) = lim mn (J) = lim (T„/, / ) . Hence there is 
n n 

a Hermitean operator T such that T=w - lim Tn. T is an operator of the trace 
n 

class because if {/} is an orthonormal base, then ^ (T/ , / ) = 2 m ( / ) = m(H). 

The series ^ iTf^fd converges absolutely because of the absolute convergence of 
i 

2 m(f,). We have thus m(M) = tr (TPM), MeL (H ) . q.e.d. 
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О СХОДИМОСТИ ОБОБЩЕННЫХ СОСТОЯНИИ 

Анатолий Двуреченский 

Резюме 

В работе исследуется понятие равномерной и слабой сходимости обобщенных состоянии на 
логике. Теорема Никодыма и другие теоремы о сходимости здесь доказаны. 
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