Mathematica Slovaca

Eliska Tomova

Decomposition of complete bipartite graphs into factors with given radii

Mathematica Slovaca, Vol. 27 (1977), No. 3, 231--237

Persistent URL: http://dml.cz/dmlcz/136147

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136147
http://project.dml.cz

Math. Slovaca 27, 1977, No. 3, 231—237

DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS
INTO FACTORS WITH GIVEN RADII

ELISKA TOMOVA
Introduction

The author of paper [5] studied the problem of the existence of decompositions
of the complete bipartite graphs K, , into factors with given diameters. In the
present paper we study a similar problem for the radii. In paper [4] the
decomposition of the complete graphs into factors with given radii is studied. Some
of the results are concerned with g-partite graphs. The main aim of this paper is to
determine the necessary and sufficient conditions for the existence of a decomposi-
tion of K, , into two factors with given radii.

All graphs in the present paper are undirected, without loops and multiple edges.
Let an integer ¢ =2 be given. A graph G with the vertex set V is called g-partite if
V can be partitioned into ¢ mutually disjoint, nonempty subsets V,, V., ..., V,,
which are called parts of G such that every edge of G joins the vertices of two
different parts of G. If G contains every edge joining the vertices of two different
parts of G, then G is said to be a complete g-partite graph and we write
G =K, m,..m, Where m, m,, ..., m, are the cardinalities of the parts V,, V,, ...,
V,, respectively (2-partite graphs are called bipartite).

By a factor of a graph G we mean a subgraph of G containing all the vertices of
G. By a decomposition of a graph G into factors we mean a system & of factors of
G such that every edge of G is contained in exactly one factor of . The eccentricity
e(v) of a vertex v is sup os(u, v), for all u e Vg, where gs(u, v) denotes the
distance between two vertices u, v € V; in G. The radius r(G) of a graph G is
defined as r(G)=min e(v) and the diameter d(G) of a graph G as
d(G)=max e(v). A vertex v is a centre of G if e(v) =r(G). The radius 7(G) is ©
if G is a disconnected graph or if G is a connected but e(v) is infinite for all v. The
remaining terms are used in the usual sense [1, 2, 3, 4, 5].

Let natural numbers p, ¢=2, r. (or symbol ») for 1<i<p and non-zero
cardinal numbers m;, for 1 <j=<gq be given. Our aim is to determine the conditions
for the existence of a decomposition of the graph K., m, .. m, into p factors with
givenradii ry, 1, ..., 7,.
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1. General case

Let g =2 and p be natural numbers, m, (i =1, 2, ..., ¢ — 1) — cardinal numbers
=1,r (j=1, 2, ..., p) — natural numbers or symbol %. Denote by C,, ...

N

(n, 15 ..., 1,) the smallest cardinal number m, such that the graph K .., ... ., €N
be decomposed into p factors with the radii r,, 7., ..., 7,. If such a number does not
exist, we shail write Cy, m,. . m,_, (71, 12y ...\ 1) =0,

The importance of the function C,,, ... ..., , can be seen from the next theorem.

Theorem 1. If the graph K., ., ... », Is decomposable into p factors with the radii
I, Iy ..., I, (Where =2 for i=1, 2, ..., p), then the graph K v, .. ..m, (Where
M,=zm,, M,=zm,, ..., M,=m,) is also decomposable into p factors with the radii
Py Tay eeey Ty

The proof of this theorem is analogous to that of Theorem 1 in paper [5].

From this theorem it follows:

Coroilary. The graph K.,, ... ... », can be decomposed into p factors with the radii
I, hy ..., I, (where n=2, i=1, 2, ..., p) if and only if

mqZthmz,..um“,.(rl'v rZa EEEE] rp)-

2. Decompoeositions of K., , into p factors

In the graph K, , (where m, n are natural numbers such that 2<m <n) there
evidently exists a factor with an arbitrary radius r for 2<r=m, and a factor with
another finite radius in K, . does not exist. If m =1, then in the graph K, , there
exists a factor with the radii 1 or « only.

Lemma 1. Let natural numbers p, m, n be given. If the graph K, , is
decomposable into p factors with finite radii, then

mn
s|— 7.
p [m +n-1 ]
Proof. The graph K, ., has mn edges. It is clear that the number of edges of
a factor with a finite radius is at least m +n — 1. Therefore

p(m+n—1)<mn

and the required inequality easily follows.

Theorem 2. Let m=2, p=3 and r,=r,=...=r,=». Then
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rn, If 2srn<m;
o, If m<rn<o;

C.(ri.rm...,r,)=1, if rn=0,m=2;
' 2, Iif n=o, m=1;
1, if n=1.

Proof. The last four relations are evident. To prove the first relation it is
sufficient to construct a decomposition of the graph K., ,, (which is easy to do).

3. Decomposition of K., into two factors

In the following we shall consider the case p =2. The case p =1 is trivial, as we
obviously have

1, if r=1;
C,,,(r)={2, if r=2, m=2;
o, otherwise.

A vertex v of a bipartite graph is said to be saturated if by adding an edge
incident with v there always arises a graph that is not bipartite.

Lemma 2. If a bipartite graph G has radius r =2, then G contains a saturated
vertex.

Proof. It is clear that the centre of the graph G with the radius r=2 is
a saturated vertex.

Lemma 3. If the graph K, , is decomposable into two factors F,, F, with radii
r(F)=r, r(E)=s, then 4<r<x implies s <5.

Proof. Let s=6. Let us consider two cases:

I. Let s <. Then there exists in F, a vertex x with a finite eccentricity s =6. Let
A, (i=0,1, 2, ...) be the set of all vertices from F,, with the distance i from x. It is
clear that A;# @ for 0<<i<6. Choose y € A,. It is easy to show that the eccentricity
of y in F, equals 3, which is a contradiction to the condition r=4.

II. Let s = oo, If F; is connected, then choose an arbitrary vertex x and we use the
method from the case I. Let F, be disconnected. Then F, is connected (otherwise
r=m) and it does not contain a saturated vertex (otherwise r =2). Denote by P
one of the components of F, and by Q the union of the others. In the factor F;
there exist between P and Q all the edges between the vertices of different parts of
K. .. P and Q contain vertices from both parts, because F; does not contain
a saturated vertex. Between vertices of two different parts in P (or Q, otherwise F,
is disconnected) there must exist at least one edge and an arbitrary vertex of this
edge is a centre of F,. It is easy to show that =<3, which is a contradiction to the
assumption =4,
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Lemma 4. If the graph K,, . is decomposable into two factors with the radii r and
s, where r=95, then s =3.

Proof. Let F, be a factor of K,, , with the radius » = 5. Then there exists in F, a
vertex x (the centre of F;) with a finite eccentricity 5. The vertex set of F, can be
decomposed into the subsets A, ={w: o(x, w)=i} for i=1, 2, ..., 5. Evidently
A;#0 for 1 <i/<5, and every vertex from the vertex set of K, , different from x
belongs to exactly one of the sets A;. In the factor F; there are all edges joining the
vertex x with vertices from A, and some edges joining vertices of consecutive
subsets A;, A;,, (i=1, 2, 3, 4). If F, has the radius =5, then F, must contain all
the edges which join: .

1. x with the vertices from the sets A, and As;
2. the vertices from A, with the vertices from As;
3. the vertices from A, with the vertices from A,.

If F, does not contain any other edges, then s = and r<3 (Lemma 3). If F,
contains only edges joining the vertices of A, with the vertices of A,, then s =,
which contradicts Lemma 3. It follows that F, contains edges joining the vertices of
A, with the vertices of A,, or the vertices of A; with the vertices of A,, or the
vertices of A, with the vertices of As;. But in all the three cases s =3. Q.E.D.

Theorem 3. Let m>0 be a cardinal number, r, s natural numbers or symbols
(r<s). Denote by C,.(r, s) the smallest cardinal number n such that the graph K,,, ,,
can be decomposed into two factors with radii r and s. If such a number does not
exist, we shall write C,(d, e)= . Then

if r<3, s=o, m=r;

If r=s=o, m=1;

If r=s=0, m=2,

if r=s=3, m=3, or r=5s=4, m=4,
if r=s=3, m=4,

if r=3, 4<s<o, m=s;

otherwise.

C.(r, s)=w

8§ @ WA~ NN

Proof. The first three relations are obvious. To prove the fourth relation it is
sufficient to construct a decomposition of the graph K; , into two factors with the
radii =5 =3 (this is impossible for K,;) — see Fig. 1 — and the graph K, ,
(m=4) into two factors with the radii »=s=4. According to Theorem 1 it is
sufficient to construct the corresponding decomposition of K,, into two factors
with the radii r =s=4 (see Fig. 2).

. The graph K, , is decomposable into two factors with the radii 3 (Fig. 1). From
this and from Theorem 1 the fifth relation follows. To prove the sixth statement it is
sufficient to decompose the graph K, , into two factors with the radii »=3 and s
and to use Theorem 1. From Lemmas 3 and 4 the seventh statement follows.
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Corollary. The bipartite graph K., . is decomposable into two factors with radii r
and s 2<r<s<w) if and only if n=C,(r,s), where C,(r,s) is given in
Theorem 3. ‘ '

Proof follows from Theorems 1 and 3.

From Theorems 1 and 3 the next Theorem 4 follows. In this Theorem all the
couples of cardinal numbers m, n (m<n) are given for which the graph K, .
decomposable into two factors with given radii.

Vi

Fig. 1

Fig.2

Vi
U, vy
u v
Uz Vi
u, vy
u; vy
Us v,
u 4/ VI.

Theorem 4. Let r, s be positive integers or symbols o and m, n be cardinal
numbers such that r <s and m < n holds. The bipartite graph K, , is decomposable

into two factors with the radii r and s if and only if one of the following cases
occurs:

1 -

(2)
NE))
4)
(%)
(6)
(M
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The next Corollary shows for which radii it is possible to decompose a bipartite
graph.

Corollary. Let natural numbers r and s (r<s) be given. A complete bipartite
graph decomposable into two factors with the radii r and s exists if and only if one
of the following cases occurs:

(1) r=3.

(2) r=s=4.

Proof. If r <3, then no bipartite graph can be decomposed into two factors with
finite radii » and s. From Lemmas 3 and 4 it follows that no bipartite graphs
decomposable into two factors with other radii than those given in (1) and (2) exist.
According to Theorem 3 bipartite graphs which are decomposable into two factors
with radii given in the Corollary do exist.

Table I

There are shown for given r and s all couples (m, n), where m<n, such that C,(r,s)=n and
C..(r, s)= N does not hold forany M<m,N<n,(M, N)=(m, n).

. | 1 2 3 4 5 6 7

% (1,2) (1,1) (2,2) (3,3) In this area no decomposition
| I

1 (1,1) exists for any K,, ,

2 1 @2

3 (3,3) (3.4) (4.4) (5.9 (6,6) (7,7

4 4.4) (4,4)] In this area no decomposition
I T

5 . (5,9 exists for any K, ,
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PA3JIOXEHHA IMOJHBIX OBYNOJbHBIX T'PA®OB
HA ®AKTOPBHI C JAHHBIMU PAIIUYCAMHU

Onuika ToMoBa
Pe3iome
PaccmaTpuBaeTcs npobneMa pa3noXeHHs MONHBIX ABYAONbHBIX rpadoB Ha (PAKTOPbI C NAHHBIMK

paguycamu. 31eCb HaxoAsTCA BCe Mapbl Yucen (m, n), 1N KOTOPHIX BO3MOXHO Pa3NOXHTb MOJHBINA
ABYROAbHbIA rpad Ha ABa ¢akTopa C AaHHBIMU PagUyCaMM.
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