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GENERIC BIFURCATIONS OF SECOND
ORDER ORDINARY DIFFERENTIAL EQUATIONS
ON DIFFERENTIABLE MANIFOLDS

MILAN MEDVED

1. Introduction. This paper describes generic properties of parametrized second
order ordinary differential equations on differentiable manifolds. Generic proper-
ties of such equations without parameters have been considered by
S. Shahshahani [8]. The problem of generic properties of 1-parametric dynami-
cal systems is studied e.g. in [3], [6], [7], [9]-

Let A be a compact C” manifold and let X be a compact C"*' manifold. Let
T(X) denotes the tangent bundle of X. Let K, (i=1, 2, ...) be compact subsets of

- T(X) such that K; = K,,, for all / and DK,- = T(X). Denote by I'/(TX) the set of
i=1

C’ vectorfields on T(X). Since T(X) is not compact, we endow the set I'7( 7X) with
the Whitney C” topology. A basis for this topology is given by the sets of the form

B(¢, 8)={nelr(TX)|d.(¢/Ki-int K,_,, n/K;-int K,_,)<&, fol all i},

where (el (TX), 6: T(X)— R is a continuous positive-valued function with
d;=min 6 on K.—K,_,. The set I';J(TX) has the Baire property, i.e. a countable
intersection of open and dense sets is dense.

Let 7x: T(X)— X be the natural projection. A vectorfield £ e I'7(TX) is called
a second order ordinary differential equation on X if D7xo{ =14,, Wwhere Dty
denotes the differential of the mapping 7x and 1,4, is the identical mapping of
T(X) onto T(X). Denote the set of second order ordinary differential equations on
X by I'(TX).

Denote by Hi(A, TX) the set of parametrized C” vectorfields on T(X) with the
parameter set A (cf. [1, §21]). Similarly to the case of the set I'7(7TX), we can
endow the set H{(A, TX) with the Whitney C” topology. Then the set Hi(A, TX)
has the Baire property.

A parametrized vectorfield & e Hi(A, TX) is called a C” parametrized second
order ordinary differential equation on X if &, € IL(7X) for all ae A, where
E,(x)=&(a, x) for xe T(X). Denote the set of C' parametrized second order
ordinary differential equations by H'(A, X). This set is a closed subspace of
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H{(A, TX) and we can endow it with the topology induced by the topology on
H(A, TX). Then the set H (A, X) has the Baire property.

A property P of a parametrized second order ordinary differential equation is
called genericin H' (A, X) if the set {Ee€ H' (A, X)| P} contains a residual set, i.e.
a set which is a countable intersection of open and dense sets in H (A, X).

We shall suppose that dim A =1 and dim X=n. Let §€ H (A, X) and let
(U, a), (V,B) be charts on A and X, respectively. Then from the property
Dr.0E, = idrx, for every.a € A it follows that the local representative &’ of & with
respect to these charts has the form

(1) gl(.u’xsv):(xv v, 0, Saﬂ(.u’xv ‘U)),
where

uea(l), (x,v)eB(V)XR", E,4: a(U)XB(V)XR">R" is C".

2. The case of a zero eigenvalue. Let (7X), denote the image of the zero section
in T(X), i.e. (TX),={0.€ T(X)|x e X}, where 0, denotes the zero of T,X. The
set (TX), is a closed submanifold of T(X), which is diffeomorphic to X. Let
T(TX), be the tangent bundle of (7X), and let (T’X),=
={0[x] € T(TX),|x € (TX),}, whee O[x] denotes the zero of T,(7X),. Since
(TX), is a closed submanifold of T(X) of dimension n, (T°X), is a closed subma-
nifold of T*(X) = T(T(X)) of dimension . Since X is compact, (TX), and (T>X),
are compact too.

Let 7x: T(X) = X, Trxy: T°(X)— T(X) be the natural projections. Denote by
Y(T?X) the set of z e T°(X) with the following properties

(1 . Trx(2) € (TX),
(2) DtX(Z)E(TX)o

This set is well defined and the definition is independent of coordinates. It is easy to
see that if (U, ) is a chart on X and (T2, T, tx'(U)) is a natural C” vector bundle
chart on T?(X) associated with the chart (U, @), then for zerty'(U),
To(z)=(x,0,0, y), where xe R", y€ R". Now, it is clear that the set Y(T2X) is
a C” submanifold of T?(X) isomorphic to T(X). Therefore we can identify them.
Since (TX), is isomorphic to X, we can identify them too. Therefore if
EeH(A,X), we can consider the mapping r(E)=E&/AX(TX),:
A X(TX),— Y(T’X) as a mapping r(5): A X X - T(X).

Now, define the set Hy(A, X)={EeH (A, X)|r(§)A(TX),}, where
r(&) A (TX), means that the mapping (&) transversally intersects the submanifold
(TX), in T(X) (cf.[1, §17)).
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Lemma 1. The set H,(A, X) is open and dense in H (A, X).

Proof. Define the mapping 0: H (A, X)— C'(A X X, T(X)), 0(&)=r(&) for
Ee H (A, X). This mapping is a C" representation (For the definition of C”
representation see [1, §18]). Since A X X is a compact manifold and (7TX), is
a closed submanifold of T(X), then by [1, Theorem 18.2], the set Hy(A, X) is
open in H (A, X). The density follows from [1, Theorem 19.1]. The assumptions
of this theorem can be verified similarly to the proof of [6, Lemma 1]. )

Denote C(&)={(a,x)e A X T(X) |E(a, x) e (T?X),. From (1) it follows that
C(&) c A X (TX),.

Proposition 1. If £Ee€ Hy(A, X), then C(§) is a compact 1-dimensional C’
submanifold of A X T(X).

Proof. If e H|(A, X), then r(§)A(TX), and by [1, Corollary 17.2]
C(&)=[r(&)]'(TX), is a closed 1-dimensional C" submanifold of A X (TX), and
since A X (TX), is compact, the set C(&) is compact too.

Let /4,: X— T(X) be the zero section. This mapping is a diffeomorphism of X
onto (TX),. Denote K(&)=R(C(&)), where R=id, X h;', id, is the identical
mapping of A onto A. By Proposition 1, the set K(&) is a compact 1-dimensional
submanifold of A X X (We have identified (7X), and X).

Since the mapping r(§): A X X— T(X) for £e H (A, X) is a parametrized
vectorfield, then if (a, x) € K(&), we can define the Hessian #(§).(x): T.X— T.X
at x of the vectorfield r(&)., where r7(§).(y)=r(&) (a, y) for y e X (cf. [1, §22]).

Denote X, (&§)={(a, x) e K(&)| F(x).(x) is  not  surjective}. Let
Z,(&§)=R7'(X\(§)) =« A X T(X). By almost the same procedure used in [6], it is
possible to prove the following proposition.

Proposition 2. There exists an open, dense subset Hy,(A, X) in H(A, X) such

that for every £e€ Hy, (A, X)

(1) Z,(&) is finite

(2) If (ao, x0) € Z,(&), then there exists a chart (W, h) on A X T(X) at (@, X,)
such that
h(CEN={(t, Y1, .-s ¥ar 0, ..., 0) e R [u=@o(y,), yi = @:(¥a), i=1, 2, ...,
n—1, y,eJ},
where @€ C" on J for i=0, 1, ..., n—1, J is an open interval, OeJ,
d’ @o(0)
dy:_#: 0.

(3) The principal part &, of the local representative of & has the form
(*) &(u, xi, y, v)=(v, au+pxi + w(u, x,, y, v), By +x(u, x, y, v)),
where B is a regular (n —1) X (n — 1) matrix, y =(x,, X3, ..., X,), ®, Y€ C’,
x(0,0, ...,0)=0, w(u, x,, 0, 0) contains only u*, ux, and terms of higher order
than 2, a+0.
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Lemma 2. Let C,De A(n, n), C=(c;), D=(d;). Letc,, =0 fori=1,2, ... n
and

Then the matrix

0, E ]
H= n n
‘[C D
has one eigenvalue A =0 of multiplicite 1. (0, is the zero matrix in A(n, n) and E, is
the unit matrix in A(n, n), A(i, j) denotes the set of all i X j matrices).

Proof. From the form of the matrix H it follows that A =0 is the eigenvalue of
H. Denote by P,(4) the characteristic polynomial of a matrix Q. Then
Py(A)=APy,(A), where

Ci2y «.o5 €y
[0“ . E.., C_[ ]
N 1= el N

Cn2y --vs Can

0,..._, is the zero matrix in A(n, n—1). Since

Cl2’ LRRE ] Cln’ dll
PH,(())=det[ ............ ]#0,

Cnzs +ovs Can» dny
then P, (1) has no eigenvalue equal to zero and therefore A =0 is an eigenvalue of
H of multiplicity 1.

Let £ € Hyi(A, X), (an, Xo) € Z,() and let (U X V, h, X h,) be a chart at (ay, x,)
such that &,(@.(x,), x,, @2(x)), ., @.(x,), 0, ...,0)=0for x,eJ, ¢ € C" on J, where
&.(u, x,, y, v) has the form (*). Then H(x,) = D.&,(@o(x1), X1, @2(x)), ..., @.(x1), 0,

0 E . . .
- 0)= [C(x.) D(x )] where D,&, denotes the derivative in (x,, y, v) and

2Bx,+o(x,), O0,...,0 3,
(x )~[ 0 :| s D(x.)— (qz,(x., )
0 B

Denote by Hi,(A, X) the set of all £€ H,,(A, X) such that 4,,(0)#0, where
D(x,)=(d;(x1)). It is easy to prove that this set is open and dense in H;,(A, X). If
&e Hy,(A, X), then by Lemma 2 the matrix H(0) has the eigenvalue A =0 of
multiplicity 1. From the form of H(x,) it follows that det H(x\)=
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(2x, +o(x,)) det B. From this and from the continuous dependence of eigen-
values of H(x,) on x, it follows that the eigenvalues of H(x,) do not change the sign
of its real parts in J for J sufficiently small except of one eigenvalue.

We have proved the following theorem.

Theorem 1. Assume r=3. Then there is an open, dense subset H,,(A, X) in
H' (A, X) with the following properties:
(1) For Ee H,(A, X), C(§) is a compact [-dimensional C' submanifold of
A X T(X).
(2) Foratfixedae A, the set {x e T(X)|(a, x)e C(§)} consists of isolated points.
(3) The set Z,(&) is finite.
(4) For every (a,, x,)€ C(E)— Z,(E) there is a chart (W, h) on AXT(X) at
(av, x0), h((W)=U XV, h(a,, x,)=(0,0) and a C" mapping @: U— V such
that h(C(E)n W)= {(u, 2)|z=@(u), ue U}.
(5) For every (a,, x,)€ Z\(§), there is a chart (UXV, h,Xh,) on A X T(X)
at(ao, x,), h(ao, x,)=(0, 0) such that
(@) (A xXh) (CE)NW)={(; Y15 Y25 s Yus 05 o, )t = @o(y1), yi =
=@, (y,), i=2,3,...,n, ueJ}, where J is an open interval, Qe J,
2(0)=0, dey(0) _ -0, d’ %SO) £0.
dy, dy;

(b) For u from one side of 0 there are no critical points of §, .+, in Vand for u
from the other side of 0 there are exactly two critical points of &,;, in
V and the following is true: The point (0,0) divides the set
C(&)n (U X V) into two components K,, K, and the number of eigenva-
lues of the mapping &£,(y) (a=h;'(u), y=h;'(x)) with the real part
greater than 0 is constant in the components K,, K, and differs by one.

(6) if (a, x)e Z,(&), then the mappmg &,(x) has exactly one eigenvalue equal
to 0.

Example. Let us consider the following second order orginary differential
equation on R:
X=v
v=—x’+v+u, xeR, ueR,
or in the form of the equation:

F—xi+x*—u=0.
The set of critical points is a parabola in the (u, x)-plane. For u <0, there are no

critical points and for 4 >0 there are exactly two critical points. The derivative of
the right-hand side of the equation at the point (u, x) e C(§) = {(u, x, 0) | u = x*}

has the form H(x)=[ 0 1

. 1]. The characteristic polynomial of this matrix is

13



P(1)=A%?— A+ 2x, which has the roots 4, = 1 +\/21—8x, A= 1*\/21 —8x.

Therefore

A,>0, 4,>0 for x>0,
1,>0, A,=0 for x=0 and
A,>0, A,<0 for x<O.

We have the following pictures of trajectories

IR0
)

nu=0 <0

O

Aa>0
Fig. 2

3. The case of a pair of pure imaginary eigenvalues. First we shall give an
example which describes well the generic situation of the case of 1-parametric

dynamical systems (cf. [3], [6]):
CX¥=—wy+ux+cex(x*+y)
y=wx+uy+cy(x’*+y?
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u=-—u
v=v,

dimx=dimy=1, dimu=R", dimv=R", n_+n,+2=n.

For the study of the topological structure of trajectories of this system in
neighbourhoods of invariant manifolds it is enough to consider this system on the
submanifold « =0, v =0. This system has a stable focus at the point (0, 0) which
changes to unstable focus if u cross the zero and there arises a closed orbit in
a neighbourhood of (). We shall show that this is the same in the case of the second
order differ.ential equations, too.

Let nel(TX) and let xe T(X) be a critical point of n. We say x is
a nonelementary critical point of multiplicity 4, if the mapping 7(x) has a pure
imaginary eigenvalue of multiplicity &(77(x) denotes the Hessian of the vectorfield
n at x, (cf. [1, §22]) and has no other pure imaginary eigenvalue.

Denote by H,,(A, X) the set of all £€ H (A, X) such that if for ae A the
vectorfield & has a nonelementary critical point, then it has multiplicity 1. Denote
by Z,(§) the set of points (a, x) € C(§) for which x is a nonelementary critical point
of &,.

Lemma 3. The set H,,(A; X) (r=1) is open and dense in H' (A, X).

Denote by A(2n, 2n) the set of Ce A(2n, 2n) of the form C= [2‘" %] , where

A, BeA(n, n),0,is the zero in A(n, n), E, is the unit matrix in A(n, n). The set
AQn,2n) is a C" manifold of dimension 2n>.

Let A,={(C, 4,, M) eAQ2n, 2n) X R*|A,=0, P(A,, A)=P}(A, A)= Py(A,,
A,) = P5(4,, A;,) =0, where P(A)=P,(ReA, Imi)+ iP,(Rei, ImA) is the characte-
ristic polynomial of C and P; +iP§=g—f. It is possible to prove analogously to
[4,82)] that A, =CJA.,, j=1,2,...,r, are disjoint submanifolds of

A(2n,2n)x R* of a strictly decreasing dimension and CJA,,— is closed for
R j=eo

0<@y=r,, codim A,;=4 for j=1,2, ..., r,.

Proofof Lemma 3. Let &, ne H (A, X), (a,, x,), (a», x,) € A X T(X) and let
(W, h) be a chart on T(X). Let &, n, be the principal part of the local
representative of &, {,,, respectively, with respect to (W, #). We say that
(&, a,, x,) is k-equivalent to (7, a,, x,) if and only if a, = a,, x, = x, and (&,(~(x,)),
Dé&,(h(x))), ..., D*E,(h(x))) = (n(A(x,)), Dn,(A(xy)), ..., D*ni(k(x,)). Obviously,
the k-equivalence is an equivalence. Let J“£(a, x) denote the class of triples
equivalent to (&, a, x). Denote by J*(A, X) the set of all classes J*&(a, x). The
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mapping 7': J'(A, X)— A x T(X), 7'(J'E(a, x))=(a,x)isa C" ' vector bundle
over A X T(X). For E€ H' (A, X) define the mapping 0:: A X T(X)—J'(A, X),
o:(a,x)=J'E(a,x) for (a,x)eAx T(X). Define the mapping g.:
AXT(X)X R*>J'(A, X)x R?, g, = 0. X id, where id is the identical mapping of
R? onto R’. The mapping o: H' (A, X)—»C '(A X T(X)x R?, J'(A, X)x R?),
0(§)=0: for Ee H (A, X) is a C"' representation. Let (a, a, X f3,, U X V) be
a natural chart on x' and let WcJ'(A, X)XR® be the set of
(p, A, A)€J'(A, X)X R? such that (a(p), 4., A.)=(u, y, 0,0, C. 4,, 1.), u€ R,
y€R",0is the zero in R", (C, 4,, A,) € A,. It is easy to prove that this definition is

independent of coordinates. Since A,=UA.,-, then W=U W,, where W, are

disjoint submanifolds of J'(A, X) x R? of strictly decreasing dimensions, U W, is

closed  for 0<g,=r, and codim W;=2n+4 for every . Let
ev,: H (A, X)XAXT(X)XR* - C™' (AXT(X)XR? J' (A, X)xR?,
ev,(E,a, x, A A)=0:(a, x, A,, 4,). It is easy to prove that ev, AN for every
submanifold N of J'(A, X)x R? and so ev,AW. Let E€ H;,(A, X), and let
(B, ay X B, UX V) be a natural chart on x' as in the definition of W and
BJ'E(a, x)) = (as(a), Pu(x), &Ei(x), DE!(x)). Since (TX), is a compact subset of
T(X), there is a neighbourhood N(&) of & in H' (A, X) and a number g >0 such
that for every n € N(§), (a, x) e A X (TX),, every eigenvalue A(n, a, x) of Dn.(x)
is such that |A(n, a, x)|<gq, where B(J'E(a, x)=(a.(a), Bu(x), nix), Dni(x)).
Therefore for n € N(&), o(n) A W if and olny if 2(n) A W on the set

AX(TX)oX[—q, q]. Denote ¥,={n e N@&lom) A~ (J W on

AX(TX)oXxX[—q, q]} fori=1,2, ..., . From [1, Theorem 18.2] it follows that
the sets ¥;, i=1, 2, ...,r, are open in N(&). Science codim W,=2n +4 for all j,
theno(n)AWonA X (TX),X[—gq, q] means that o(n)(A x T(X)X[—q, q]) N
W =0 and so the set H{,(A, X) is open in H" (A, X). The density follows from [1,
Theorem 19.1] analogously to the proof of [6, Lemma 6].

Let A,={(C, 4, )€ A(2n, 2n) X R*| P(Ai, &)= Py(Ai, ;) =1, =0}, where

C= [?{ IZ] Similarly to [4, § 2] it is possible to prove that A, = U A,;, where A,;,

Jj=1,2,...,r, are dlS]Olnt submanifolds of A(2n, 2n)x R* of strlct]y decreasing
dimensions and the set U A,; is closed for 0<g,=r,, codim A,, =3.

F=eo

Let z': J'(A, X)— A x T(X) be the mapping as above and let (a, a, X B, U X
V) be a natural chart on x'. Let W' cJ'(A, X)X R® be the set of
(p, A, &) eJ'(A, X)X R? such that (a(p), A, 4)=(u, ¥, 0,0, C, 4, 4,), ueR,

y€R",0isthe zeroin R", (c, A, A,) € A,. Since A, = UAz,-, so W' = L2J W', where
i=1 i=1
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W/, are disjoint submanifolds of strictly decreasing dimensions, U W' is closed for
i=eo

0<g,=r, and codim W;=Z2n+4 for j>1 and codim W,=2n+3. Let
0: H'(A, X)»C '(AXT(X)XR’, J'(A, X)X R?) be the mapping from the
proof of Lemma 3. Let H7.(A, X)={&e H\(A, X)|0(§) A W'}. Similarly to the
proof of Lemma 3, the following lemma can be proved.

Lemma 4. The set H,(A, X) is open and dense in H (A, X).

Denote HIJ(A, X) = H(T)z(A, X) N Hrlz(A, X)'Let EE H?s(A, X),(a(,, xn) € C(§)
and let (V, B) be a chart on A X T(X) at (a,, X,). Let & be the principal part of the
local representative of £. Denote by F(¢) = D,&(¢) for te [ = B(V n C(&)), where
D,E, is the derivative of &(u,y) (y€R™) with respect to y. Let T=
{(s1, 52)€R2|51 =0}.

If A, is a simple eigenvalue of F(s) for #, €I, then by [4, Lemma 6] there is a
neighbourhood N of ¢, in I and an unique C” function A: N— C such that A(#,) = A,
and A(¢) is an eigenvalue of F(¢) for t € N. Further, there is a nonsingular C” matrix
C(t) on N such that C™'(¢)F(£)C(¢) = B(¢) for t € N, where the first column of B is
transpose of (4(¢), 0, ..., 0). Let A(¢)= =4,(¢) + iA,(¢), £: N> R?, L(£)=(A.(2),
Ax(t)). Similarly to [4, Proposition 3] it is possible to prove that AAT if
Ee H1,(A, X). Therefore if £ e H7,(A, X), then the set Z,(£) is finite.

Lemma 5. There is an open and dense set H(A, X) (r=1) in H (A, X), which
has the following properties

(1) H(A, X) c His(A, X)
(2) If (a, x)e Z,(§), then the mapping &E,(x) has exactly one pair of conjugate
pure imaginary eigenvalues.

The proof of this lemma is the same as the proof of [6, Lemma 10].

Let §e H(A, X), (a0, xo) € Z»(&) and let (U X V, a’ X 8') be a natural chart on
A X T(X) at (a,, x,) such that a’(a,) =0, B'(x,) =0. Let &' be the principal part of
the local representative of & with respect to this chart and let (a’' X 8’) (a, x)=
=, y,v)ee(axB)(Ux V)=U'x V' x R", where A, B are C" 2n X 2n matri-
ceson U', w(u, y, v)=o0o(|y|+|v|). We have the following system of differential
equations

y=v
- U=A)y+Bpv+ao(,y,v).
Since &€ H(A, X), we can transform this system by a regular transformation
Y=(x, x5, w, 2)"=C(u) (v, )" (C(u)e A(2n, 2n) is a regular C" matrix on U’,
u” means the transpose of u) to the form

Y=Au)Y+ad,Y),

(

0. E,

where A(u)=C(u)[A B

| w=ding (A, Hw. Hw). A=
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b

a(u) ﬂ(“)l for all u, @(0)=0, (0) # 0, all eigenvalues of H,(«) have negative
—B(u) aw)

real parts, all eigenvalues of H,(u) have positive real parts, i.e. we have the
following system of differential equations

%= a(@)x+ pu)x. + Yi(u, x,, x2, w, 2)
(*) X, = —{)’(u)x,+a(u)x2+ Yo (u, xi, X2, W, 2)

w=H,(u)w+ Y(u, x,, xo, w, 2)

z=Hy(u)z + Yi(u, xi, x:, w, 2),

Y=(Y,, Y2, Y5, Y)=C) (0, oy, C'(1) (xi, xo, w, 2))". If C(w)=
283 (C:Em where C(1)€A(2, n), i=1.2, C(u)e(2n—2.n), j=3. 4. then
Y(u, x,, X, w, 2))=(G(R)o*(1, x,, X2, w, 2), Ci(u)w*(u, x\, X2, w, z), where -~
0*(, X1, X2y W, 2)= 01, C7'(1) (x1, X2, w, 2)").

By [1, Appendix C] there exists a center manifold M, = {(x,, x>, w, 2) | w=u(u,
X1, X2), z=v(u, x,, x,)} for u sufficiently small, where u, ve C" ', u(0,0, 0)=
v(0,0,0)=du(0,0,0)=dv(0,0,0)=0. The mappings u and v are given by the
following system of equations

0

(1) e xx) = |

+

e‘""“"’Yz(M, M Mas (@, My M2y V(W5 My M2))dO

(2) i=a(@n,+ )+ Yi(u, 0, n2y u(u, n0,m2), v(u, N1, n2))
n.= —Bwn + a(@In.+ Ya(u, 0, 02, u(u, 01, n2), v(@, M1, 12))

(3) v(u, xi; x2)= J e Y (w, M My u(u, e, M2y v (0, M, M2))do,

where n=(n, n.) =(m(¢, u, x,, x2), n.(¢, K, x,, x,)) is the solution of the system
(2) with the initial condition n(0, u, x,, x,) = (x,, x,).

If we introduce the change of variables
p=w—u(, x,, x2)
qg=z-v(u, x,, x2),
then in these new coordinates the system (*) has the form
x = a(u)x +B(u)x+ Yy, xi, X2, p+u(u, x,, X3), g +v(p, x,, X))
(**) X, = = Bu)x + a(u)x, + Ya(u, x4, X2, p+u(u, X1, X2), g +v(u, x4, x2))

p=H(uw)p+X(u, x,, x:p, q)
G=H,(u)q+Z(u, x,, x5, p, q),

where X, ZeC™', X(u, x,, x5, 0, ¢)=0, Z(u, x,, X2, p, 0)=0.

Let @ =(@\, @2, @4, @.) be the parametrized solution of the system (**) in some
neighbourhood V" of 0. If p#0, G#0, then @(u, %, %, p, G, t)¢é V" for a
sufficie_ntly large ¢. If dimg=0 and p+#0, then @(u, x\, x,, p, )¢ V" for a
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sufficiently large — ¢, t<0. Therefore, if for y € U’, there is an invariant set of the
system (**) in V”, then it must be a part of the submanifold p =0, g =0. Now it
suffices to consider the restriction of this system to the submanifold p =0, ¢ =0,
i.e. the system

Xi=a(u)x +B(u)x, + Pi(u, x,, x2) ,

Y= = B(u)x+ a(u)x, + Po(u, x,, x3) ,

where @ (, yi, 12) = 2, B (i, X1, X2, u(p, X1, X2), v(1, X1, 12)), 0* = (01, 03,
ey @F), Co(u) = (B (1)).

Proposition 3.
2
2

1

M:

1B ()| #0 forall u.

x

M= 3

1

Proof. Suppose that > > |B,(1)|=0. Since

k=1j=1

C[on En]_AC [CZA C,+CZB]=[A.C, A,Q]
A BIT2% ¥ lca c,+cBl7lAC AC )’

where A,=diag (H,, H,). Therefore C,A =A,C, and since by the assumption
Cy(u)=0, then A,(1)C,(u)=0. The matrix A,(u) is regular and so C,(#)=0. But

this is impossible, because the matrix C(u) regular and this proves Proposition 3.
The properties of w* imply that

2

0¥ (U, x,, X2, W, 2) = Ry (U, x,, x2) + Ry, (4, X1, x2) + Ry (U, X1, X2, w, 2) +
+Rs; (U, Xy, X2y w, 2)+ Ri(U, X1, x5, W, 2), j=1,2,....nm,
where

Ry (1, x4, x2) = rho(u) x5 + i ()x 0, + rip(u)x3
Rai(ﬂv X, xz) = rgo(ﬂ)x:: + rilz(ﬂ)Xfo + rgl(u)xlx§ + ﬂ)s(ﬂ)x; s
’ r,eCon U,
Ry(u, x1, X2, w, 2) = D (Chow? + Corwix, + ClowiX2) +
i=1
+ E (dlzoznz + d{)lZ.-X| + d{lZZixz) ,
i=1 N

14
j 3 i 2 j 2 j 2
Rs;i(U, X1, X2, w, 2) = E(Clsowi +chwixi+ cowix, + ciwxi +

i=1
+Chawdd) + D (dhez} + dnZix, + diaixs + dinzxi + diszxd)

where w;, z; are components of w, z respectively, dim w =p*, dim z=¢g*, c. =
cx(1), dy = dy (1) are C” functions on U’, R;(i, x:, X, w, z) contains only terms
of orders higher than 3.
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Lemma 6. Let u(u, x,, x,), v(u, x\, x;) be the mappings defined by equations
(1), (2), (3) and let u= (u,, us, ..., u,.), v=_(v,, vz, ., v,.). Then

U,’(lla Xy, Xp) = u;()x-l +u' x, X0+ ugxs + “T(.ua X\, X2)
V(U X0, X)) = Vhox T F 0G0 + vixs ot (U, X, x) |

i=1,2,..p% j=1,2,...q% wy=u,u), vq=vy(u) are C *onU’
and these coefficients depend only on the elements of H,, H,, «, 3 and on
D*w*(u,0,0), j=1,2,...,n, but these do not depend on d"w*(u,0,0), j=

1,2, ...,n, m>2; u*(u, x,, x2), v¥(u, x,, x;) contain only terms of orders higher
than 2.

Proof. We shall prove the lemma for wu’, only, because for the remaining
coefficients the proof is similar.
= Qu(u, 0, ())
dxi

The formula (1) implies that

Bl 205 _ [ o 3Y,3m,  3¥:9n:
ox, i dx, dx, OJx, dx,

du on %%) oY, Svom  Svm
aw (ax. ax.+8x2 ax, + 3z (ax. 63/\7._+_ax2 ax.Hd

du(u, 0,0) _

It is obvious that

Pl ) _[* o[ 8 (23, 3V

dx2 dx, \dx, 8x,+8x, ox3

3 (3Y,\3n, 3Y, aznz 8 dY, am,  du 3m,
T ) G 22
dx,/3x, 0Ox, ax, dx, ox, 8)(2 ax,

MCRENCH (au an.+%%>+i (ayz) (@an,+@%)

ow 3x, \Ox, dx, Jx, dx, Ax, dx, dx, 3x, dx, +
oY, 8 (Svdm , Svom 1
* dz dx, (ax. x, +8x2 ax,> d
2
Since dY,(u,0,0,0,0)=0, it is obvious that 2—;‘2’(”’ 0,0) dependes on
. 1

3 3
Ny N2y an', a'lz d*Y.(u, 0, 0, 0, 0) only and does not depend on derivatives of 7,,

n. of orders higher than 1. By [1,22. 3] an.(u 0, 0), 222(% 0.0) depend on the
1
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Fulu. 0,0)
dx?
elements of H,, H,, a, # and it is a polynomial of the coefficients of
d*w*(u, 0,0,0,0) and it does not depend on d"w*(u, 0, 0,0, 0), m>2. The
proof is complete.

For the simplicity of computations, we shall suppose that dm w=p=1,
dim z=0. In a general case the procedure is the same. Let u(u, x,, x,)=
UzoX s + Uy X\ X0+ Ugpx s+ u*(U, X, X5), where u, =u, (u)e C’, u*(u, x,, x,) con-
tains only terms of orders higher than 2. Then

elements of H,, H., «,  only and therefore u5,(u)= depends on the

(UT(‘L" x“ x:, u('u' xl’ xz))= R2i(”7 xh xZ) + Rli(ﬂs xl» x2)+
+ R4f(”1 Xy, X2, u(y, X, xz))_'.

+ Rs,‘(ﬂ» Xis X2, u(.U, X, xz))+ Ri(ﬂ» Xy X2, u(.lls Xy, xl))s
where
LRG0 xa, u(u, X0 x2)) = ot (1, X, Xa) F et (U, X0 X0)x
+ C:hzu(.u, X, xz)xz = C{n(uznxf ‘unxx,+ u()2x§)xl + nyz(uzoxf +unxx,+ uozx§)xz +
+ term of orders higher than 3, i.e.

R4i(lls Xy, X, u(l, X, X)) = Cfvluztvx? + (Cti)lull + C{v2uzn)xfx2 + (C{nuozun)xlxg +
’ + C:I)zuuzx]1 +
+ term of orders higher than 3.
Rs;(u, x,, x5, u(u, x,, x,)) contains only terms of orders higher than 4. Therefore

w’;(ﬂ’ X, X, u(u, x,, xz))zRgf,'(ll, xl»x2)+R§,‘(.u,xn x2)+R?(ll, X1, X3) ,

where R%,(u, x,, x;)= Ry (u, x,, x) ,

Rni(l‘s Xy, xz)zsgox?'i' séle +Si|2x|x§ +S{13x§’ SQ(,= rio‘f‘ C:nuzm

§h = Port Corlhiy + Chaltzo, §'2 =iy + Chilloy + Coolty, Shs =iy + Clhylty,
and R*(u, x,, x;) contains only terms of orders higher than 5. Then

D(u, x1, x2) = Py(u, x,, xz) + Py(u, x\, x2) + P(u, x,, x2),
D(u, x\, x2) = Qx(1, x1, X2) + Qs x\, x2) + O(u, x4, x5),
where

PZ(.uv Xy, xz) = aan? +a,x,x;+ a()zx;
Pi(u, x,, x;) = am,x? + az,xfxz + alle-xg + an.ix;-
02(.“7 X1, xz) = bzuxf + b||x1x2 + buzxzz’,
Qi(u, x\, x;) = b:mx? + bzlxll,xz + b|2x1x§ + bmx;a

a = .-k(u)=2ﬁ.,-r{ik, bu = bu(u)=" Bosix for (i, k)=(2,0), (1,1), (0,2) and
i= i=1

aik = "‘('u)= 2ﬁ'ls{:"’ bi" = b,k([l)= Eﬁzi‘s{k for (l’ k)=(39 0)9 (23 1)’ (lv 2)7 (O’ 3)'
j= i=1 .
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We have proved that only a,,, b depend on r;, and only a3, b,; depend on 7,,.
If r, is a sufficiently small positive number, we can define the function d:
[0, 7o) = R' in the following way : For 0= x, <r,, d(x,) = y,, where the point (y,, 0)
is the point of the first intersection of the trajectory of the system
x,=@,(0, xi, X)),
X, = tpz(O, X1, X3)
through the point (x,, 0) with the x,-axis. This trajectory intersects the x,-axis at
least at one point different from (x,, 0) because the point (0, 0) is a focus of the
system (@). By [2, I1X] 4'''(0)=3'a,, where

(P)

JT
as; =@ [3(@;0 + bm) +a,+ b2|]
_4lﬁz [2(020b20 - al)2b02) —a, l(anz + azo) +b, l(boz + bzn)]

(cf. [2, IX]).
Now we shall prove the following lemma.

Lemma 7. Let H,,(A,X) be the set of E£eH,(A,X) such that if
(a0, x0) € Z,(E), then a,#0. Then this set is open and dense in H,(A, X).

Proof. We can consider a, as a polynomial function of the variables r/, and c/,.
T c [ ' o T c Byl i ’ j i
ay= 45 23[611530"' Bas0:l —v :4/322 3B1,(ro+ coittze) + B2 (ros + Coatto2)| — v,
i= j=1 :

" where B,=0;(0), y is a polynomial of the variables ., (i, k)=(2,0), (1, 1),
0,2), (2,1), (1, 2), ¢k, (i, k)=(2,0), (0, 1), (0, 2), but it does not depend on
', r'hs.. Now the opennes is obvious, because a; depends continuously on 7%, c’.

Density. Suppose that the set Hi(A, X) is not dense. Then there is a
Ee H{(A, X)such that a;= a5(rY, ..., I's, ...) =0 on some open set in the corres-
ponding euclidean space. Therefore a, has all coefficients equal to zero. The
formula for a, and the above computations show that in the expression of a, there
is only one term of the form KBi;rls, j=1,2,...,n (K =j—;3r2) and only one term of
the form KB4, j=1,2, ..., n. The other terms do not contain the variables 7/,
and r%,. This implies that 8,;(0)=p,(0)=0 for all j=1, 2, ..., n, but. this con-
tradicts Proposition 3.

- From Lemmas 3—7 and from [2, p. 274] we obtain the following theorem.

Theorem 2. There is an open and dense set Hy(A, X) in H (A, X) (r=3) such
that for every Ee H2(A, X)

(A) (1) the set Z,(&) is finite.

22



(2) If (ao, Xo) € Zo(E), then the mapping &.(x,) has exactly one pair of
conjugate pure imaginary eigenvalues.

(B) There is a neighbourhood U X V of (a,, X») such that the point (a,, x,) divides
the set C(§)n(U X V) into two components K, and K,, where
(1) for (a, x)€ K, there is no closed orbit of &, in V,
(2) for (a, x) € K, there exists exactly one closed orbit of €, in V. Moreover, if
din X=1 and a,<0 (a,>0), then this orbit is stable (unstable).

Example. Let us consider the following second order ordinary differential
equation on R':

(S) X=v
v=—x+uv+v(x*+v?), ueR',

or in the form of the equation
X—ux+x+x[x*+(%)’]1=0.

Denote o =]§ (x*+ v*). The form of the system (S) implies that for o we have the

following differential equation:

6=v(0"+u).
This implies that ¢ is constant on the parabola o>+ u =0 and this means that for
1 <0 the circle y: x>+ v>= —u is a closed orbit of the system (S). For u <0 all
eigenvalues of the matrix of the first derivatives of the right-hand side of (S) at
(0, 0) have negative real parts and therefore the critical point (0, 0) of the system
(S) is a stable focus and the closed orbit y is unstable. For u >0 the system (S) has
no closed orbit and the point (0, 0) is an unstable focus, because all eigenvalues of

the matrix of the first derivatives of the vectorfield (S) have positive real parts.
Therefore we have the following pictures of trajectories:

® ° @

<0 u=0

Fig. 3

It is easy to compute that for the equation (S) a, = and therefore this case is
generic.

The author is thankful to P. Brunovsky for helpful discussions.
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TUMUYHBIE CBOMCTBA OBbIKHOBEHHbBIX JU®®EPEHLIMAJIBHBIX
YPABHEHUW BTOPOT'O MOPSANIKA HA TUPPEPEHUIUPYEMBIX MHOTOOBPA3USAX

Munan Megsens
Pe3iome

B 3TOi cTaThe paccCMaTpUBAIOTCA THIMUYHbIE OUDYPKALMH TPAEKTOPHUH OJHOMAPAMETPHUYECKHUX
06bIKHOBEHHBIX Jn(depeHUnanbHbIX YPaBHEHMH BTOPOTO MOPSAKA B OKPECTHOCTH KPUTHYECKHUX
Tovek. [loka3bIBaeTcs, YTO BO3MOXHbBI IBAa THUMMYHBIX cayyas: MaTpuua nepBbIX MPOU3BOAHBIX
BEKTOPHOTO NOJISt UMEET

1. 0gHO cOGCTBEHHOE YHMCIO paBHO ()

2. mapy 4MCTO MHHMMbIX COOCTBEHHbBIX YHCEJ.

H3yyalorcs cooTBeTCTBEHHbIE K cinyyasm | u 2 Gnaypkauuu.
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