Mathematica Slovaca

Igor Bock

On quasiparabolical differential equations of higher order

Mathematica Slovaca, Vol. 26 (1976), No. 3, 229--240

Persistent URL: http://dml.cz/dmlcz/136121

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/136121
http://project.dml.cz

Math. Slovaca 26, 1976, No. 3, 229—240

ON QUASIPARABOLICAL DIFFERENTIAL EQUATIONS
'OF HIGHER ORDER

IGOR BOCK

We shall be dealing with the initial value problem

d"u du — px
0.1) A, dtm+...+A,,,_, dt+A"‘u_f (1)
du
(0.2) ar —o=u,r=0,1,...,m-—1

with the functions u: ([0, ©) — H), f*: ([0, ©) — H*), the operators A,: (H —
H*) and the elements u, € H, where H is a real Hilbert space and H* is a dual
space to H. : ‘

The existence and the uniqueness of a solution of (0.1), (0.2) will be verified in
the first part. We shall analyze the behaviour of the solution for £ — % in the
second part. We restrict ourselves only to the problems of the first and second
order. The application on the equation of bending of viscoelastic plate is shown in
the third part.

1. Existence and Uniqueness of a Solution

Let H be the real Hilbert space with a scalar product (.,.) and a norm ||. ||, H* be
the dual space to H i.e. the space of all linear and bounded functionals over H with
a norm ||.||«. If f*€ H, h € H, then we denote (f*, h)=f*(h). The Riesz
operator R € L(H*, H) is defined by

(1.1) (Rf*, K)={(f* h),f*e H* h € H.

We denote by C™ (.[O,_OO), H) the space of all m-times continuously differentiable
functions with the domain [0, ) and with the values in H and by C([0, ), H*)
the space of all continuous functions with the domain [0, ) and the values in H*,

We assume that A,, ..., A,, are linear and bounded operators with the domain H
and the values in H i.e.
(1.2) A, e L(H,H*), r=0,1,...,m
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The operator A, is assumed to be coercive ie.
(1.3) (Aox, x) = a || x|, x € H, @,>0.

Definition 1.1. Let f* e C([0, ©), H*), A, e L(H, H*), k=0,1,...,m,

u, € Hr=0,1, ..., m—1. The function u : ([0, ©)— H) is a solution of the initial
value problem (0.1), (0.2) iff

i) u e C™([0, »), H)
ii) u satisfies (0.1), (0.2).

Theorem 1.1. Let f*e C([0,®), H*), wu,€eH, r=0,1,..,m-1,
A, € L(H, H*), k=0,1, ..., m, A, satisfies (1.3). Then there exists a unique
solution of the problem (0.1), (0.2).

Proof. Using the Riesz operator R we convert the problem (0.1), (0.2) into the

initial value problem for the differential equation in the space H in the same way as
in the paper [4]:

(1.4) B(,%+...+Bm_,%+3mu=f(t)
(1.5) i =011,
where

(1.6) B,=RA, € L(H,H), r=0,1,...,m,
(1.7) - (Box,x)=a || x| x € H, @>0,
(1.8) f=Rf*e C([0, @), H).

" The operator R is linear bounded and invertible and hence the problems (0.1),
(0.2) and (1.4), (1.5) are equivalent. It is sufficient to show that there exists a
_solution u € C ([0, =), H) of the problem (1.4), (1.5). That solution will be the

solution of (0.1), (0.2) too. The initial value problem (1.4), (1.5) is equivalent with
the problem

dru & oo A
19 G * 2 BB, Gz = BR()
(1.10) 3—{‘,‘ o=, r=0,1,...m—1,

where the inverse operator B;' € L(H, H) exists due to (1.7). The existence and
the uniqueness of a solution of (1.9), (1.10) is proved in [9] under more general
assumptions. It is sufficient to consider the problem (1.9), (1.10) as the initial value
problem of the first order in the space 3= H™. A solution u € C([0, »), H) of
(1.9), (1.10) is then a unique solution of the problem (1.4), (1.5) and (0.1), (0.2).
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Remark. We can consider in (0.1) under suitable assumptions also the families
of nonlinear operators A,(¢). The assumptions must be similar as in [4] for the
problem of the first order.

I

2. Behaviour of a Solution for 1 — «

We restrict our consideration only to the equations of the first and second order.
The initial value problem (0.1), (0.2) for m =1 has the form

2.1) | A, d“+ Au= f*(t)

(2.2) u(0)=u,

We assume that Ao, A, satisfy the assumptions (1. 2), (1. 3) and moreover A, is
symmetric and A, is coercive i.e.

(2.3) (Aox,y)=(Aoy, x), x,ye H
(2.4) (Ax,x)=a, x|’ x € H, a,>0.

The followmg theorem expresses the asymptotic behav1our of the solution of the
problem (2.1), (2.2).

Theorem 2.1. Assume that the function f*, the element u, the operators A,, A,
satisfy the assumptions of Theorem 1.1 and A,, A, satisfy (2.3), (2.4). Then the
next estimate for a solution u € CV([0, ), H) of (2.1), (2.2) holds with the
constants M, v>0 depending only on A,, A,

t

Il <M . el + [ e If@lls dn), 120

0

(2.5)

If there exists such an element ft € H* that

(2.6) ) }ig} lF*(6)—rE llx=0
then
(2.7) lim [|u(1) = u.| =0,

where u.. is a solution of the equation
(2.8) Alum =f‘§

Proof. The initial value problem (2. 1) (2.2) is equivalent with the initial value
problem
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2.9) %‘ + B;'Byu=B3'f(1)

(2.10) u(0)=u,

with the operators B,, B, and the function f defined in (1.6) and (1.8). The
operators B, are coercive i.e.

(2.11) (Bx, x)=aq,

xll3, x e H, ,>0, r=0, 1

and B, is symmetric i.e. :

(2.12) (Box,y)=(x, Byy), x,ye H

The solution u(¢) of (2.9), (2.10) can be e);pressed (see [1]) in the form

t

u(t)=e“"""’"u(,+fe"’(‘f""""’B;'f(r) dr,

0

(2.13)

where e #3'%" is the abstract exponential-operator function with values in the
Banach space L(H, H) of all linear and bounded operators in H. The Bochner
integral in H ([10]) is considered in (2.13). In order to estimate (2.13) we shall use
the spectral theory. For this purpose we extend the space H to the complex Hilbert
space which we denote again H. We extend the operators B, over the complex °
space too. It can be verified easily that B,= B} and B, satisfy the inequalities

(2.14) : (Box, x)=a, || x|, >0
(2.15) Re (B.x, x)=a; x|, a;>0,x € H.

Let o(— B;'B;) be the spectrum of — B;'B,. If there exists such a constant v>0,
that

(2.16) Re A<v, A € o(—B;'B))
then there exists such a constant N debending only on B,, B, that
(2.17) le-272||l<N e, t € [0, ) \

This assertion is-provéd in ([6], Th. 1.2). If (2.17) holds with v>0 then the
conclusions of the theorem follow easily from (2.13). We show at first that Re 1 <0
for all A € o(— B;'B,). It is sufficient to show that the relation 0 € o(AB, + B,)
implies Re A4 <O0. ‘

Let Re 1=0. We denote by

(2.18) T(A)*=AB,+ B*

the operator adjoint to T(1)=AB, } B,. The operators T(A1) and T(A)* satisfy the
relations
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(2.19) Re (T(A)x, x)=Re (T(A)*x, x)=a, ||x]|?, a,>0,x € H.
Using the Schwarz inequality and the corollary from ([10], VII) we obtain
(2.20) R(T(A))=H, N(T(1))= {0},

where R(T(A)) is the range of the operator T(A) and N(T(1))=
{rxe H . T(A)x=0}. Hence A¢éo(—B;'B)) and so ReAl<0 for all
A € o(—B;y'B)).

It remains to show the existence of a number v >0 such that Re A < — v-for all
A € o(— B;'B,). Assume that there does not exist such a number. Then there
exists a sequence A, € o(—B;'B,) such that lim Re 4,=0. All points of

n—x

o(— B, 'B)) lie in the circle |A|<||— B;'B,|| We can choose such a subsequence

A... that lim 4, =4, and Re 4,=0. The spectrum o(—B,'B,) is closed in the

A=

complex plane ([7]) and thereby 4, € o(— B;'B,), Re 4,=0 that is a contradiction
which completes the proof of (2.16). As we remarked above (2.16) implies (2.17)
Then due to (1.8), (2.13), (2.14) the estimate (2.5) holds with the constant
M=Nmax (1, a ").

We verify now the second part of the theorem. Assume that (2.6) holds. The

existence of u.. in (2.8) is secured because A, € L(H, H*) and (2.4) holds. Let us
denote

(2.21) v()=u(t)—u.

(2.22) _ Vo= Uy— U..

(2.23) gr()=f*)—f=

The function v is a solution of the initial value problem
(2.24) A, %—}’+A,v =g*()
(2.25) v(0)=v,

Using (2.5) we obtain

I

(2.26) lo@ll<M e (vl +fe" llg*()|+ dr).

0

If lim f e |lg*(v)||* dt< o then
0

(227) lim [[v(0)] =0,

233



otherwise we use L’Hospitale rule and we obtain (2.27) from (2.6) too. Comparing
(2.21) and (2.27) we arrive at (2.7) which completes the proof.
Let us consider now the initial value problem of the second order

d’u du

(2.28) | A, dt2+A. q FAu=r@
(2.29) u(0)=u,

du
(2.30) T =u,

We assume that A,, A,, A, satisfy the assumptions of Theorem 1.1, A,, A, satisfy
(2.3), (2.4) and A, is symmetric and coercive i.e.

(2.31) (Ax,y)=(A.y,x), x,ye H

N
(2.32) (Ax,x)=a, . ||x|]?, 2,>0,x € H.

The following theoren expresses the asymptotic behavxour of a solution of the
problem (2.28), (2.29), (2.30).

Theorem 2.2. Assume that the funnction f*, the elements u,, u,, the operators
A,, A,, A, satisfy the assumptions of Theorem 1.1 and A,, A,, A, satisfy (2.3),
(2.4), (2.31), (2.32). Then a solution u € C® ([0, ), H) of (2.28), (2.29), (2.30)
satisfies the estimate '

(tu@1?+lu’ ()]
(2.33)

t

M e [l + a2+ [ e Dl ar

0

with the constants M, v>0 depending only on A,, A,, A,.
If there exists such a functional f* € H that

(2.34) ' lim [|£*(2) = f£[l+=0
then
(2.35)

tim (llu() = .l + ' Ol =0,
where u.. € H is a solution of the equation

(236) A =f*.
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Proof. We can consider instead of (2.28) the equation

d*u p du
dt2+B” B4

with the operators B, = RA,, r=0, 1, 2 and the function f = Rf*. The initial value
problem (2.28), (2.29), (2.30) is equivalent with the problem (2.37), (2.29),
(2.30). The operators B, are coercive

(2.38) (Bx,x)=a,

(2.37) —+B,'B,=B;'f(¢)

,a,>0,r=0,1,2,xeH.
The operators B,, B, are symmetric
(2.39) (Bx,y)=(x,B,y), r=0,2; x,ye H.

The problem (2.37), (2.29), (2.30) can be formulated as the initial value problem.
of the first order in the space ¥=HQH

(2.40) ﬂJ+ RBU =F(r)
(2.41) U0)="U,

with

(2.42) ' F()= (0, B5'f(£))"
(2.43) Uy = (o, )"
(2.44) | B = ( ng 5, B;lgz)

A solution U € C([0, =), %) of (2.40), (2.41) has the form

t

U(t)=e U, + J e"""IE(1) dr.

0

(2.45)

We shall use the spectral theory in the same way as in the proof of Theorem 2.1.
We extend the space H to the complex Hilbert space. The extended operators
B,, B,, B, remain coercive and B,, B, remain symmetric. Our aim is to verify the
existence of a constant v >0 such that

(2.46) Rel<—v, A € o(—RB)

If (2.46) holds, then there exists a constant N depending only on % such that
(2.47) le=®|| x<Net, t € [0, »).

Comparing with the proof of Theorem 2.1 we can see, that it is sufficient to verify

235



that Re A <0 for all A € o(—%B). It can be verified easily that A € o(— %) 1ff
0 € o(D(A)), where

(2.48) D(A\)=A’B,+ B, + B..

If A =0, then D(1)= B,. The operator B, is coercive and hence 0 € g(D(4)). Let
Re A =0, A#0. We consider, instead od D(4), the operator ([5])

(2.49) T(A)=A 'D(A)=AB,+B,+A7'B,.
The adjoint operator T(A)* has the form

(250) T(A)*=AB,+ Bf+17'B,

The operators T(4), T(A)* satisfy the relations

Re (T(A)x, x)=Re (T(A)*x, x) =
(2.51) =Re A(Byx, x)+Re (B,x, x)+Re 4 |A|73(B,x, x) =
=Re (Byx, x)=a, ||x|]%, a,>0,x e H.

(2.51) implies, in the same way as (2 19) i the proof of Theorem 2.1, that
0 o(T(A)) i.e. 4 ¢ o(—%B). Hence Re A <0 for all 1 € o(—2RB) and as we
remarked there exists v > 0 such that (2.46) holds. (2.46) implies (2.47). Combin-
ing (2.45) and (2.47) we obtain

t

IOl <N e (|| U]l + j

0

(2.52) F(7)]| d7)

Using (2.40), (2.42), (2.43), (2.52) we obtain the inequality (2.33) with the
constant M= N max (1, a,').

The second assertion of the theorem can be verified in the same way as (2.7) in
Theorem 2.1. It is sufficient to use (2.33).

3. Bending of Viscoelastic Plates

The previous theory can be applied to the mixed problems which, express
bending of viscoelastic plates ([2], [3]).

” dm r
3.1 2 Kf;rk)IF: un‘,k/=f*(xn X5, )
(3.2) 3—:,‘ o=, r=0,1, .., m—1
(3.3) u=%=0 on 3L
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or

u=0 on
(3.4) Z Kf,’,), g Wi cos (n, x,) cos (n,vx,)=0 on 0J0€
d*u

We use the notation u,,, = , I,], k,1€{1,2}. Summation over

dx; ox; Ox, dx,
repeated subscripts i.j. k. / is implied. The plate has the form of a bounded
domain £ c E, with Lipschitzian boundary 38 (def. [8]) The coefficients K are
symmetric i. e.

(3.5) K= K= K = Kii}
and positive definite i.e.

K €64 = ¢, (€1 + €1, + €3,),
¢>0,r=0,1,...,m, (&, €, €2) € E;.

The classical solutions of the problems (3.1), (3.2), (3.3) or (3.4) can be
established only for sufficiently smooth boundary 342 ([2]). We introduce therefore
a weak solutions of the problems.

We denote by H?*(£2) the Sobolev space of all functions from L,(£2), whose
generalized derivatives up to the 2-nd order are in L,(£2). The scalar product in
H?*(Q) is defined by

(3.6)

(37) (u, U)2=|ilzsz EI DiuD'v dQ

alll
Axi ox%’

(D"u = =I,+1).

Let 2(£2) be the set of all arbitrarily differentiable functions with a compact

support in 2 and H3(£2) be the closure of 2(£2) in the space H*(£2). It is well
known ([8]) that F2(€2) is a Hilbert space with a scalar product

(u, v)o= [DuDde

(3.8) , Mq
and a norm
(3.9) lleello=( Z= j (D'u)? d2)">

which is equivalent with the original norm in H?*(£2). We denote further by H*(2)
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the space of all linear functionals over Hj(£2). It can be verified with the help of
Fridrichs inequality ([8]), that L,(2)c H*(£2) and if f* € L,(R2), h € H¥(2),

then (f*, h)=f*(h)=ff*/z de.

Definition 3.1. Let f* € C([0, ), H™*(2)), u, € H¥(2),r=0,1, ..., m—1. The
function u € C“ ([0, ), H3(L2)) which is for each h € H3() a solution of the
initial value problem

$a- j KStt,y ()P 42 = (F4(0), 1)

(3.10) odemr
(3.11) :ijtl;l l=()=ur’ r=0, 17""m—1’

is a weak solution of the problem (3.1), (3.2), (3.3).

Theorem 3.1. Thére exists a unique weak solution of the problem (3.1), (3.2),
(3.3).

Proof. It is sufficient to use Theorem 1.1. In this case the operators
A, : (H¥(2)— H*(Q)) are defined with the help of the duality

(3.12) (Aru’ h) =J ngrk)lu,ijh’kl de,
@

u, h € Hy(2), r=0,1, ..., m.

The operators A, are linear and bounded i.e.A, € L(H3(R2), H*(R)). Using
(3.5), (3.6), (3.9) we obtain that A, are symmetric and coercive and hence all
assumptions of Theorem 1.1 are fulfilled. The initial value problem (0.1), (0.2) is
in this case equivalent with the problem (3.10), (3.11) and the proof is complete.

In the case of the problem (3.1), (3.2), (3.4) we define a weak solution which
satisfies only the essential boundary condition # =0 on 3. We denote by H*(R2)
the subspace of H?(£2) which consists of all functions vanishing on 342:

(3.13)- H(Q)={u € H(L), u=0 on 38)}.

Due to the theorem on traces ([8]) H?(2) is the closed subspace of H*(£2) and
hence H*(R) is the Hilbert space with the scalar product (3.7). It can be verified
with the help of Friedrichs and Poincaré inequalities ([8]) that (.,.), defined in (3.8)
is the scalar product on H?*(£2) and the norm ||-||, in (3.9) is equivalent with the
original norm || - ||,=(.,.)"". Let us denote by H~(£2) the dual space of H*(£2).-
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Definition 3.2. Let f* € C([0, ), H %)), u, € H(Q), r=0,1,...,m—1.
The function u € C™([0, ), H*()) which is for each h € H*(2) a solution of
the initial value problem

) m dr
(3 14) E d[’ ngrk)luni(t)h’kl dg = (f*(t)’ h)
r=0 2
(3.15) g't‘,‘ vo=ty, 7=0,1, ..., m—1

is a weak solution of the problem (3.1), (3.2), (3.4).

Theorem 3.2. There exists a unique weak solution of the problem (3.1), 3.2),

(3.4).

Proof. It is sufficient to use Theorem 1.1 in the same way as in the proof of
Theorem 3.1. The operators A, : (H*(2)— H*(£2)) are of the form (3.12) for
u, h € H¥(L). They are symmetric due to (3.5) and coercive due to (3.6) and
(3.9).

Theorem 3.3. Assume that m=1, or m=2. Let f* € C([0, ), H *(Q)),

ft e H*(KQ) (f* € C([0, ®), H*(RQ)), ft € H*(Q))), lim|[f*(t)—ft]l«—0. If

u € C™ ([0, »), Hy(22)) (u € C ([0, »), H*(2)) is a weak solution of the problem
(3.1), (3.2), (3.3), ((3.4)) then

(3.16) lim ||u(f) — u.|| =0,

where u.. € H¥(2) (u. € H*(R)) is for each h € H¥(Q) (h € H*(2)) a solution of
the problem

(3.17) J K§odu, b, dQ2=(f%, h).

Proof. Due to the symmetry and the coerciveness of the operators A, in (3.12)
Theorems 2.1 and 2.2 can be applied. The result follows directly.

Remark. Theorem 3.3 expresses the fact that a solution of viscoelastic problems
(3.1), (3.2), (3.3), or (3.4) behaves for great time values as a solution of ela tic
problem (3.17).
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[MCEYJOMAPABOJINYECKHUE JU®PEPEHUUAIIBHBIE YPABHEHUSA
BBICHIETO MOPSAKA

Hrop Bok
Pes3ome

B aToi paborte u3yvaeTcs HayanbHas 3agaya (0.1), (0.2) B npoctpancTBe ImnnGepra H ¢
onepatopamu A, € L(H, H*). Ecau onepatop A, KO3PLUMBHBIH, MOTOM AJs 1H0GOM HENPEPBLIBHOM
(yHKUMY U TIO6BIX 31EMEHTOB &, € H cyluecTBYeT €MHCTBEHHOE peLIeHHe HavanbHOM 3amaun (0.1),
(0.2). Ecnum 3Ta HavyanbHas 3ajaya [MepBOro WM BTOPOrO MOPsiiKa, omnepatopel A , A, A,

KO3PUMBHBIE, ONEpaTopsl A,, A, cumetpuyeckue u lim ||f*(¢) — f£|« =0, £ € H*, tolim ||u(t) — u.| -

0, rae u., € H pewenne ypasuenus A,v =f&. Tony4yeHHblE PE3yNbTAThI HCTIONB3YIOTCS AJISl PELIEHHA
CMEILAHHBIX NPO6eM, KOTOPbIE OMPENESIOT W3rHObI BA3KOYNPYTHX MIACTHH
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