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POLARS AND X-IDEALS IN SEMIGROUPS

BOHUMIL SMARDA

In the first part of the paper the fcundations of the theory of polars are
generalized from lattice ordered groups (I-groups) to z-ideals in commutative
semigroups (see [1]).

In the second part of the paper a characteristic of z-ideals of a finite character
is given.

1.

Definition. Let (S,.) be a semigroup. A mapping x: 25 - 25 that fulfils the
conditicns

I. A=cS8S=>4c A4,,
1I. 4,B< 8, A< B; = Ay < By,

1ITII. A< 8S=8.4,<c 4.,

IV. 4, B=S=4.B,< (4.B),,

18 called an ideal-mapping ond a set A = S with A, = A s called an x-ideal
in 8. A system of all x-ideals in S, for the given ideal-mapping x, is called an
x-system. _

Remark. 1. From I. and II. it follows 4, = 4. 2. If (S, .) is 8 semigroup,
then for any 4,B< S we denote 4:B={ceS:c.B < 4}. With regard
to [1], Th. 3 the condition IV. is equivalent to (As:b)s = A4 :b, for each
A< 8,be8 if we suppose 1. and II.

Examples. 1. If (G, +) is a group, a 0 b = —a — b + a + b, then (G, o)
is a semigroup and a mapping = such that it maps every subset 4 = G on the
normal subgroup 4. in (G, +) generated by 4 is an ideal-mapping.

2. If (L,V,A) is a distributive lattice, @ . b = aA b, then (L, o) is a semi-
group and a mapping x such that it maps every subset A = L on the lattice-
ideal A in (L,\/,\) generated by 4 is an ideal-mapping.

3. If (R, +, .) is a ring, then a mapping  such that it maps every subset
A < R on the ring-ideal 4, in (R, -}, .) generated byA4 is an ideal-mapping.,

1.1. Let G be an l-group,A; be @ convex l-subgroup in G generated by A < @,
for each A < G. Then 1: 26 -> 26 is an ideal-mapping on the semigroup (G, o)

31



where a o b = |a|\ |b], for each a,b e G. Further, if B is an x-ideal in (G, ),
that is a subgroup in (I, then B is & convex l-subgroup in G.

Proof. Evidently 4 < A, and A = B; = A; < B,. For each s € 4, b € By,
A, B < G thereis a ob = |a|A |b] < |b] and thus 4 . B; < B;. Now we prove
that A;: g is a convex [-subgroup in G, for each 4 < G, g € G:

Ifa,bed;: g, hel, b <|al,thenhog= RN |gl <|a|\ g =a ged;
and hoged;,, hed, g, |—a|lA\lgl =8|\ lgl =acged;,ie, —acd:yg.
Further, (a + ) o g = la + blA Ig] < (la] + Bl + [aDA lg < (j6 A g) -
L (b A lgl) + (alA g € A, (@+b)oged, a-tbedig (@ 0) g
=loyv OIA lg] < la A |lgledy, ate€A;:g. Together (A,:¢9);= d,:g9 and
according to Remark 2. the mapping ! defines an z-system on (@, -).

Now, let B be an z-ideal in (G, ), B be a subgroup in G. If be B,g e (7,
gy < |b|, then |g| = [b|A gl =boge B, b = [bV 0 = [N bV O
=b.(by U)eB.

Remark. We shall suppose that in this paper a semigroup is always com-
mutative.

Definition. Let (S, ., e) be a commutative semigroup with a zero element. i.e.,
s.e=e.s=e, for each s € 8. Then we define relations 6*, 5" in S:

2ty <=>x.y=e, for x,yel
2y <x.y=c¢, for x,yel, xF£y
e <z =e, for xeb.

Further, K* = {s €8 :86%k, for each ke K}, K' = {seS:s0'k, for ecch
ke K}, K¥* = (K*)* K"=(K'Y. A set K< S with the property K**
= K(K" = K) is called @ 6*-polar (s 6'-polar).

Remark. 1. K € K** K < K" 2. A zero element e in a semigroup S is

contained in every x-ideal in S.

1.2. Let (8, ., e) be a commutative semigroup with a zero e. Then there holds:
1. A< B<c S=A4" 2B, A% 2 B*,
Ac 8= A" = A’ A*** = A%,
A< 8= A" and A* are subsemigroups in S,
Ac S=4 < A%,
A< S = 4% N 4% < {se S :s6*s},

6. A= S=>A4A"NnAd"=A4".4"= {e}.

1.3. Let S be a commutative semigroup with a zero e. For eawch A < S
put n*4d = A**. Then a* is an ideal-mapping.

Proof. 4 € A** and A < B** = A** c B¥*** — B** Further, for each
seS,acA** b e A*thereholds (s.a) . b=3s.(a.b) =s.e =¢,s.a € A¥%,
S. 4% < A% If seS,hed*, A< 8, then A**:s = {ceS:c.s e A**}

CU o s o
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and e— (c.s8) . h=c.(s.h),ie.,ce(s. A¥)* If ce(s.dA®)* he A%, then
e c¢c.(s.h)=(c.8).hie,c.se A% and (4**:s) = (s.4%)*, (4%*: s)**=
A** s,
1.4. If G is an l-group, then for each a,b € G the following assertions are
cquivalent :

1. la| A |b] =0, 2. ad’b, 3. ad*b.

Definition. Let (S, ., e) be o semigroup (commutative) with o zero e. Then
a*(S) (7' (S)) is the system of all 6*-polars (§'-polars) in S.

Remark. If ¢ is an [-group, then I'((') denotes the system of all polars in ¢
with respect to the relation 4:

adb <= |a| » |b] = 0, a,bed.

1.5. Corollary. If G is en l-group, then n*(Q) = =n'(G) = I'(G) with respect to
@ semigroup operation o (@ - b = || A |b], @, b € @) on G.
Remark. Further, let us denote a* = {a}*, a** = {a}**, o' = {a}’, a”" =
{a}".
1.6. If (S, ., e) is a semigroup with a zero e, then the following assertions are
equivalent :
1. ad*b < ad'b, for each pair a,beSs,
a.0=c¢e¢=a=-e, foreach acSs,
ad*b = a** N b** = {e}, for each pair a,bes,
a* N a** = {e}, foreach acS.

= W oo

Definition. We say that a semigroup (S, ., e) with a zero e has the property (E)
if @.0 —e =a=c¢, for each a € 8.

Remark. A semigroup (8, ., e) has the property () if and only if the
relations 6* and ¢’ are identical. We shall further suppose in this paper that (£)
is valid; @ 6*-polar of S will be called a polar of S.

1.7. Theorem. Let a commutative semigroup (S, ., e) have the property (E), x be
an ideal mapping on S. Then the following assertions are equivalent:

1. {e}z = {e},

2. N{d,: 4 < 8} = {e},

3. Every polar A in 8 is the greatest x-ideal By in S with respect to By N 4’ =

{e},

4. Every polar in S is an x-ideal,

5. (Ay)' = (A")z=A", A< S,

6. (Ag) = (Ad"); = A’, A = 8.

Proot. 2 = 1: From the fact that e € 4, for every 4 = § it follows {e}, =
S N{d;:4< 8} = {e}.
1 =3:If pecd;, ced’, then c.ped’ . A, < (4". A)s = {e}» = {e}, ie.,
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ped”"=4d, A < A and 4 is an x-ideal in S. Further, if B, is an z-ideal
in 8§,B;NA4"={e}, beB;, acd, then (b.c).a=0b.(c.a)=>b.e=¢,
b.ce A’ N B; = {e}. It means that be 4", B, = 4.
3=>4devidently. 4 = 2: {e} s N{dys: A= S} A4 NnA" = {e}.
4 =>5:(4")=d"(Adz)" 2 d4"and A, < 4" = (dz)" < A". Together (4,)" =
= (d"); = 4".
5 =4, 6 =>4 evidently. 4 = 6: (d");, = A’. Further, from 4 the property
5 follows and thus (dz) = (dz)"" = [(da)"] = A")Y = 4" = 4".

1.8. If A, B, A;(7 € A) are subsets in a commutcative semigroup (S, ., €) with
the property (E), then (U Ay) = ﬂ A’

Proof. (UAA = ﬂA (soe 1.,, ) and if xe () 4;, yelJ 4:, then
i1 2 A
x. J—eandtllusﬂAc (Y 4y
2 A

AzA
1.9. Theorem. The set w(S) of all polars in @ commutative semigroup (S, ., e)
with the property (E) is ¢ Boolean clgebra, where a complement of a polar A
in S is A" and the order in a(S) is defined by set-inclusion.
Further, \ 4, = ri Ay, \/ A; = U Aj)', foreach A, = 8,2 €A, A" v B =
hed 2
= (d"u B") = (A’ N B) = (4 u B , for each A, B<= 8, A" » B" =
=A"NB" = (4" VUB') = (4.B)", for each A,Bc 8, A" n B" = (4 n B,
for ecch x-ideals A, B in S.

. Procf. 8= {e}' is the greatest element in w(S), {¢} = 8" is the smallost
element in a(S). If A, € a(S) for 1€ 4, then ( n A7) =[N 4
zA
U A;) ﬂ A; and thus A 4; = ﬂ A;. Therefore a(8) is a complet >
A=A

lattlce and VA,l = ({J 42" and for each Aea@)Ard'=dn A" = {e},
b}

Advd = (A U AY = A'nAd")y = {e) = S.

Further, for every A, B < Sthereis A"v B"= (4" U B")" = (d' " B") =
=(dUB)", A" B"=A"N"nB"=(A4"UB'Y —seel18. Ifced.B,ded’
arc arbitrary elements, then ¢ = a . b for suitable elements ¢ € 4, b € B and
d.c=d.(a.b))=(d.a).b=e.b=c¢e, ie., ceA". From this A. Bc A"
and similarly 4. B< B”, thus 4 . B A"NnB", (4.B)"< 4" nB". For
every ke A" NB", ye(A.B), ceAd.B there is (x.y).c=z.(y.c) =
=wx.e=¢, le., v.ye(4d.B) and for each a €4, beB we have ¢ =
=@.y).(ea.)=(@x.y.a).bx.y.aeBNB" ={e},zr.yec A" Nnd" =
= {e}. Finally, "N B"< (4.B)" and A"NB" = (4 .B)". If 4, B are
x-ideals in S, then (4. B)"c (AN B)"< (A" N B")” A" N B,

Now we prove the distributivity of =(S): If 4, B, C € a(S), then (4 v B) »
ud.yud.BBuB.ON"cs[duBnO)] = A /(B rC) — see the
following Remark.
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Remark. Forevery 4 = S,a'e€ 4”,b € A’, s € S there holds that b . (a . s) =
=(b.a).s=e¢e.s=c¢e,ie,A".Sc A" From this A” . B"< A" N B”.

2.

Definition. Let x be an ideal mapping on o semigroup S. We say that x defines
an x-system of finite character if Ay = U {Nz: N < A, card N < N} for
each 4 = 8.

2.1. If G is an l-group, a .b = |al A |b|, for eazh a,b €@ arnd C(GQ) is & set
of all convex l-subgroups in G, then C(Q) is an x-system of finite character on
(@, .).

Remark. The set ot all x-idcals on a semigroup forms a complete lattice
with respect to set-inclusion (sve [1], Prop. 1).

2.2. Theorem. If (S,.) is a semigroup, © is a laltice of x-ideals, then the
following assertions are equivalent:
1. G is an xz-system of finite character.
2. S is the lattice of all subalgebras of an algebra.
3. The join of every upper directed set of x-ideals is an x-ideal.

Proof. 1 = 2: We consider an algebra (S, 2), where Q is the set of all
n-ary operations fulfilling the condition: o €, n-ary, a;,...,a, €8 =

=>a...0,0 =0b€{a, ..., a,};. Hence an xz-ideal 4, in S is an algebra
in (8, 2) because for every w € 2, n-ary, a1, ..., @, € Az therc holds a; ... ayw €
ef{ai, ..., 6.}z S Az. Conversely every subalgebra P in (S, Q) is an z-ideal

in 8. In fact for every firite set N < P we have Ny = P and thus P; =
= U {N;:N < P, N finite} < P, P, = P.

2 = 3: It follows from [2], Satz 1.

3=>1:If A< 8, then 4, 2 U {N,: N < A, N finite} and the set {N;: N <
€ A, N finite} is upper dirccted, ie., d, = U {No: N < A, N finite}.

Definition. Let A, be an x-ideal in a semigroup (8, .). The set l/le ={aefl:
there exists a positive integer n, @* € Az} is ca'led a radical of Ay. If Ay = lf/:f o)
then Ay is colled an x-semiprimeidecl. If every x-ideal is an x-semiprimeideal
then an x-system is called an x-semiprimesystem.

2.3. If a commutative semigroup (S, . .e) has the property (E), then the set
a(S) of &'l polars in S is an x-semiprimesystem.

Proof. 7(S) is an x-systam (see 1.3) and according to [1], Prop. 11 it is
sufficient for every 4 = § to prove: a2ed” =aed”. If a2 € A” for some
a €S and some 4 < 8, then for each b € A’ we have a2 .b = e and (¢ . b)2 =
=a?.02=(a>.b) .b=c¢ . b = e. From the property (E) it follows
a.b=e,aecd. ‘
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Definition. Let P, be an z-ideal in a semigroup (S, .). Then P, is called:
an irreducible r-ideal,if P, = Ry N Qr, R, Q < S implies P, Ryor P, Q:
a primary x-ideal, if a, b € S, a . b € Py, a ¢ Py implies the existence of @ positive
integer n such that bn € P,;

a prime z-ideal, if 6,b €S, a . be Py, a ¢ Pyimpliesb € Py;
a simple x-ideal, if a,b €8, a.b = e, a ¢ P, implies b € Py, where e 1s a zro
in S.

Remark. The definition of prime, irreducible and primary x-ideals is

taken over [1].

2.4. If (8, . ,e) is a commutative semigroup with the property (E), then every
simple x-ideal is a prime x-ideal in 8.

Proot. Let P, be a simple z-ideal in S. If P, = 8, then clearly P, is
a prime z-ideal. If P, # S, a¢ P, b¢ P,, a8, beS, a.beP,, then
&' < P;,b" < Pgandforeachc e (P;) there holdse = (¢ .b).¢  a.(b.c)
=b.(a.c), b.cea’ = Py, ¢c.aeh < P,. It implies that b.c¢c, c.w €
e(Pz) NPy={e},ce(@ Nb)N (P) < (Pz) NPy — {e},i.c., (Py) e},
P, = 8, which is a contradiction.

2.5. Corellary. For a commutative semigroup (S, . .e) with the property (E)
and an x-semiprimesystem L in S, Py € L, the following assertions are equivalent:

1. Py is a prime x-ideal,

2. Py is an irreducible x-ideal,

3. P;is a primary x-ideal,

4. Py is a simple z-ideal.

Proof. 1 < 2: see [1], Prop. 14, 1 = 3 is clear, 4 = 1: see 2.4, 3 = 4:
Fora,beS,c .b=e, a¢ P,there exists a positive integer » with the property
bn e Py. If n =1, then b € P,. Supposc that n > 1. Lot L be the minimal
positive integer with the property b* € P,. If k > 2, then there exists a po-
sitive integer m, m < k, 2m > k. It implies ¥ . b2m k¥ € P,, because P,
is an z-ideal in S, i. e., b2™m € P, (bm)2 € P,. From [1], Prop. 11 there follows
bm € P,. From this contradiction k£ = 2, b2 € P, follows and b € P, again
according to [1], Prop. 11.

2.6. The Krull—Stone Theorem ([1], Th. 12). If (S, .) is a commutative

semigroup with an x-system, then for every A < S there holds that lA z
=N {Pgz: Py isa prime x-ideal in S, P, 2 A}
Corollarics of the Krull—Stone Theorem:

277. Let G be an l-group. Then there holds:
1. The set of all convex l-subgroups in G is an x-semiprimesystem and every

convex l-subgroup A; generated by @ set A in G is an intersection of simple 1 sub-
groups in G containing A.
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2. ([3], 2.8, 9) Every polar A’ in G is an intersection of all minimal simple
l-subgroups in G not containing A.

3. There exists an l-group G sich that the set of all l-ideals in G forms no x-system
n G.

Proof. 1. It follows from 1.1, 2.5 and the definition of the xz-semiprime-
system.

2. According to 2.3 for every polar 4’ in @ there is VA’ = A’ and the rest
follows from 2.5 and 2.6.

3. We suppose that the set of all l-ideals in ¢ is an x-system in . Then
it is clearly an z-semiprimesystem and {0} is an intersection of simple l-ideals
in G. In case that G has no realization, it is impossible.

2.8. If (S, . ,e) is & commutative semigroup with the property (E), then every
polar in S s an wntersection of maximal polars in G.

Proof. n(S) is an x-semiprimesystem (see 2.3). Every polar in § is an
intersection of simple polars in S (see 2.6). Now we prove that a polar P being
a simple x-ideal in § is a maximal polar in S (i. e., a dual atom in #(S)). Namely,
if Qen(S), Q o P, S#Q #P, then Q' <« P =@ and @ = {0}, @ =G,

which is a contradiction.
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