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EXPONENTIAL SMOOTHING
FOR IRREGULAR TIME SERIES

Tomáš Cipra and Tomáš Hanzák

The paper deals with extensions of exponential smoothing type methods for univariate
time series with irregular observations. An alternative method to Wright’s modification
of simple exponential smoothing based on the corresponding ARIMA process is suggested.
Exponential smoothing of order m for irregular data is derived. A similar method using a
DLS (discounted least squares) estimation of polynomial trend of order m is derived as well.
Maximum likelihood parameters estimation for forecasting methods in irregular time series
is suggested. The suggested methods are compared with the existing ones in a simulation
numerical study.
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1. INTRODUCTION

Methods denoted generally as exponential smoothing are very popular in practical
time series smoothing and forecasting. They are all recursive methods which makes
them easy to implement and highly computationally efficient. Some extensions of
these methods to the case of irregular time series have been presented in past. It is
simple exponential smoothing (see [7]), Holt method (see [7]), Holt–Winters method
(see [5]) and double exponential smoothing (see [6]).

In this paper we suggest further methods of this type. In Section 2 we derive a
method alternative to Wright’s simple exponential smoothing, based on the assump-
tion that the series is an irregularly observed ARIMA(0, 1, 1) process. Prediction
intervals for this method are a natural outcome of this assumption. In Section 3 we
derive an exponential smoothing of order m for irregular time series. It is a gene-
ralization of simple and double exponential smoothing for irregular data presented
before. In Section 4 a similar but not equivalent method is derived using a DLS
(discounted least squares) estimate of polynomial trend of order m.

In Section 5 maximum likelihood parameters estimation is suggested for fore-
casting methods in irregular time series when the variances of individual one-step-
ahead forecasting errors are not equal (i. e. the case of heteroscedasticity). If normal
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distribution is assumed, this is a generalization of classical MSE (mean square error)
minimization.

All methods and techniques presented in this paper are applicable to time series
with general time irregularity in their observations. Time series with missing obser-
vations are just a special case of them. All these methods have the software form
by the authors (application DMITS) and have been applied both to real and sim-
ulated data. Various modifications are possible (e. g. for non-negative time series,
see [3, 8]).

In Section 6 a simulation numerical study is presented comparing the predic-
tive performance of the suggested methods and the existing ones. Some practical
conclusions are then made based on the results.

2. IRREGULARLY OBSERVED ARIMA(0, 1, 1)

It is well known that the simple exponential smoothing procedure is optimal for
certain ARIMA(0, 1, 1) model of regular time series, see [4] p. 90. On the other hand
if we assume one step ahead forecasting errors produced by this procedure to form
a white noise, our time series is necessarily driven by this concrete ARIMA(0, 1, 1)
model.

Wright [7] has suggested an extension of classical simple exponential smoothing
to the case of irregular observations in a very intuitive way, just following the basic
idea of exponential smoothing. In this section alternative method to the one by
Wright will be derived based on the relation to ARIMA(0, 1, 1) model.

Let {yt, t ∈ Z} be a time series driven by ARIMA(0, 1, 1) model. The series of its
first differences {∆yt, t ∈ Z} is then driven by MA(1) model which can be expressed
e. g. as

∆yt = yt − yt−1 = et + (α− 1)et−1, (1)

where {et, t ∈ Z} is a white noise with finite variance σ2 > 0. Let us suppose that
α ∈ (0, 1) (i. e. the MA(1) process is invertible). If we denote for t ∈ Z

St = yt − (1− α)et , (2)

we can express the model of {yt, t ∈ Z} using equations

yt+1 = St + et+1 , (3)
St+1 = (1− α)St + α yt+1 . (4)

From this notation the relation to the simple exponential smoothing with smoothing
constant α is obvious.

Let us consider increasing sequence {tj , j ∈ Z} representing the time grid on which
we observe values of series {yt, t ∈ Z}. So we can observe only values ytj , j ∈ Z, while
values yt for t 6∈ {tj , j ∈ Z} are unobservable for us. We are interested in resulting
time series {ytj , j ∈ Z} with missing observations. In particular we will look for a
forecasting method optimal in the sense of minimal one step ahead forecasting error
variance (i. e. from time tn to time tn+1).
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Let us suppose we have already observed values ytj for j ≤ n and based on them
we have got a random variable S̃tn representing a forecast of unknown value Stn .
It is realistic to suppose that the random variable ytn − S̃tn has a finite variance and
is uncorrelated with random variables et for t > tn. From (2) it follows that the
same properties will have the random variable Stn − S̃tn as well. Let us denote

vtn =
var(Stn − S̃tn)

σ2
<∞ . (5)

Let us look for a forecast of S̃tn+1 in the form of

S̃tn+1 = (1− a)S̃tn + a ytn+1 , (6)

where ytn+1 is a newly observed value of series y. The parameter a ∈ R will be
chosen to minimize the variance

var(Stn+1 − S̃tn+1) = σ2vtn+1 . (7)

From (1) and (2) we can easily derive the formulas

Stn+1 = Stn + α(etn+1 + etn+2 + · · ·+ etn+1−1 + etn+1) , (8)
ytn+1 = Stn + α(etn+1 + etn+2 + · · ·+ etn+1−1) + etn+1 . (9)

Substituting (9) into (6) we obtain

S̃tn+1 = (1− a)S̃tn + a
[
Stn + α

(
etn+1 + etn+2 + · · ·+ etn+1−1

)
+ etn+1

]
. (10)

Subtracting equations (8) and (10) we get

Stn+1 − S̃tn+1 = (1− a)(Stn − S̃tn)
+ α(1− a)(etn+1 + etn+2 + · · ·+ etn+1−1) + (α− a) etn+1 . (11)

Since random variables Stn − S̃tn and et for t > tn are uncorrelated, it is

var(Stn+1−S̃tn+1) = σ2
[
(1−a)2vtn+α2(1− a)2(tn+1−tn−1)+(α− a)2

]
. (12)

So we are solving
min
a∈R

[
(1− a)2vtn + α2(1− a)2(tn+1 − tn − 1) + (α− a)2

]
. (13)

It is a minimization of the convex quadratic function of variable a so we find the
minimizing â very easily as

â =
vtn + α2(tn+1 − tn − 1) + α

vtn + α2(tn+1 − tn − 1) + 1
. (14)

This formula is a generalization of that from [2] where the special case of a gap after
regularly observed data is concerned. The achieved minimal variance value is

vtn+1 =
var(Stn+1 − S̃tn+1)

σ2
= (1− â)2[vtn + α2(tn+1 − tn − 1)] + (α− â)2 . (15)
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Let us notice that â ∈ (0, 1) and so the formula

S̃tn+1 = (1− â)S̃tn + â ytn+1 (16)

computes the forecast S̃tn+1 as a convex linear combination of the current forecast
S̃tn and the newly observed value ytn+1 .

From (14) it can be seen that â is an increasing function of arguments vtn , α and
tn+1 − tn which is consistent with our intuitive view. A higher value of vtn means
that S̃tn is not a good forecast of real value Stn and so more weight in formula (16)
is given to the newly observed value ytn+1 . Similarly a longer time step tn+1 − tn
means that the value Stn , of which S̃tn is a forecast, is further in past from the
new observation ytn+1 . Parameter α represents the smoothing constant when using
a simple exponential smoothing to the series {yt, t ∈ Z} so its relation to â is not
a surprise. For α → 1, tn+1 − tn → ∞ or vtn → ∞ have have â → 1. If vtn = 0
and tn+1− tn = 1, which corresponds to regular time series {ytj , j ∈ Z} with tj = j,
then â = α.

The derived method consists of the formula (14) for computation of the opti-
mal smoothing coefficient â in the current step, the recursive formula (16) for the
smoothed value S̃ update and the recursive formula (15) for the variance factor v
update. The forecast of future unknown value ytn+τ , τ > 0, from time tn is the
smoothed value ŷtn = S̃tn as it is in the case of simple exponential smoothing. For
variance of the error etn+τ (tn) = ytn+τ − S̃tn of this forecast we obtain

var [etn+τ (tn)] = σ2
[
vtn + α2(τ − 1) + 1

]
(17)

since random variables Stn − S̃tn and et for t > tn are uncorrelated. It can be seen
that this variance is minimal if and only if vtn is minimal. So the specified smoothing
coefficient â is optimal also when minimal forecasting error variance is concerned.

If we assume et ∼ N(0, σ2) and Stn − S̃tn ∼ N(0, σ2vtn) then

etn+τ (tn) ∼ N
(
0, σ2

[
vtn + α2(τ − 1) + 1

])
(18)

and the corresponding prediction interval with confidence 1− θ has borders

S̃tn ± µ1−θ/2 σ
√
vtn + α2(τ − 1) + 1 , (19)

where µ1−θ/2 is the 1− θ/2 percent quantile of the standard normal distribution.
Let us notice that once the random variable Stn − S̃tn is uncorrelated with et for

t > tn then because of (11) and because {et, j ∈ Z} are uncorrelated, the same holds
true automatically for all m ≥ n. Similarly if et ∼ N(0, σ2) then from normality of
Stn − S̃tn the normality of Stm − S̃tm for all m ≥ n already follows.

If we have at our disposal observations of y starting with time t1 and want to start
the recursive computation using formulas (14), (15) and (16), we have to determine
the initial values t0, S̃t0 and vt0 first. Let us denote q the average time spacing of
our time series {ytj , j ∈ Z} and set t0 = t1 − q. The initial smoothed value S̃t0 will
be computed as a weighted average of several observations from the beginning of the
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series y. These weights can decrease into future with the discount factor β = 1− α.
The value vt0 can be determined as a fixed point of formula (15) with tn+1− tn ≡ q,
i. e. as the component v of a solution of the following system of equations

a =
v + α2(q − 1) + α

v + α2(q − 1) + 1
, (20)

v = (1− a)2[v + α2(q − 1)] + (α− a)2 (21)

with unknowns v and a. After some algebraic operations we obtain

vt0 =
(1− ã)2α2(q − 1) + (ã− α)2

ã(2− ã)
, (22)

where the value ã ∈ (0, 1) is computed as

ã =
α2q −

√
α4q2 + 4(1− α)α2q

2(α− 1)
. (23)

The described method has a similar character as Wright’s simple exponential
smoothing. Also here the smoothed value of the series is recomputed using a recur-
sive formula of typical form, namely (16). The smoothing coefficient â changes in
particular steps and therefore the variance factor v has to be recomputed as well.

Although this method has been explicitly derived only for time series with missing
observations, it can be used in practice for general irregular time series. The fact
that the time step tn+1 − tn is not generally an integer value does not prevent us in
using formulas of this method in a reasonable way.

3. EXPONENTIAL SMOOTHING OF ORDER m

Exponential smoothing of order m for regular time series is an adaptive recursive
method with one parameter – smoothing constant α. It estimates a local polynomial
trend of order m using the discounted least squares (DLS) method with the discount
factor β = 1 − α. The estimates of polynomial coefficients are expressed as linear
combinations of the first m+ 1 smoothing statistics S[p]

t , p = 1, 2, . . . ,m+ 1. These
smoothing statistics are computed in a recursive way using very simple formulas.

It is possible to extend exponential smoothing of order m to the case of irregular
time series in two different ways. In this section we will derive a method working with
smoothing statistics S[p]

t , p = 1, 2, . . . ,m + 1. The second extension uses explicitly
the DLS estimation method and will be shown in Section 4.

Let us consider an irregular time series yt1 , yt2 , . . . , ytn , ytn+1 , . . . observed at times
t1 < t2 < · · · < tn < tn+1 < . . .. Let m ∈ N0 be the order of exponential smoothing,
i. e. the order of considered local polynomial trend. Let us suppose n ≥ m+ 1 and
consider the regression model

ytj = b0 + b1(tn − tj) + b2(tn − tj)2 + bm(tn − tj)m + εtj , j = 1, 2, . . . , (24)

where b0, b1, . . . , bm ∈ R are unknown parameters and residuals εtj have zero ex-
pected values (there are no assumptions on their covariance structure). Let us
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consider a smoothing constant α ∈ (0, 1) and the corresponding discount factor
β = 1− α.

We will construct unbiased estimates b̂0(tn), b̂1(tn), . . . , b̂m(tn) of the parameters
b0, b1, . . . , bm based on the first n observations of time series y. For this purpose we
define smoothing statistics S[p]

tj , p = 1, 2, . . . ,m+ 1, in the following way:

S
[1]
tj = αtj

j∑

i=1

ytiβ
tj−ti , (25)

S
[p+1]
tj = αtj

j∑

i=1

S
[p]
ti β

tj−ti , p = 1, 2, . . . ,m , (26)

where αtj =
(

j∑
i=1

βtj−ti
)−1

. For k = 0, 1, . . . ,m and j = 1, 2, . . . let us denote

kT
[1]
tj (tn) = αtj

j∑

i=1

(tn − ti)kβtj−ti , (27)

kT
[p+1]
tj (tn) = αtj

j∑

i=1

kT
[p]
ti (tn)βtj−ti , p = 1, 2, . . . ,m , (28)

Obviously 0T
[p]
tj (tn) ≡ 1. To simplify the notation let us denote kT

[p]
tn = kT

[p]
tn (tn).

Now let us look at our model (24). It is

E(ytj ) = b0 + b1(tn − tj) + b2(tn − tj)2 + · · ·+ bm(tn − tj)m . (29)

Applying linear smoothing operator of order p to (29) we can express in our notation

E
(
S

[p]
tn

)
= b0 + b1

1T
[p]
tn + b2

2T
[p]
tn + · · ·+ bm

mT
[p]
tn , p = 1, 2, . . . ,m+ 1 . (30)

This is a system ofm+1 linear equations form+1 unknown parameters b0, b1, . . . , bm.
These are (as the solution of the system) linear functions of the left hand sides in (30).
Replacing the expected values E(S[p]

tn ) directly by the values S[p]
tn , we obtain unbiased

estimates b̂0(tn), b̂1(tn), . . . , b̂m(tn) of parameters b0, b1, . . . , bm. Their unbiasedness
follows from linearity of expected value. So we get our estimates of the polynomial
trend at time tn as a solution of

b0 + b1
1T

[p]
tn + b2

2T
[p]
tn + · · ·+ bm

mT
[p]
tn = S

[p]
tn , p = 1, 2, . . . ,m+ 1 . (31)

The smoothed value at time tn and the forecast for τ > 0 time units ahead can be
obtained simply as

ŷtn = b̂0(tn) , (32)

ŷtn+τ (tn) = b̂0(tn) + b̂1(tn)(−τ) + · · ·+ b̂m(tn)(−τ)m . (33)

After receiving a new observation ytn+1 we move from time tn to time tn+1 and
estimate parameters b0, b1, . . . , bm in the updated model

ytj = b0 + b1(tn+1 − tj) + · · ·+ bm(tn+1 − tj)m + εtj , j = 1, 2, . . . . (34)
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These estimates b̂0(tn+1), b̂1(tn+1), . . . , b̂m(tn+1) are solutions of the updated system
(31):

b0 + b1
1T

[p]
tn+1

+ b2
2T

[p]
tn+1

+ · · ·+ bm
mT

[p]
tn+1

= S
[p]
tn+1

, p = 1, 2, . . . ,m+ 1. (35)

We will derive recursive formulas which allow us to compute coefficients of this
updated system (35) using coefficients of the original system (31). It is obviously

αtn+1 =
αtn

αtn + βtn+1−tn , (36)

S
[1]
tn+1

= (1− αtn+1)S[1]
tn + αtn+1ytn+1 , (37)

S
[p+1]
tn+1

= (1− αtn+1)S[p+1]
tn + αtn+1S

[p]
tn+1

, p = 1, 2, . . . ,m . (38)

Further from binomial theorem and linearity of the smoothing operator we can derive
for k = 1, 2, . . . ,m and p = 1, 2, . . . ,m+ 1 the formula

kT
[p]
tn (tn+1) =

k∑

i=0

[(
k

i

)
(tn+1 − tn)k−i iT [p]

tn

]
. (39)

And finally formulas analogous to (37) and (38) are (k = 1, 2, . . . ,m)

kT
[1]
tn+1

= (1− αtn+1) kT [1]
tn (tn+1) , (40)

kT
[p+1]
tn+1

= (1− αtn+1) kT [p+1]
tn (tn+1) + αtn+1

kT
[p]
tn+1

, p = 1, 2, . . . ,m . (41)

The main difference against the same method for regular time series is that now,
besides smoothing statistics S[p]

tn , we must recalculate at each time step also the
variable smoothing coefficient αtn and the left hand side coefficients kT

[p]
tn of the

system (31). Their variability also forces us to solve a new system of m + 1 linear
equations at each time step. The computational demand of this method is naturally
rapidly growing with higher orders m. However for m = 0, 1, 2 the formulas are still
quite simple and easy to implement. The case m = 0 corresponds to the Wright’s
simple exponential smoothing for time series with local constant trend, see [7]. The
case m = 1 is equivalent to the double exponential smoothing for time series with
local linear trend presented in [6]. The case m = 2 which is the last one with
practical importance is a triple exponential smoothing for time series with local
quadratic trend.

The method has been derived explicitly for time series with finite history (but
the recursive formulas would be exactly the same if we assumed infinite history).
Namely, there is no argument which would prevent us to compute αt1 , S[p]

t1 and
kT

[p]
t1 using formulas (25), (26), (27) and (28). It is

αt1 = 1 , S
[p]
t1 = yt1 ,

0T
[p]
t1 = 0 , kT

[p]
t1 = 1 (42)

for p = 1, 2, . . . ,m + 1 and k = 1, 2, . . . ,m. Further we can continue with recursive
update from time t1 to time t2 etc. Having first n observations of time series y at
our disposal, where n ≥ m+ 1, we can successively compute statistics up to time tn.
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Here we can already generate smoothed value and forecasts in time series y. The
condition n ≥ m+ 1 is necessary for the system (31) to have a unique solution.

Although there is no problem with initialization of this recursive method, see
(42), we will show a possible way how to compute initial values αt0 , S[p]

t0 and kT
[p]
t0

which allows us to construct the smoothed value and forecasts already from time t0.
We will proceed in the same way as Cipra [6] did in the case of double exponential
smoothing. Let us denote again q the average time spacing of our time series y and
set t0 = t1 − q and αt0 = 1− (1− α)q . (43)

Naturally we take 0T
[p]
t0 = 1 for p = 1, 2, . . . ,m+ 1. The values kT

[p]
t0 for p =

1, 2, . . . ,m+1 and k = 1, 2, . . . ,m can be easily obtained as a fixed point of the
corresponding formulas (40) and (41) where we use tn+1 − tn ≡ q and αtn ≡ αt0 .
Finally the values S[p]

t0 , p = 1, 2, . . . ,m+ 1, can be taken as

S
[p]
t0 = b̂0(t0) + b̂1(t0) 1T

[p]
t0 + b̂2(t0) 2T

[p]
t0 + · · ·+ b̂m(t0) mT [p]

t0 , (44)

where b̂0(t0), b̂1(t0), . . . , b̂m(t0) are estimates of parameters b0, b1, . . . , bm in the re-
gression model

ytj = b0 + b1(t0 − tj) + b2(t0 − tj)2 + · · ·+ bm(t0 − tj)m + εtj (45)

based on several starting observations (at least m + 1) of time series y. Specially,
the DLS method with weights decreasing exponentially into future with the discount
factor β can be used to obtain these regression estimates.

4. METHOD BASED ON DLS ESTIMATION

In this section we will show the second possibility how to extend the exponential
smoothing of order m to the case of irregular time series. This method will be expli-
citly based on using a DLS estimation method to get polynomial trend parameters.

Let us consider again an irregular time series yt1 , yt2 , . . . , ytn , ytn+1 , . . . observed
at times t1 < t2 < · · · < tn < tn+1 < . . .. Let m ∈ N0 be the degree of considered
local polynomial trend. Let us suppose n ≥ m+1 and consider the regression model

ytj = b0 + b1(tn − tj) + b2(tn − tj)2 + bm(tn − tj)m + εtj , j = 1, 2, . . . , (46)

where b0, b1, . . . , bm ∈ R are unknown parameters and random error components εtj
have zero expected values (there are no assumptions on their covariance structure).
Let us consider smoothing constant α ∈ (0, 1) and the corresponding discount factor
β = 1− α.

We will estimate the unknown parameters b0, b1, . . . , bm of model (46) based on
first n observations y1, y2, . . . , yn of time series y using a DLS (discounted least
squares) method with discount factor β (see [1], chapters 2.13 and 3.5, for an
overview of this estimation method). The corresponding system of normal equa-
tions for these estimates b̂0(tn), b̂1(tn), . . . , b̂m(tn) has the form

b0 + b1T
(k)
tn + b2T

(k+1)
tn + · · ·+ bmT

(k+m)
tn = Y

(k)
tn , k = 0, 1, . . . ,m , (47)
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where we have denoted

T
(k)
tn =

n∑

i=1

(tn − ti)kβtn−ti , k = 0, 1, . . . , 2m, (48)

Y
(k)
tn =

n∑

i=1

yti(tn − ti)kβtn−ti , k = 0, 1, . . . ,m . (49)

If n ≥ m + 1 and t1 < t2 < · · · < tn then the system (47) has a unique solution.
The smoothed value of time series y at time tn and the forecast for τ > 0 time units
ahead from time tn are obtained again as

ŷtn = b̂0(tn), (50)

ŷtn+τ (tn) = b̂0(tn) + b̂1(tn)(−τ) + · · ·+ b̂m(tn)(−τ)m . (51)

Since DLS estimates b̂0(tn), b̂0(t2), . . . , b̂0(tm) are unbiased, the above smoothed
value and forecast are unbiased as well, i. e.

E (ŷtn) = E (ytn) and E [ŷtn+τ (tn)] = E [ytn+τ ] . (52)

When we get a new observation ytn+1 , we move from time tn to time tn+1 and
we will estimate the parameters b0, b1, . . . , bm in the updated model

ytj = b0+b1(tn+1−tj)+b2(tn+1−tj)2+· · ·+bm(tn+1−tj)m+εtj , j=1, 2, . . . (53)

using the same DLS method. These estimates b̂0(tn+1), b̂1(tn+1), . . . , b̂m(tn+1) will
be obtained by solving the system (47) shifted to time tn+1, i. e. the system

b0 + b1T
(k)
tn+1

+ b2T
(k+1)
tn+1

+ · · ·+ bmT
(k+m)
tn+1

= Y
(k)
tn+1

, k = 0, 1, . . . ,m . (54)

We need recursive formulas which enable us to get coefficients of the new system
(54) using coefficients of the original system (47). It can be shown easily that

T
(k)
tn+1

= βtn+1−tn
k∑

i=0

[(
k

i

)
(tn+1 − tn)k−i T (i)

tn

]
, k = 1, 2, . . . , 2m, (55)

T
(0)
tn+1

= 1 + βtn+1−tn T (0)
tn (56)

and analogously

Y
(k)
tn+1

= βtn+1−tn
k∑

i=0

[(
k

i

)
(tn+1 − tn)k−i Y (i)

tn

]
, k = 1, 2, . . . ,m, (57)

Y
(0)
tn+1

= ytn+1 + βtn+1−tn Y (0)
tn . (58)

So the application of this method is exactly the same as of the exponential
smoothing from Section 3. Of course, the computational demand is rapidly growing
with higher orders m. But for m = 0, 1, 2 the formulas are still quite simple. For
larger m this method is computationally less demanding than the previous one.
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As in the Section 3, the method has been derived for time series with finite
history again (the recursive formulas would stay unchanged again if we assumed
infinite history). Therefore we can again compute T (k)

t1 and Y (k)
t1 using formulas (48)

and (49). We get
T

(0)
t1 = 1 , T

(k)
t1 = 0 , Y

(0)
t1 = yt1 , Y

(k)
t1 = 0 (59)

for k ≥ 1. Having first n observations of time series y, n ≥ m + 1, we can proceed
with recurrent computation up to time tn and generate the smoothed value and
forecasts here. The condition n ≥ m + 1 is again necessary for the system (47) to
have a unique solution.

Similarly as in Section 3 we will show a possible way of selection initial values t0,
T

(0)
t0 and Y (0)

t0 which enables us to construct the smoothed value and forecast already
from time t0. Again let us set t0 = t1 − q where q is the average time spacing of
the time series y. The values T (k)

t0 will be constructed using the assumption that
the fictive infinite history of y starting in t0 and going into past has been observed
regularly with time intervals of length q. So we will take

T
(k)
t0 =

∞∑

j=0

(jq)kβjq , k = 0, 1, . . . , 2m. (60)

If we denote Tk(x) =
∞∑
j=0

jkxj for |x| < 1 and k ≥ 0, we can write

T
(k)
t0 = qk Tk(βq) . (61)

Values Tk(x) for a fixed x can be computed recursively. For k ≥ 0 it is

Tk+1(x) =
x

1− x
k∑

i=0

(
k + 1
i

)
Ti(x) (62)

and T0(x) = 1
1−x . Initial values Y (k)

t0 for k = 0, 1, . . . ,m will be taken as

Y
(k)
t0 = b̂0(t0)T (k)

t0 + b̂1(t0)T (k+1)
t0 + · · ·+ b̂m(t0)T (k+m)

t0 , (63)

where b̂0(t0), b̂1(t0), . . . , b̂m(t0) are estimates of parameters b0, b1, . . . , bm in model

ytj = b0+b1(t0−tj)+b2(t0−tj)2+· · ·+bm(t0−tj)m+εtj , j=1, 2, . . . . (64)

These estimates will be based on several (at least m+ 1) initial observations of time
series y using the DLS method with weights decreasing exponentially into future
with discount factor β.

It is trivial that the case m = 0 of this method is nothing else but Wright’s simple
exponential smoothing. The case m = 1 (i. e. the method for local linear trend) is
similar but not equivalent to Cipra’s double exponential smoothing from [6]. And
the both methods are not a special case of Wright’s modification of the Holt method
as it is in the case of regular time series. So we have three different recursive methods
for irregular time series with local linear trend. In a concrete numerical example,
any of these methods can provide the best results, see Section 6.
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5. MAXIMUM LIKELIHOOD PARAMETERS ESTIMATION

All of exponential smoothing type methods have one or more numerical parameters
whose values must be selected somehow for the best performance of the method.
Widely used approach in context of regular time series is to choose the value which
minimizes a certain criterion like MSE (mean square error). When we know the
formula for forecasting error variance var[etn+τ (tn)] and we assume its distribution
type then we can estimate parameters of the method using the maximum likelihood
method. This will be a generalization of the approach mentioned above which will
take time irregularity of observations into account.

Let us consider a forecasting method with k-dimensional parameter α ∈ A where
A ⊆ Rk. We will construct the estimate α̂ of this parameter based on observed fore-
casting errors et1 , et2 , . . . , etn at times t1, t2, . . . , tn. Let us denote more rigorously
et1(α), et2(α), . . . , etn(α) these forecasting errors occurred when using the method
with parameter value α ∈ A. Let for the true value of α be

E[etj (α)] = 0 and var[etj (α)] = σ2vtj (α) , j = 1, 2, . . . , n , (65)

where vtj (α) > 0 are known positive functions and σ2 > 0 is another unknown pa-
rameter. To achieve a particular form of the likelihood function we must assume a
specific distribution of errors etj (α). Let us suppose for example that this distribu-
tion is normal, i. e.

etj (α) ∼ N
(
0, σ2vtj (α)

)
. (66)

Of course, it is possible to consider a different distribution type here as well. Fur-
ther let us assume that for the true value of α, the forecasting errors etj (α) are
uncorrelated. Now we can already write down the likelihood function

L
(
α, σ2

)
=

(
2πσ2

)−n/2



n∏

j=1

vtj (α)



−1/2

exp



−

1
2σ2

n∑

j=1

e2
tj (α)
vtj (α)



 (67)

and the log-likelihood function

l
(
α, σ2

)
= −n

2
ln(2π)− n

2
lnσ2 − 1

2

n∑

j=1

ln
[
vtj (α)

]
− 1

2σ2

n∑

j=1

e2
tj (α)
vtj (α)

. (68)

So we solve a minimization problem

min
a∈A, σ2>0



n lnσ2 +

n∑

j=1

ln
[
vtj (α)

]
+

1
σ2

n∑

j=1

e2
tj (α)
vtj (α)



 . (69)

Maximum likelihood estimates can be then expressed as

α̂ = arg min
α∈A



ln

n∑

j=1

e2
tj (α)
vtj (α)

+
1
n

n∑

j=1

ln
[
vtj (α)

]


 , (70)

σ̂2 =
1
n

n∑

j=1

e2
tj (α̂)
vtj (α̂)

. (71)
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As one can see from (70) the weights of square errors e2
tj (α) in minimized expre-

ssion are inversely proportional to the corresponding variance factors vtj (α). The
suggested minimization must be done numerically. In (71) the parameter σ2 is esti-

mated as a mean square of values ẽtj (α) =
etj (α)√
vtj (α)

for which

ẽtj (α) ∼ N(0, σ2) (72)

if α is the true value of the parameter. These normalized forecasting errors form a
white noise and are useful in testing adequacy of applying the method for a particular
time series.

In the case of regular time series we can without loss of generality suppose that
vtj (α) ≡ 1 and the formulas (70) and (71) simplify to the form

α̂ = arg min
α∈A

n∑

j=1

e2
tj (α) and σ̂2 =

1
n

n∑

j=1

e2
tj (α̂) , (73)

i. e. to the classical MSE minimization.

6. NUMERICAL STUDY

We have done a simulation numerical study to compare the predictive performance of
the suggested methods with the existing ones from [7] and [6]. We have compared (1)
Wright’s simple exponential smoothing with the irregularly observed ARIMA(0, 1, 1)
method from Section 2 and (2) Wright’s version of Holt method with the double
exponential smoothing from Section 3 and DLS linear trend method from Section 4.

The methodology was the same in both cases. We generated a regular time
series using certain ARIMA process (with the white noise variance equal to 1) and
then we sampled it to create an irregular time series. The individual sampling
steps were taken randomly from {1, 2, . . . N}. The resulted irregular time series had
3000 observations. Then we used the concerned methods with smoothing constants
minimizing mean square one-step-ahead forecasting error (MSE) through the whole
data. Initial values didn’t play a considerable role because of the length of the series.

For the first comparison the ARIMA(0, 1, 1) process was used with α = 0.1, 0.2, 0.4
(we use the parametrization of simple exponential smoothing). We took N =
2, 3, 5, 10 which led to 3 × 4 = 12 different simulated irregular time series. The
results are presented in Table 1. Although we generated the series by the model
for which our suggested method is optimal, the differences in achieved RMSE are
inconsiderable. While for the suggested method the optimal values of α are always
close to the value used for generating and don’t depend on N , for the simple expo-
nential smoothing they decrease significantly with increasing value of N . The reason
is that the smoothing coefficient in Wright’s method tends to 1 exponentially fast
as the time step tends to infinity (see [7]) while the optimal convergence speed is
that of the linear-rational function in (14). So this is compensated by the lower α
value when the average time step is higher. This is annoying since we get different
optimal α values for the same series depending just on the observation frequency.
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Our suggested method doesn’t suffer from this phenomenon. This together with the
model based prediction intervals formula (19) are arguments for using the suggested
method rather than the Wright’s one.

Table 1. Wright’s simple exponential smoothing and irregularly
observed ARIMA(0, 1, 1) method: optimal α and achieved RMSE
for 12 simulated time series.

Simple exp. smoothing ARIMA(0, 1, 1)

α N optimal α RMSE optimal α RMSE

0.1 2 0.0896 1.0138 0.1093 1.0138
0.1 3 0.0709 1.0192 0.0997 1.0192
0.1 5 0.0663 1.0371 0.1129 1.0368
0.1 10 0.0453 1.0780 0.1040 1.0780

0.2 2 0.1687 1.0153 0.2033 1.0153
0.2 3 0.1495 1.0327 0.2063 1.0330
0.2 5 0.1142 1.0906 0.1926 1.0905
0.2 10 0.0917 1.1596 0.2068 1.1587

0.4 2 0.3426 1.0520 0.4068 1.0525
0.4 3 0.2989 1.0899 0.4020 1.0885
0.4 5 0.2441 1.1779 0.3955 1.1777
0.4 10 0.1867 1.4019 0.4042 1.3959

For the second comparison the ARIMA(0, 2, 2) process was used with nine differ-
ent combinations of αH and γH (we use the parametrization of Holt method). It is
well known that in the context of regular time series double exponential smoothing
with smoothing constant α is equivalent to Holt method with smoothing constants

αH = α (2− α) and γH =
α

2− α . (74)

The first three generating combinations correspond to (αH(α), γH(α)) for α =
0.1, 0.2, 0.4. The next three combinations have lower αH and higher γH value when
compared to the first three ones and the last three combinations just in the opposite
way. Shift by ±1 in the argument of the logistic curve 1/[1 + exp(−x)] is used to
make the values lower or higher. All the values of αH and γH were rounded to three
decimal digits.

Together with taking N = 2, 3, 5 this led to 3 × 3 × 3 = 27 different simulated
irregular time series. The results are presented in Table 2. The optimal α values
and achieved RMSE are almost the same for double exponential smoothing and DLS
linear trend method. Holt method has slightly worse performance for the first nine
series while for the rest of the series it does usually better, gaining from the flexibility
of two independent smoothing constants.

The autocorrelation of normalized forecasting errors (see Section 5) from the
methods with one parameter was not significantly different from 0 for the first nine
rows of Table 2, was negative for the next nine rows and positive for the last nine
rows of the table. This empirical fact is consistent with our intuition and can be
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interpreted as the following practical recommendation: when forecasting errors from
one-parameter method are not correlated then Holt method will probably not offer
better results. Especially for short time series it is then maybe more reasonable to
use the one-parameter method which can prevent us from over-fitting and can pro-
vide better out-of-sample results. This also prevents us from the more complicated
2-dimensional smoothing constants optimization.

Table 2. Holt method, double exponential smoothing and DLS linear trend method for
irregular time series: optimal α (and γ) and achieved RMSE for 27 simulated time series.

Holt method Double exp. smooth. DLS linear trend

α γ N opt. α opt. γ RMSE opt. α RMSE opt. α RMSE

0.190 0.053 2 0.1592 0.0472 1.0398 0.0877 1.0388 0.0876 1.0391
0.190 0.053 3 0.1522 0.0360 1.0694 0.0800 1.0646 0.0797 1.0649
0.190 0.053 5 0.1427 0.0341 1.1103 0.0767 1.1000 0.0766 1.1003

0.360 0.111 2 0.3358 0.1142 1.0641 0.1927 1.0599 0.1928 1.0589
0.360 0.111 3 0.2997 0.0826 1.1403 0.1630 1.1328 0.1628 1.1326
0.360 0.111 5 0.2930 0.0719 1.3063 0.1500 1.2793 0.1507 1.2777

0.640 0.250 2 0.5813 0.2240 1.1486 0.3529 1.1426 0.3546 1.1428
0.640 0.250 3 0.5606 0.2303 1.3652 0.3425 1.3513 0.3507 1.3467
0.640 0.250 5 0.4829 0.2554 1.7656 0.3169 1.7595 0.3327 1.7506

0.079 0.131 2 0.0958 0.0836 1.0185 0.0797 1.0271 0.0795 1.0269
0.079 0.131 3 0.0949 0.0593 1.0691 0.0687 1.0720 0.0687 1.0718
0.079 0.131 5 0.1004 0.0364 1.1275 0.0631 1.1212 0.0632 1.1213

0.171 0.254 2 0.1864 0.1902 1.0646 0.1641 1.0863 0.1642 1.0864
0.171 0.254 3 0.1866 0.1459 1.1486 0.1472 1.1620 0.1470 1.1617
0.171 0.254 5 0.1809 0.1302 1.2343 0.1410 1.2287 0.1416 1.2244

0.395 0.475 2 0.3980 0.4174 1.1760 0.3534 1.1989 0.3568 1.1951
0.395 0.475 3 0.3755 0.4326 1.3057 0.3406 1.3354 0.3488 1.3326
0.395 0.475 5 0.3810 0.4152 1.7325 0.3314 1.7506 0.3556 1.7189

0.389 0.020 2 0.3364 0.0129 1.0496 0.1463 1.0671 0.1460 1.0660
0.389 0.020 3 0.2756 0.0183 1.1120 0.1151 1.1271 0.1152 1.1279
0.389 0.020 5 0.2558 0.0186 1.1886 0.1034 1.1986 0.1035 1.1979

0.605 0.044 2 0.5250 0.0423 1.1158 0.2237 1.1405 0.2240 1.1396
0.605 0.044 3 0.4459 0.0533 1.1931 0.1945 1.2078 0.1935 1.2107
0.605 0.044 5 0.4230 0.0334 1.3991 0.1587 1.4129 0.1593 1.4123

0.829 0.109 2 0.7949 0.1147 1.2151 0.3667 1.2348 0.3664 1.2364
0.829 0.109 3 0.6443 0.1176 1.3676 0.2946 1.3755 0.2973 1.3770
0.829 0.109 5 0.5510 0.1210 1.7847 0.2452 1.7828 0.2482 1.7858
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