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K Y B E R N E T I K A — V O L U M E 4 4 ( 2 0 0 8 ) , N U M B E R 2 , P A G E S 1 7 1 – 1 8 4

NON–PARAMETRIC APPROXIMATION
OF NON–ANTICIPATIVITY CONSTRAINTS
IN SCENARIO–BASED MULTISTAGE
STOCHASTIC PROGRAMMING

Jean-Sébastien Roy1 and Arnaud Lenoir

We propose two methods to solve multistage stochastic programs when only a (large)
finite set of scenarios is available. The usual scenario tree construction to represent non-
anticipativity constraints is replaced by alternative discretization schemes coming from
non-parametric estimation ideas. In the first method, a penalty term is added to the
objective so as to enforce the closeness between decision variables and the Nadaraya–Watson
estimation of their conditional expectation. A numerical application of this approach on
an hydro-power plant management problem is developed. The second method exploits the
interpretation of kernel estimators as a sum of basis functions.
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1. INTRODUCTION

A multistage stochastic program deals with the optimization of a system where
decisions have to be taken in sequence, at some stage indices t = 1, . . . , T . Decisions
are functions (sometimes called recourse functions) depending on some alea ω lying
in a probability space (Ω,F , µ). The (partial) information available to the decision
maker at each stage is modelled by a filtration F1 ⊂ F2 ⊂ . . . ⊂ FT ⊂ F , where
Ft is the set of distinguishable events of Ω at stage t and where the interlocking
property models a progressive acquisition of information without memory loss.

In practice, this information is generated by a sequence of random variables
{π1, . . . ,πT } where πt represents the past of an underlying observation random
process (we have Ft = σ(πt) completed with zero-measure sets). Thus, there is an
observation space S = S1 × . . .× ST ⊂ (Rm)T equipped with its Borel sigma-field

1Jean-Sébastien Roy passed away on the 4th of July 2007 at the age of 33 years.
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BRmT , a random vector:

S : (Ω,F , µ)→ (S,BRmT )
ω 7→ (S1(ω), . . . ,ST (ω))

and for each t = 1, . . . , T , the past πt aggregates the first t components of S:

πt : (Ω,F , µ)→ (S1 × . . .× St,BRmt)
ω 7→ (S1(ω), . . . ,St(ω)) .

For instance, S can stand for successive observations of the temperature, the number
of clients or the price of a portfolio item. We will hereafter call its realizations
scenarios.

We now denote by Ut ∈ L∞(Ω,F , µ,Rn) the decision to be taken at stage t. The
fact that this decision must be taken only on the basis of information contained in
Ft is achieved by enforcing Ut to be Ft-measurable. These are the so-called non-
anticipativity constraints: Ut does not anticipate the future from stage t+ 1. In this
case, there exists a measurable function ϕt such that Ut = ϕt ◦ πt.

The last thing to be determined is what is going to be optimized. When discover-
ing scenario s = (s1, . . . , sT ), the cost of making a sequence of decisions (u1, . . . , uT )
is denoted by f(u1, . . . , uT ; s) where f is an extended-real valued function. What we
want to minimize is the expectation of this cost under the informational constraints
i. e. to solve:

Minimize(U1,...,UT ) E (f(U1, . . . ,UT ;S)) (1a)
s. t. U1, . . . ,UT ∈ L∞(Ω,F , µ,Rn) (1b)

Ut is Ft-measurable. (1c)

This problem is infinite-dimensional, hence computationally intractable. That is why
one usually deals with a finite-dimensional approximation. Anyway, in many appli-
cations, we do not know the law µ but only a set of scenarios SN =

{
s(1), . . . , s(N)

}

coming from experiment readings or historical data. In this case, a natural way to
approach the problem is to determine a pointwise approximation of Ut, t = 1, . . . , T ,
evaluated on the atoms of SN i. e. a set of points {u(i)

t , i = 1, . . . , N} defining the
mapping:

Ũt : SN → Rn

s(i) 7→ u
(i)
t .

The expected cost can therefore be approximated by:

E (f(U1, . . . ,UT ;S)) ≈ 1
N

N∑

i=1

f
(
u

(i)
1 , . . . , u

(i)
T ; s(i)

)
. (2)

Measurability constraints (1c) have also to be discretized; see [2] for a broad study of
the question. A commonly adopted approach consists in constructing a scenario tree
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(see [8], [9] for instance), structure of which naturally induces a discrete filtration
and is consistent in the epiconvergence sense ([11]).

If only scenarios are available i. e. we do not have a simulation mechanism for
the conditional law of the observation process, then an effort must be produced
to transform a bundle of scenarios into a tree; see [7]. Moreover, when dealing
with multistage stochasic programming, one is usually interested in the first stage
decision as well as in the first recourse decisions. Unfortunately, the topology of trees
generally does not furnish enough nodes at the first stages to construct feedback
approximations (see [3, 4] for a discussion on the subject).

We propose in this paper methods which do not require a modification of sampled
data as in tree-based techniques but keep scenarios as they are. Non-anticipativity
constraints will be handled by discretization schemes based on ideas from the so-
called Nadaraya–Watson non-parametric regression estimator.

In the following section, two discretization methods are developed. Then we give
some asymptotic convergence results and a numerical example in the last section.

2. NON–PARAMETRIC DISCRETIZATION OF NON–ANTICIPATIVITY

The informational constraints (1c) can also be written in an analytic way with the
help of the conditional expectation:

Minimize(U1,...,UT ) E (f(U1, . . . ,UT ;S)) (3a)
s.t. U1, . . . ,UT ∈ L∞(Ω,F , µ,Rn) (3b)

Ut = E (Ut|πt) . (3c)

For a given couple of random vectors (A,B) with values in Rn × Rm, the ker-
nel estimator first proposed by Watson ([13]) and Nadaraya ([10]) arises in non-
parametric estimation, as a well known tool to estimate the regression function
g(b) = E (A|B = b). It is based on the knowledge of a sample of independent
and identically distributed random variables (A(1),B(1)), . . . , (A(N),B(N)) with the
same law as the couple (A,B).

If we choose K : Rm → R+ a kernel function, and hN > 0 a kernel bandwidth
depending on N , the estimator is defined as the random function:

gN

(
(A(1),B(1)), . . . , (A(N),B(N)); b

)
=

∑N
i=1A

(i)K
(

B(i)−b
hN

)

∑N
i=1K

(
B(i)−b
hN

) ≈ g(b)

where 0/0 is taken to be 0. Convergence properties of this estimator have been
broadly studied by Devroye et al. ([5], [6]). We particularly mention the universal
consistency property proved by Devroye and Wagner [6] and separately by Spiegle-
man and Sacks [12]:

Theorem 2.1. B(0, r) denotes the closed ball of radius r centered at 0 and IB(0,r)

denotes its characteristic function. Suppose there exists Rl, Ru, cl, cu > 0 such that
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the kernel K satisfies:

clIB(0,Rl) ≤ K ≤ cuIB(0,Ru)

and that h→ 0, Nhm → 0. Then, for all p ≥ 1 such that ‖A‖Lp < +∞:

E
(∥∥∥gN

(
(A(1),B(1)), . . . , (A(N),B(N));B

)
− E (A|B)

∥∥∥
p

Lp

)
→ 0

where the outer expectation is taken with respect to the sample.

From the characterization of measurability with the help of conditional expecta-
tion, we obtain the straightforward corollary:

Corollary 2.1. A is σ(B)-measurable if and only if:

E
(∥∥∥gN

(
(A(1),B(1)), . . . , (A(N),B(N));B

)
−A

∥∥∥
p

Lp

)
→ 0.

P r o o f . This is a direct consequence of the fact that A is σ(B)-measurable if
and only if A = E (A|B) and of the uniqueness of the limit in Theorem 2.1. ¤

This result originates the discretization schemes we propose in the following.
Given a sample (s(1), . . . , s(N)), and the corresponding past samples (π(1)

t , . . . , π
(N)
t )

for t = 1, . . . , T − 1, we will approximate the right-hand side of constraint (3c) by:

E (Ut|πt = πt) ≈ gN
(

(u(1)
t , π

(1)
t ), . . . , (u(N)

t , π
(N)
t );πt

)
, (4)

where the u(i)
t ’s are the decision variables of the discretized problem constituting the

pointwise approximation of Ut. Now, so as to approach the whole constraint (3c),
the first (näıve) idea would be to add the N × T following equalities:

u
(i)
t = gN

(
(u(1)
t , π

(1)
t ), . . . , (u(N)

t , π
(N)
t );π(i)

t

)
≈ E

(
Ut|πt = π

(i)
t

)
∀ i, ∀ t. (5)

This näıve discretization is in fact catastrophical because the resulting pointwise
approximation is inevitably constant, or in the best case constant on each connected
part of supp(πt) (supp(·) stands for the support of a function). To see this fact, let
us denote:

α
(i,j)
t =

K

(
π

(i)
t −π

(j)
t

hN

)

∑N
k=1K

(
π

(i)
t −π

(k)
t

hN

) and A
(i,j)
t = α

(i,j)
t In

with In the n × n identity matrix. Equality (5) rewrites u(i)
t =

∑N
j=1 α

(i,j)
t u

(j)
t or

ut = Atut where At = (A(i,j)
t )i,j is a matrix defined by block. Any two scenarios
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i and j are said to be neighbors if α(i,j)
t > 0. If we gather scenarios 1 ≤ i, j ≤ N

connected through a path of neighbors, we then obtain a relation of equivalence 4t:

i4tj ⇐⇒





∃ k1, k2, . . . , kp ∈ {1, . . . , N}
k1 = i, kp = j

∀ ν = 1, . . . , p− 1 α
(kν ,kν+1)
t > 0.

Let’s assume for an instant that n = 1 and there is only one class, i. e. the matrix
A = (α(i,j)

t )i,j is irreductible. This occurs for instance if we choose a kernel K(·) of
support all R, as a gaussian kernel for example. We denote E the subspace defined
by the system of constraints (5) and we claim that it is equal to the space E ′ of
vectors with components one equal to each other:

E ′ =
{
ut/u

(1)
t = . . . = u

(N)
t

}
.

Clearly, E ′ ⊂ E because A computes weighted averages. Now, A is a stochastic
matrix, so its spectral radius is 1. The associated eigenspace is consequently 1-
dimensional, by the irreducibility of A together with the Perron–Frobenius theorem.
This eigenspace coincide with E by definition and must therefore reduce to E ′ since it
is itself 1-dimensional. This line easily extends to n-dimensional vectors, reasoning
component by component.

The convergence of estimators generally needs each of the scenarios to have many
neighbors. Therefore, classes of equivalence will correspond to the connected part
of supp(πt).

3. DISCRETIZATION METHODS

3.1. Penalization of non-anticipativity

We just realised that imposing the estimation of the regression function to be point-
wise equal to the decisions (u(1)

t , . . . , u
(N)
t ) led to a very bad approximation of the

space of Ft-measurable functions. The first idea we develop consists in slightly re-
laxing these T sets of N equalities by penalizing them. If P (·) is a penalization
function, for instance:

P (x) =
C

2
‖x‖22 P (x) = C ‖x‖1 P (x) = I{‖x‖∞≤ε} (6)

we propose to solve the following finite dimensional program:

Minimizen
u

(i)
t

o 1
N

N∑

i=1

f(u(i)
1 , . . . , u

(i)
T ; s(i)) (7a)

+
∑

i,t

P
(
u

(i)
t − gN ((u(1)

t , π
(1)
t ), . . . , (u(N)

t , π
(N)
t );π(i)

t )
)
. (7b)

The penalty parameters C and ε in (6) should be tuned experimentally with respect
to the value of N (see Section 4 for more details).
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3.2. Partition of unity method

We now present another point of view about non-parametric estimators which inter-
prets the function gN in (4) as the sum of N basis functions weighted with coefficients
u

(i)
t . Namely, this basis contains for a given t, the functions ϕ(i)

t defined by:

ϕ
(i)
t (·) =

K

(
π

(i)
t −·
hN

)

∑N
j=1K

(
π

(j)
t −·
hN

) (8)

and we look for functions ϕt : Rmt → Rn in the form ϕt(·) =
∑N
i=1 ϕ

(i)
t (·)u(i)

t . This
family defines a so-called partition of unity in the sense that:

N∑

i=1

ϕ
(i)
t ≡ 1 on

N⋃

i=1

{
π

(i)
t + hN supp(K)

}
.

We will denote by Φt ·ut the element of this space with coefficients (u(1)
t , . . . , u

(N)
t ) =

ut ∈ (Rn)N . Then:

(Φt · ut)(π(i)
t ) = gN

(
(u(1)
t , π

(1)
t ), . . . , (u(N)

t , π
(N)
t );π(i)

t

)
(9a)

=
N∑

j=1

ϕ
(j)
t (π(i)

t )u(j)
t . (9b)

Instead of trying to relate the pointwise values of ϕt = Φt · ut with the values of
its coefficients like in the previous section, we differentiate them by introducing new
variables. For i = 1, . . . , N and t = 1, . . . , T , we set v(i)

t = (Φt · ut)(π(i)
t ) and using

(9b), we propose to solve the following problem:

Minimizen
u

(j)
t ,v

(i)
t

o 1
N

N∑

i=1

f(v(i)
1 , . . . , v

(i)
T ; s(i)) (10a)

v
(i)
t =

N∑

j=1

ϕ
(j)
t (π(i)

t )u(j)
t . (10b)

Remark 3.1. Note that variables v(i)
t have been introduced only for sake of clarity

but need not be implemented.

We would like to emphasize the fact that this approach is not new. The use of
a partition of unity for numerical integration has already been used in [1] to solve
partial differential equations. It is worth noting that the idea (see [1, section 2])
comes from numerical integration methods in data fitting. We now present some
facts about the convergence of the partition of unity method.
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3.3. A convergence result

We hope the convergence results we give in this section will constitute a base for
further exploration on approximation of problems (7) and (10). In this section, we
forget the stage index t. We set Π = π(Ω) and we equip it with the transported
measure λ = µ◦π−1 and with its Borel σ-field. Then, we consider a sequence {λN}N
of measures on Π of atomic support

{
π(1), . . . , π(N)

}
. The probability assigned to

each atom does not matter because we do not study the evaluation of the cost, but
only the structure of basis functions ϕ(i) which only depends on the localization of
the atoms in the space.

For all N , we choose a kernel bandwidth hN and we define the set:

EN =

{
ϕ =

N∑

i=1

u(i)ϕ(i), (u(1), . . . , u(N)) ∈ (Rn)N
}

which is the finite dimensional space of approximations. We are interested in the
functions representable by sequences of {EN}N . Convergence in Lp-norm is consid-
ered for 1 ≤ p <∞ under the following hypothesis:

H1) limN→∞ hN = 0;

H2) limN→∞ λ
(⋃N

i=1

{
π(i) + hN supp(K)

})
= 1;

H3) there are cl, Rl, cu, Ru > 0 such that K satisfies hypothesis of Theorem 2.1.

Lemma 3.1. Let l be defined on Π, continuous with a compact support. Then,
under H1, H2, H3, there is a sequence lN ∈ EN converging to l in any norm Lp.

P r o o f . We construct the sequence {lN}N by defining for every N :

lN (π) =
N∑

i=1

l(π(i))ϕi(π).

Choose ε > 0. If we denote by AN =
⋃N
i=1

{
π(i) + hN supp(K)

}
the involved set in

hypothesis H2, then we can choose N large enough so as to obtain:

i) hN is so small that sup‖π−π′‖<RuhN ‖l(π)− l(π′)‖ < ε
1
p .

ii) λ(AN ) ≥ 1− ε
(‖l‖∞)p .

For every π, we have:

‖lN (π)− l(π)‖ =

∥∥∥∥∥∥
1

∑N
i=1K

(
π(i)−π
hN

)
N∑

i=1

l(π(i))K
(
π(i) − π
hN

)
− l(π)

∥∥∥∥∥∥
(11)

the elements of the sum are non-zero for the indices i such that π(i)−π
hN

∈ supp(K).
If there is no such i, it means that π 6∈ AN and the sum is zero. Else π ∈ AN and for
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all non-zero term, we have
∥∥π(i) − π

∥∥ ≤ RuhN by H3 so
∥∥l(πi)− l(π)

∥∥ < ε
1
p by the

choice of hN . Now the sum in (11) corresponds to a convex combination of points
all being in B(l(π), ε

1
p ), the open ball centered in l(π) and of radius ε

1
p so the result

is also in this ball and we obtain:

‖lN (π)− l(π)‖p < ε.

Now, we can integrate this inequality:
∫
‖lN (π)− l(π)‖p =

∫

AN

‖lN (π)− l(π)‖p +
∫

Π\AN
‖lN (π)− l(π)‖p

≤ λ(AN )ε+ λ(Π \AN ) ‖l‖∞
≤ ε+ ε.

As this is true for all ε, we have the convergence. ¤

We deduce from this result a corollary similar to the universal strong consistency
of Theorem 2.1:

Corollary 3.1. For every l ∈ Lp(Ω,F , µ). There is a sequence lN in EN converging
to l in Lp.

P r o o f . This is straightforward from the density of the set of continuous functions
with compact support in Lp. ¤

4. NUMERICAL EXAMPLES

4.1. Optimal control of an hydro-power plant

We consider the problem of managing an hydro-power plant. Two successive produc-
tion decisions u1 ≥ 0 and u2 ≥ 0 have to be made. The reservoir initially contains
an amount of energy S, so that we require u1 + u2 ≤ S. These decisions have to
be taken as feedbacks on successive random selling prices ω1 and ω2. There is a
non-anticipativity constraint on the first decision, i. e., u1 has to be taken prior to
any knowledge of the second price, except its conditional law with respect to the
first one. Mathematically, we consider the following cost function:

f (u1, u2, ω1, ω2) = −u1ω1 − u2ω2 − V (S − u1 − u2)

where V (x) is the value of the remaining stock at the end of the two steps, and
is in our case a quadratic approximation of

√
η + x, i. e., V (x) =

√
η + ax + bx2,

with b = 2
S2

(√
η − 2

√
η + S

2 +
√
η + S

)
, a =

√
η+S−√η−b

S and η = 0.1. ω1 and ω2

follow independent uniform laws on [0.4, 2], and S = 1. Our optimization problem
is therefore:

J = min
u1(·),u2(·,·)

E [−u1 (ω1)ω1 − u2 (ω1,ω2)ω2 −V (S− u1 (ω1)− u2 (ω1,ω2))]

subject to , ∀ (ω1, ω2) ∈ [0.4, 2]2 u1 (ω1) ∈ [0, S] and u2 (ω1, ω2) ∈ [0, S − u1 (ω1)] .
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The problem can be solved exactly by dynamic programming. We compare this
exact solution to the approximation obtained by the penalization approach (7). Let(
ω

(j)
1 , ω

(j)
2

)
j=1,...,N

be N independent realizations of the prices. We consider the
following problem:

J̃N = min“
u

(j)
1 ,u

(j)
2

”
j=1,...,N

1
N

∑

j=1,...,N

f
(
u

(j)
1 , u

(j)
2 , ω

(j)
1 , ω

(j)
2

)

+
C

N

N∑

j=1

∥∥∥∥∥∥∥∥∥∥

u
(j)
1 −

∑

k 6=j
K

(
ω

(j)
1 −ω

(k)
1

ε1

)
u

(k)
1

∑

k 6=j
K

(
ω

(j)
1 −ω

(k)
1

ε1

)

∥∥∥∥∥∥∥∥∥∥

2

where K(x) = e−
x2

ε2 . Once this problem is solved, we synthetize the required feed-
backs u1 (·) and u2 (·, ·) using:

u1 (ω1) =

N∑

j=1

K

(
ω

(j)
1 −ω1

ε1

)
u

(j)
1

N∑

j=1

K

(
ω

(j)
1 −ω1

ε1

)

u2 (ω1, ω2) =

N∑

j=1

K

(“
ω

(j)
1 ,ω

(j)
2

”
−(ω1,ω2)

ε2

)
u

(j)
2

N∑

j=1

K

(“
ω

(j)
1 ,ω

(j)
2

”
−(ω1,ω2)

ε2

)

with ε2 chosen to provide the best fit for the point set
(
(ω(j)

1 , ω
(j)
2 ), u(j)

2

)
. We choose

empirically ε2 =
√

ε1
π . The quality of this approximate is then evaluated by a large

Quasi-Monte-Carlo simulation.
Figures 1 and 2 present the feedbacks obtained while Table 1 summarizes the

quality of these approximations. The results must be compared to the optimum
value, J = −1.7414, the value obtained without the penalty term, i. e., the antici-
pative solution assuming the future is known, whose value is −1.786, and the value
of the solution obtained by synthetizing from the anticipative solution, feedbacks
as detailed above, with ε1 = 0.1. The value of this last solution is −1.69563. Fig-
ure 3 presents this solution, while Figure 4 presents the optimal feedback u2 (·, ·)
(the optimal feedback u1 (·) is drawn on each graph representing an approximation
of u1(·)).

Parameters ε1 and C can be set so as to optimize the value during the simulation.
Figures 5 and 6 present the best approximations obtained for N = 10, 27, 129 and
999. Table 2 summarize the quality of the approximations, and the parameters
chosen. It seems that the optimal value as well as the feedbacks converge to the
exact solution as the number of available scenarios grows.
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Fig. 1. Approximation of u1 (·) for N = 100 scenarios

as a function of the bandwidth ε1 and the penalty C.

ε1=0.02 ε1=0.1 ε1=0.5

C=1

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

C=5

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

C=25

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

Fig. 2. Approximation of u2 (·, ·) for N = 100 scenarios

as a function of the bandwidth ε1 and the penalty C.
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Table 1. Quality of the approximation for N = 100 scenarios

as a function of the bandwidth ε1 and the penalty C.

ε1 = 0.02 ε1 = 0.1 ε1 = 0.5
C = 1 –1.6788 –1.72698 –1.67559
C = 5 –1.67757 –1.73394 –1.66757
C = 25 –1.67638 –1.72863 –1.58707

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

u
1

ξ1

Optimal feedback
Estimated feedback

Estimated controls

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2

 0

 0.2

 0.4

 0.6

 0.8

 1

u
2

Estimated feedback

ξ
1

ξ
2

u
2

Fig. 3. Approximations of u1 (·) and u2 (·, ·), for N = 100 scenarios,

with bandwidth ε1 = 0.1 and no penalty, i. e., C = 0.
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Fig. 5. Best approximation of u1 (·) for N = 10, 27, 129 and 999.
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Fig. 6. Best approximation of u2 (·, ·) for N = 10, 27, 129 and 999.
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Table 2. Quality and values of ε1 and C

for the best solutions for N = 10, 27, 129 and 999.

N ε1 C Value
10 0.215443 5.99484 –1.70561
27 0.129155 2.15443 –1.72187
129 0.0774264 5.99484 –1.73369
999 0.016681 1000 –1.74018

5. CONCLUSION

The work presented in this paper aims at developing methods alternative to the
construction of scenario trees, on the one hand to avoid complex pre-processing
computation, on the other to get better solution approximation for first stages.
However, there is no question that, like the other scenario-based methods, the num-
ber of scenarios required to get a good approximation of the problem should be high
and necessitate for example to set up decomposition-coordination methods. More-
over, both methods presented here should make profit of the dense computational
literature in the field of numerical data fitting.

(Received November 5, 2007.)
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