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FUZZY DATA IN STATISTICS

Milan Mareš

The development of effective methods of data processing belongs to important chal-
lenges of modern applied mathematics and theoretical information science. If the natural
uncertainty of the data means their vagueness, then the theory of fuzzy quantities offers
relatively strong tools for their treatment. These tools differ from the statistical methods
and this difference is not only justifiable but also admissible. This relatively brief paper
aims to summarize the main fuzzy approaches to vague data processing, to discuss their
main advantages and also their essential limitations, and to specify their place in the wide
scale of information and knowledge processing methods effective for vague data.
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1. INTRODUCTION

The, mostly quantitative, data which are to be processed frequently look exactly de-
termined but they rarely are such. The indeterminism more or less hidden in their
structure may be of different types: imprecision or approximation, randomness,
enormous complexity complicating full understanding, and also vagueness. The last
type of indeterminism is very frequently connected with the properties of natural
language used during the process of data acquisition. In the communication among
people, certain degree of vagueness is not only acceptable but even useful – it means
its flexibility and adaptability to new situations and phenomena. On the other
hand, the exact mathematical methods used for vague input data may cause serious
difficulties or at least doubts when the obtained output data are interpreted and,
moreover, applied to practical situations. The world appears rather more uncertain
than the results aim to state. Consequently, the development of adequate mathe-
matical tools for processing vagueness became quite urgent in the second half of the
twentieth century (see [12]).

For long time, probability theory and probability-based statistics appeared to be
sufficient for mathematical modelling of any type of indeterminism. Anyhow, the
first attempts to artificial intelligence, intelligent systems, and to related problems
pointed at a different type of uncertainty. In many situations, it could be processed
by probabilistic methods, as well. Only the derived results were sometimes rather
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different from the experience-based expectation. The probabilistic models did not
reflect the type of uncertainty in question.

The theory of fuzzy sets formulated in [12] attempts to handle the uncertainty of
vague expressions in the natural language. The first reaction on the new model of
uncertainty was not indifferent at all. On one side, hundreds of papers (yes, many of
them were mathematically very primitive) suggested useful applications of fuzziness,
on the other, numerous authors tried to show that all fuzzy set theoretical models
can be (better!) reformulated in the probabilistic language and that the whole fuzzy
sets theory is nothing more than some “pidgeon probability”. Let us admit that
some elementary concepts of fuzzy sets, the so called membership functions, op-
tically remember essentially simplified probability densities. Since that time, the
development of fuzzy set theory brought new interesting theoretical and applied re-
sults (and also the most active fundamentalists on both sides became older and more
conciliatory), and the parallel existence of both theories, as well as their justification
are generally accepted. It is known that the difference between their models results
from their ability to describe essentially different phenomena, which also means that
the methods of their processing are different. There exist probabilistic questions and
probabilistic answers, as well as fuzzy theoretical questions and answers. In some,
relatively rare, cases the choice between them is rather subjective but in the great
majority of situations one of both models is evidently more adequate.

One of the opportunities in which both types of uncertainty meet, is the statistical
processing of random phenomena which are described by (usually quantitative) ex-
pressions of vague natural language, like “about 5”, “almost 8”, “something between
10 and 15”, but also, in the extreme cases, “many”, “several”, “sufficiently low” and
many others. In such case, the classical statistician usually “looks in another di-
rection”, substitutes the vague quantities by some deterministic representatives or,
in the better case, treats the vagueness as some special case of randomness, how-
ever it does not correspond with the essence of the modelled phenomena. Let us
accept a paradigm that there exist another possibility. We may admit the fact that
the observed results of random experiment are described vaguely, that the fuzzy sets
and, especially, fuzzy quantities properly respect this vagueness, and that there exist
effective tools for processing the vague (fuzzy) data similarly, even if not identically,
like the usual deterministic data. This paper is to offer a brief overview of such tools
and to discuss their specifications.

2. FUZZINESS AND RANDOMNESS

Both concepts mentioned in the heading deal with some forms of uncertainty. The
randomness is well-known, here we discuss the position of fuzziness in the “territory”
not covered by probability.

For those who were not interested in the fuzzy sets, yet, and also to fix the
elementary notations, we briefly introduce the basic concepts and symbols of fuzzy
set theory, and discuss the relation between fuzzy and random phenomena. The
acceptance of that relation means the main problem for probabilists meeting the
fuzziness.
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Let us consider a basic set U which is called the universum. Each fuzzy set
on U , denoted by A, is defined by its membership function µA : U → [0, 1]. The
membership function extends the concept of the deterministic characteristic function
with values in {0, 1}, where the interpretation of µA(x) = 0 and µA(x) = 1 is the
same like in the deterministic case, and µA(x) ∈ (0, 1) means that x ∈ A only with
some possibility, quantitatively determined by the membership value µA(x).

We denote by P(U) the class of all deterministic subsets of U , and by F(U) the
class of all fuzzy sets on U . IF M ∈ P(U) then we define by 〈M〉 ∈ F(U) the fuzzy
set for which

µ〈M〉 = 1 if x ∈ M, µ〈M〉 = 0 if x /∈ M. (1)

The classical set-theoretical operations are easily extended on F(U) as follows. If
A, B ∈ F(U) then

A ⊂ B iff µA(x) ≤ µB(x) for all x ∈ U , (subset), (2)

A iff µA(x) = 1− µA(x), ∀x ∈ U , (complement), (3)

A ∪B iff µA∪B(x) = max(µA(x), µB(x)), ∀x ∈ U (union), (4)

A ∩B iff µA∩B(x) = min(µA(x), µB(x)), ∀x ∈ U (intersection). (5)

Even if the above operations extend their deterministic analogies, some of their
properties may be rather surprising. It is, e. g., not difficult to construct a fuzzy set
which is a subset of its own complement.

Having introduced the elementary formalism of fuzzy sets, we may comment the
eventual discussion about the similarity between fuzziness and randomness.

An example may be better than long argumentation. The question: “How old
is this man?” leads to a probabilistic answer: “He is probably about 30” and it is
formally represented by a probability distribution over the set of natural numbers
with modus near 30. If we add “But he can be also almost 40”, the formal repre-
sentation of both sentences is still a probability distribution over naturals – we have
only to increase the probabilities of numbers near 40 and, consequently, to decrease
the probabilities of values about 30. This decreasing follows naturally from both –
the definition of probability distribution (with total probability 1), and the intuitive
conclusion that increasing the change of 40 we automatically decrease the chances
of some other values.

Let us, now, consider another question: “What is the acceptable age of new
employee?” We may answer “Acceptable age is about 30,” and to represent this
answer by a fuzzy subset of natural numbers with a membership function. If we,
similarly to the previous case, add “But almost 40 would not be bad, too,” then we
may simply increase the membership values of numbers nearing 40. In this case,
we need not proportionally decrease other values of the membership function as the
sum of all membership is not limited. Note, please, that this is no imperfectness of
fuzzy sets but a simple reflection of the fact that the verbal category “acceptable
age” regards each age separately – the acceptability of one age does not influence
this property of another. To be “acceptable” is a rather uncertain quality, but
this uncertainty is not the randomness, it is vagueness connected with the used
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verbal expression. The question in this second case is not probabilistic but fuzzy set
theoretical.

The fact that the probabilities and memberships are further processed by different
tools (the addition and multiplication on one side and maximum or minimum on
the other) follows from the essential properties of both uncertainties.

Very formally, there really exists a strong connection between fuzzy sets and
random events. Namely, the event that a point x ∈ U belongs to the fuzzy set A can
be interpreted as random event, binary distributed, with probabilities (µA(x), 1 −
µA(x)). Then a fuzzy set A is a parametrized class of binary random events {Ax :
x ∈ U}, where each Ax is an event of the above type. In this sense, fuzzy sets respect
the probabilistic rules. Of course, the model of vague phenomenon as a parametrized
class of binary distributions is not very handy, and also the processing of fuzziness
by means of maxima and minima is not typical for the probabilistic models.

Comparing the probabilistic and fuzzy set theoretical model of uncertainty, it is
useful to stress one great advantages of probabilities – the large numbers law. It
connects the abstract concept of probability with very concrete phenomenon of the
material world, the relative frequency. It supports the numerical values of proba-
bilistic measures with the everyday experience and, moreover, it offers an effective
method of quantification of actual values of probabilities. Nothing like this exists in
the fuzzy set theory – no asymptotic properties relate the membership functions to
vagueness, no matter how it could be quantified.

3. FUZZY QUANTITIES

The quantitative data represent a typical object of statistical processing. If those
data are vague then they may be represented by a specific type of fuzzy sets over
the real line called fuzzy quantity. More formally, fuzzy quantity a is a fuzzy subset
of R with membership function µa : R → [0, 1] such that

there exists xa ∈ R such that µa(xa) = 1, (6)

there exist x1
a < x2

a ∈ R such that µa(x) = 0 for x /∈ [x1
a, x2

a]. (7)

The number xa fulfilling (6) is called the modal value of a. The set of all fuzzy
quantities is denoted Q(R), and preserving the notations used above, Q(R) ⊂ F(R).

The fuzzy quantities, as defined above, include a wide scale of formal structures –
membership functions. Nevertheless, in many practical applications, much narrower
subset of Q(R) including very simple fuzzy quantities is sufficient for modelling
practical problems. Let us consider four numbers x1

a ≤ xa ≤ x′a ≤ x2
a and a fuzzy

quantity a with membership function µa such that

µa(x) = (x− x1
a)/(xa − x1

a) for x ∈ (x1
a, xa), (8)

= 1 for x ∈ [xa, x′a],

= (x2
a − x)/(x2

a − x′a) for x ∈ (x′a, x2
a),

= 0 else,
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where we suppose that x1
a 6= xa and x2

a 6= x′a. If some of those inequalities turns
into equality then (8) can be easily modified by omitting the relevant interval (which
becomes empty). Such fuzzy quantity is called trapezoidal or also a fuzzy interval.
If xa = x′a then it turns into triangular fuzzy quantity, called also fuzzy number.

The fuzzy quantities extend the traditional concept of number by admitting also
alternative possible values of the considered quantity. It means that also a crisp num-
ber r ∈ R can be considered for fuzzy quantity with extremely reduced membership
function. We denote this quantity by 〈r〉 ∈ Q(R), and put, cf. (1),

µ〈r〉(r) = 1, µ〈r〉(x) = 0 for x 6= r. (9)

As the fuzzy quantities extend the real numbers, it is desirable to extend also the
classical algebraic operations over R to the set Q(R). The usual method of doing it
is called extension principle. Its general formulation is as follows.

Let a1, a2, . . . , an ∈ Q(R) and let f(x1, x2, . . . , xn) : R × R × · · · × R → R be
a real-valued function of n ∈ N real variables. Then its extension f : Q(R) ×
Q(R) × · · · × Q(R) → Q(R) is a mapping such that the membership function of
f(a1, a2, . . . , an) ∈ Q(R) is

µf(a1,a2,...,an)(x) = sup
x1∈R, x2∈R,...,xn∈R

x=f(x1,x2,...,xn)

[min (µa1(x1), µa2(x2), . . . , µan(xn))] . (10)

General formula (10) gains simpler forms for particular algebraic operations.
The sum of fuzzy quantities a and b is a fuzzy quantity a ⊕ b with membership

function
µa⊕b(x) = sup

y∈R
[min(µa(y), µb(x− y))] , x ∈ R. (11)

The crisp product of real number r ∈ R and fuzzy quantity a ∈ Q(R) is a fuzzy
quantity r · a with membership function

µr·a(x) = µa(x/r) if x ∈ R, r 6= 0, (12)

= µ〈0〉(x) if r = 0

which implies
µ−a(x) = µ−1·a(x) = µa(−x) for x ∈ R. (13)

More general fuzzy product of a, b ∈ Q(R) is a fuzzy quantity a¯ b, where

µa¯b(x) = sup
y∈R
y 6=0

[min(µa(y), µb(x/y))] , x ∈ R, x 6= 0 (14)

= max (µa(0), µb(0)) for x = 0.

Observation 1. If r ∈ R, a ∈ Q(R), then r · a = 〈r〉 ¯ a.

Similar formulas can be derived for other binary operations. For our purpose, the
above formulas (in most cases the sum and crisp product) are usually sufficient. In
some situations, the second power can be useful, too.
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If a ∈ Q(R), then also a2 ∈ Q(R) and, in accordance with (10),

µa2(x) = µa

(√
x
)

for x ∈ R, x ≥ 0 (15)

= 0 for x < 0

(as y2 ≥ 0 for all y ∈ R).
The fuzzy quantities can be ordered, similarly to deterministic numbers. In fact,

there exist many different approaches to the binary ordering relation over Q(R),
the rational ones are summarized and analyzed in [5], partly also in [8]. The most
natural appears the ordering paradigm due to which the ordering relation between
vague elements is to be vague, i. e., fuzzy, as well. Respecting this principle, we
define the fuzzy ordering % of fuzzy quantities as a fuzzy subset of the cartesian
product Q(R)×Q(R)) with membership function ν% such that for any ordered pair
a, b of fuzzy quantities

ν%(a, b) = sup
x,y∈R, x≥y

[min(µa(x), µb(y))] (16)

means the possibility that a % b.
The above concepts represent the tools applicable whenever the classical sta-

tistical methods are to be transmitted into the environment of fuzzy data. Their
practical applicability depends on their computational properties.

4. ALGEBRAIC PROPERTIES OF FUZZY QUANTITIES

The operations and relations over fuzzy quantities, described in the previous sec-
tion, rather differ from those over deterministic real numbers. More about them is
summarized, e. g., in [1, 2, 7, 8]. The most essential difference consists in the validity
of some intuitively expected algebraic properties.

In this and all following sections, the equation a = b for a, b ∈ Q(R) means the
total identity of their membership functions, µa(x) = µb(x) for all x ∈ R.

Let us start with the group properties (see [7, 8]), and consider the operation of
sum ⊕. Then it is easy to derive the commutativity and associativity for a, b, c ∈
Q(R)

a⊕ b = b⊕ a, (a⊕ b)⊕ c = a⊕ (b⊕ c).

There exists exactly one zero fuzzy quantity o ∈ Q(R) such that for any a ∈ Q(R),
a⊕ o = a, namely, o = 〈0〉. Unfortunately, except very special (and rather degener-
ated) cases, for no general fuzzy quantity a ∈ Q(R) there exists (−a) ∈ Q(R) such
that a⊕ (−a) = o = 〈0〉. This group property (opposite element) is not fulfilled.

The group properties of the fuzzy product ¯ are quite analogous. It is commuta-
tive and associative, there exists exactly one unit-element 〈1〉 such that a¯ 〈1〉 = a
for any a ∈ Q(R). Also the existence of reverse elements is not fulfilled.

The crisp product r · a, where a ∈ Q(R), r, r1, r2 ∈ R is a simple operation
fulfilling

r · a = a · r, r1 · (r2 · a) = (r1 · r2) · a.
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Using both operations, sum and product, in parallel, we can meet the problem of
their distributivity. Generally, the equation between a¯ (a⊕ c) and (a¯ b)⊕ (a¯ c),
where a, b, c ∈ Q(R), is fulfilled for special cases, summarized in [1, 2] and recollected
in [7, 8]. Luckily, one of the special cases covers the case

r · (a⊕ b) = (r · a)⊕ (r · b), r ∈ R, a, b ∈ Q(R),

meanwhile the symmetric case, the equality between r1 · a ⊕ r2 · a and (r1 + r2) · a
is not generally true (hence, a⊕ a is not generally equal to 2 · a).

Observation 2. Let a, b ∈ Q(R) be trapezoidal, characterized by quadruples
(x1

a, xa, x′a, x2
a) and (x1

b , xb, x
′
b, x

2
b), respectively, and let r ∈ R. Then (−a), r · a,

a⊕ b are trapezoidal, characterized by
(−x2

a, −x′a, −xa, −x1
a

)
,

(
r · x1

a, r · xa, r · x′a, r · x2
a

)
if r ≥ 0,

(
r · x2

a, r · x′a, r · xa, r · x1
a

)
if r < 0,

(
x1

a + x1
b , xa + xb, x′a + x′b, x2

a + x2
b

)
,

respectively.

Let us note that for trapezoidal a, b, their fuzzy product a ¯ b is not generally
trapezoidal. Nevertheless, its approximation by trapezoidal fuzzy quantity is possible
and in some applications quite sufficient.

5. WHERE ARE THE ROOTS OF PROBLEMS?

The rather exotic behaviour of fuzzy quantities can be quite uncomfortable in ap-
plications. We are used to expect some algebraic properties fulfilled by quantitative
data, and feel rather surprised, when, e. g., a⊕a 6= 2 ·a. To understand the structure
of fuzziness in the numerical environment, it is useful to analyze the essence of these
inconsistencies. It was done in several papers and the results are summarized in [7]
and [8].

Those results show that the roots of the disproportion between deterministic and
fuzzy quantities follow from the combined effect of the used concepts of fuzzy zero
(or fuzzy unit) and equality between fuzzy quantities.

Let us define modal fuzzy zero as any fuzzy quantity s ∈ Q(R) for which

µs(x) = µs(−x) for all x ∈ R, and µs(0) = 1. (17)

It is easy to prove that for any a ∈ Q(R), a ⊕ (−a) is modal fuzzy zero. On the
other hand, if s ∈ Q(R) is modal fuzzy zero then for a ∈ Q(R) generally a ⊕ s is
not equal to a (except the special case of s = 〈0〉). To achieve the validity of the
zero-element-axiom, at least in a weakened form, we define the additive equivalence
relation ∼⊕. If a, b ∈ Q(R), a ∼⊕ b, iff there exist modal fuzzy zeros s, s′ such that

a⊕ s = b⊕ s′. (18)
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Then it is easy to show that for any a, b, c ∈ Q(R) and modal fuzzy zero s,

a⊕ b ∼⊕ b⊕ a, a⊕ (b⊕ c) ∼⊕ (a⊕ b)⊕ c,

a⊕ s ∼⊕ a, and a⊕ (−a) ∼⊕ s.

In this weakened sense, the group properties are fulfilled. Moreover, for a, b ∈ Q(R)
and r ∈ R

(r · a)⊕ (r · b) ∼⊕ r · (a⊕ b).

The opposite distributivity is not generally fulfilled but it is true for an important
class of fuzzy quantities. Namely, we say that a ∈ Q(R) is almost trapezoidal iff there
exists trapezoidal b such that a ∼⊕ b. Then for any almost trapezoidal a ∈ Q(R)
and any r1, r2 ∈ R

(r1 · a)⊕ (r2 · a) ∼⊕ (r1 + r2) · a.

Observation 3. Fuzzy quantity a ∈ Q(R) is almost trapezoidal iff there exist
trapezoidal b ∈ Q(R) and modal fuzzy zero s ∈ Q(R) such that a = s⊕ b.

The above concept of the modal fuzzy zero is evidently natural for representing
the zero among fuzzy quantities.

Observation 4. For any a ∈ Q(R) and any modal fuzzy zero s, the fuzzy product
a¯ s is also modal fuzzy zero.

Observation 5. As shown in [7, 8], any symmetric fuzzy quantity t ∈ Q(R) such
that µt(x) = µt(−x) for all x ∈ R displays all the fuzzy-zero properties mentioned
above (except the general zero-modality µt(0) = 1). It means that such fuzzy
quantities can be considered for fuzzy zeros or, vice-versa, for simple fuzzy quantities
with interesting property of symmetry – due to the specification of the used model.

6. PROBLEM OF CUMULATING VAGUENESS

The computations based on the extension principle combine the uncertainties of
particular fuzzy quantities, and cumulate them into the uncertainty of the result.

In most frequented cases, it means the growth of the uncertainty of results.
Let us denote for a ∈ Q(R) the real numbers

inf(a) = inf (x ∈ R : µa(x) > 0) , sup(a) = sup (x ∈ R : µa(x) > 0) ,

var(a) = sup(a)− inf(a).
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Observation 6. Let a, b ∈ Q(R) and r ∈ R. Then it is easy to see that

sup(a⊕ b) = sup(a) + sup(b),

inf(a⊕ b) = inf(a) + inf(b),

var(a) + var(b) ≥ var(a⊕ b) ≥ max(var(a), var(b)),

sup(r · a) = r · sup a, inf(r · a) = r · inf(a),

var(r · a) = r · var(a),

sup(−a) = − inf(a), inf(−a) = − sup(a), var(−a) = var(a),

sup(a¯ b) = max
[
sup(a) · sup(b), sup(a) · inf(b),

inf(a) · inf(b), inf(a) · sup(b)
]
,

inf(a¯ b) = min
[
sup(a) · sup(b), sup(a) · inf(b),

inf(a) · inf(b), inf(a) · sup(b)
]
,

inf(a2) = min
[
(inf(a))2, (sup(a))2

]
,

sup(a2) = max
[
(inf(a))2, (sup(a))2

]
.

The characteristics var(a) represents the extent of possible values of a, in other
words the extent of uncertainty connected with a. Especially, the uncertainty of
a sum of many fuzzy quantities may be so large that it practically eliminates the
informational value of the possible values – the extent may be much larger than the
significant (let us say, modal) value of the resulting fuzzy quantity. This discrepancy
cannot be eliminated by the choice of the procedure applying the extension principle,
e. g., by the integration of several algebraic operations (summations, e. g.) in one
function.

Observation 7. Let a1, a2, . . . , an ∈ Q(R), let f : Rn → R be such that f(x1, x2,
. . . , xn) = x1 + x2 + · · ·+ xn and let

a = f(a1, a2, . . . , an),

in accordance with the extension principle (10). Let a ∈ Q(R) be such that

a = a1 ⊕ a2 ⊕ · · · ⊕ an,

where (11) was used. Then a = a and, consequently, var(a) = var(a).

The consequences of the relations summarized in Observation 6 means that the
enormous growth of uncertainty regards rather economic (and econometric) cumu-
lative factors (like the duration and flows in the Critical Path Methods, aggregated
quantities, etc.). Many significant statistical characteristics, like the mean value or
other moments, are influenced much less.
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7. DECOMPOSITION PRINCIPLE

The extension principle and methods based on it are natural and prevailing in the
theory of fuzzy quantities. Nevertheless, an alternative approach was suggested and
analyzed in several papers, e. g. in [9], where it is summarized.

It follows from the idea that a fuzzy quantity is, in fact, a hybrid concept com-
posed from three components. It combines a numerical quantitative value, the un-
certainty included in the verbal formulation of the quantity, and the subjective
uncertainty following from the reliability of the source of fuzzy data. Each of these
components can (and would) be processes separately by means of its specific tools,
and the results can be recombined in the construction in the outcome fuzzy quantity.

The previous heuristic description can be formalized as follows. Let us consider
a fuzzy quantity a with membership function µa. Then we decompose the function
µa into

– real number xa ∈ R which is called the deterministic core of a,

– real, continuous and increasing function f : R → R such that fa(0) = 0, called
the scale of a,

– real function ϕa : R → [0, 1], such that ϕa(0) = 1, called shape of a,

such that
µa(x) = ϕa (fa(x)− fa(xa)) , x ∈ R. (19)

We say that a is characterized by the triple (xa, fa, ϕa), and obviously ϕa is in some
sense a “normalized” structure of the membership, meanwhile fa (or its gradient)
represents the extent of uncertainty of the source of data a, and xa is its modal
value.

If a, b ∈ Q(R) are characterized by the triples (xa, fa, ϕa), (xb, fb, ϕb), respec-
tively, then, computing an algebraic operation with them (e. g., their sum a + b or
fuzzy product – please, note the different notation, operation a + b is not generally
identical with a ⊕ b) we may proceed separately the crisp cores xa, xb (usually by
classical algebraic operations), shapes ϕa, ϕb may be adequately processed rather by
“fuzzy logical” operations (like maximum, minimum) or by suitable functional op-
erations, and the scales fa ·fb may be processed by functional operations, described,
e. g., in [10]. In all cases, the choice of actual operations may be harmonized with
the type and demands of the actual application.

Doing so, we compute the core xa+b, shape ϕa+b and scale fa+b, and by (19) we
construct the membership function µa+b of the resulting fuzzy quantity a + b.

This approach stresses the essential subjectivity of fuzzy set theoretical models.
On the other hand it may avoid some disadvantages of more rigid procedures of the
extensional principle. However, it extends the choice of methods being for disposal
whenever fuzzy quantities are to be processed. The applicability of this approach
for the extension of classical statistical methods to the environment of fuzzy quan-
tities is still rather under discussion – the variability of the possible analytic results
may usually contradict with the sophisticated structure of statistical description and
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analysis of reality. Nevertheless, deeper knowledge of the properties of these con-
cepts, as well as the standardization of some of the above choices, can open the way
to more reliable applications even of the above model.

8. CONCLUSIVE REMARKS

The extension of the classical statistical methods to the environment of fuzzy input
data is not a mechanical action consisting of a few formal changes in definitions. The
previous chapters aimed to summarize, namely, the tools for the fuzzy quantities
processing, and to point at their properties (or relevant sources in the literature).
It is useful to note that some significant steps were already done (see, e. g., [4]).
Nevertheless, some new ways to the adequate statistical processing became open in
the last years.

The alternative model of fuzzy quantities based on their decomposition and sep-
arate processing was mentioned in the previous Chapter 7.

An interesting approach to fuzziness which is close to probabilistic model was
done in [11], and it may be applicable even for statistical problems.

Very wide new way is open by strong generalization of the concept of fuzzy quanti-
ties, based on the notions of triangular norms, aggregation operators, binary copulas
and related models (see, e. g., [5, 6] and also [2]). The degree of generalization used
in these views on data processing offers a unitary approach to some probabilistic,
fuzzistic, and some other methods, which could be used for the study of the mutual
transfer of their particular procedures. Deeper analysis of these topics fairly extends
the acceptable form of a journal paper.
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