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TEST OF LINEAR HYPOTHESIS
IN MULTIVARIATE MODELS

Luboḿır Kubáček

In regular multivariate regression model a test of linear hypothesis is dependent on a
structure and a knowledge of the covariance matrix. Several tests procedures are given
for the cases that the covariance matrix is either totally unknown, or partially unknown
(variance components), or totally known.
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1. NOTATIONS AND AUXILIARY STATEMENTS

Let a model
Y ∼ Nnm(XB,Σ⊗ I) (1)

be under consideration. Here Y is an n ×m normally distributed matrix with the
mean value matrix E(Y ) equal to XB. The covariance matrix of the vector vec(Y )
(the vector composed of the columns of the matrix Y ) is Var[vec(Y )] = Σ⊗ I (I is
the n× n identity matrix). The model is regular if the rank r(X) of the matrix X
is r(X) = k < n and the m×m matrix Σ is positive definite (p.d.).

The linear hypothesis of the unknown k ×m parameter matrix B is considered
in the form

H0 : HB +H0 = 0, (2)

where h × k matrix H is assumed to be known. The h × m matrix H0 is also
assumed to be known. The hypothesis is regular if r(H) = h < k. The alternative
hypothesis is

Ha : HB +H0 6= 0.

Lemma 1.1. The best linear unbiased estimator of the matrix B is

B̂ = (X ′X)−1X ′Y ∼ Nkm[B,Σ⊗ (X ′X)−1].

P r o o f . Cf. [1]. ¤
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Lemma 1.2. One of the test statistics for the regular hypothesis (2) in the case
of the known matrix Σ is

T = Tr
{

(HB̂ +H0)′[H(X ′X)−1H ′]−1(HB̂ +H0)Σ−1
}
∼ χ2

mh(δ), (3)

where
δ = Tr

{
(HB∗ +H0)′[H(X ′X)−1H ′]−1(HB∗ +H0)Σ−1

}
.

The symbol χ2
mh(δ) means the noncentral chi-square random variable with mh de-

grees of freedom and with the parameter of noncentrality equal to δ, B∗ means the
actual value of the matrix B.

P r o o f . The statement can be obtained from an univariate model vec(Y ) ∼
Nnm[(I ⊗ X)vec(B),Σ ⊗ I] in a standard way by utilization of the relationship
vec(XB) = (I ⊗X)vec(B). ¤

Lemma 1.3. The matrix (Y −XB̂)′(Y −XB̂) is the m×m Wishart matrix with
the n−k degrees of freedom and with the covariance matrix Σ, i.e. (Y −XB̂)′(Y −
XB̂) ∼Wm(n− k,Σ).

P r o o f . The matrix Y −XB̂ is distributed as Nnm(0,Σ⊗MX), where MX =
I − PX and PX is the Euclidean projector on the subspace M(X) = {Xu :
u ∈ Rk}. Thus for any generalized inverse (cf. [6]) M−

X of the matrix MX the
matrix (Y −XB̂)′M−

X(Y −XB̂) has the Wishart distribution Wm([r(MX),Σ].
One version of the matrix M−

X is I. 2

Lemma 1.4. If Σ = σ2V (V is p.d.), then the best estimator of σ2 is

σ̂2 =
Tr[(Y −XB̂)′(Y −XB̂)V −1]

m(n− k)
∼ σ2

χ2
m(n−k)(0)

m(n− k)
.

This estimator is independent of the estimator B̂.

P r o o f . The statement is a transcription of the well known statement from the
theory of the univariate linear models (cf. e. g. [2]). ¤

Corollary 1.5. If Σ = σ2V , then one of the test statistics for the regular hypoth-
esis (2) is

T =
Tr

{
(HB̂ +H0)′[H(X ′X)−1H ′]−1(HB̂ +H0)V −1

}
/(mh)

Tr[(Y −XB̂)′(Y −XB̂)V −1]/[m(n− k)]
∼ Fmh,m(n−k)(δ),

where

δ =
Tr

{
(HB∗ +H0)′[H(X ′X)−1H ′]−1(HB∗ +H0)V −1

}

σ2

and Fmh,m(n−k)(δ) is the noncentral Fisher–Snedecor random variable with degrees
of freedom equal to mh and m(n − k) and with the noncentrality parameter equal
to δ.
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2. DIFFERENT STRUCTURES OF THE MATRIX Σ

Let Σ be given. Then

(HB̂ +H0)′[H(X ′X)−1H ′]−1(HB̂ +H0) = Q1 ∼Wm(h,Σ)

(possibly noncentral) and therefore, under the null hypothesis, for any nonzero f ∈
Rm it is valid

f ′Q1f/(f
′Σf) ∼ χ2

h(0).

Let HB∗ +H0 6= 0 (B∗ is the actual value of the matrix B) and let λmax be the
maximum solution of the equation

det
{

(HB∗ +H0)′[H(X ′X)−1H ′]−1(HB∗ +H0)− λΣ
}

= 0

and let fmax satisfy the relationship
{

(HB∗ +H0)′[H(X ′X)−1H ′]−1(HB∗ +H0)− λmaxΣ
}
fmax = 0.

Then

δ = f ′max(HB∗ +H0)′[H(X ′X)−1H ′]−1(HB∗ +H0)fmax

/
f ′maxΣfmax,

i. e. the parameter of noncentrality of the statistic

χ2
h(δ) = f ′maxQ1fmax/f

′
maxΣfmax (4)

is for this vector fmax maximum and therefore the chance to detect that H0 is not
true is also maximum.

It is of some importance to compare the power functions of the statistics (3)
and (4).

Let

Y =




−2, 1, 4
−1, 2, 2

0, 4, −4
1, 2, 2
2, 1, 4



B3,3 + ε5,3, Var[vec(Y )] =




12, 0, 0
0, 22, 0
0, 0, 32


⊗ I5,5

and the null hypothesis be
(

1, 1, 1
0, 1, 1

)
B = 0. It means h = 2, m = 3, n = 5,

k = 3. If (
1, 1, 1
0, 1, 1

)
B =

(
0.5, −0.5, 1.0

0, 0.5, −0.5

)
,

then f ′maxQ1fmax

/
f ′maxΣfmax ∼ χ2

2(δ1), δ1 = 2.994 and T ∼ χ2
6(δ2), δ2 = 6.603

(cf. Lemma 1.2).
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If χ2
f (δ) is approximated by f+2δ

f+δ χ
2
(f+δ)2
f+2δ

(0), then we obtain for

α = 0.05 P
{
χ2

2(2.994) ≥ 5.99
}

= 21 % and P
{
χ2

6(6.603) ≥ 12.6
}

= 44 %. It shows a
prevalence of the test (3) versus (4). However it can be utilized only in the case of
the known matrix Σ, or if its estimator is very precise.

If the matrix Σ is unknown and (2) is true, then the relationships

Q1 = (HB̂ +H0)′[H(X ′X)−1H ′]−1(HB̂ +H0) ∼Wm(h,Σ),

Q2 = (Y −XB̂)′(Y −XB̂) ∼Wm(n− k,Σ)

(it is to be remarked that Q1 and Q2 are independent) can be utilized for a con-
struction of different tests for the hypothesis (2). As and example can serve the
statistic g′Q1g

/
g′Q2g ∼ Fh,n−k, where

g′Q1g

g′Q2g
= max

{
u′Q1u

u′Q2u
: u ∈ Rm

}
.

This statistic has the Fisher–Snedecor distribution Fh,n−k(0) if the hypothesis H0

is true and the distribution is independent of g. However if H0 is not true then the
statistics has the largest realization and thus there is the greatest chance to recognize
that H0 is not true.

If n − k tends to infinity, then Σ̂ = (Y −XB̂)′(Y −XB̂)/(n − k) tends to Σ

in probability and thus Tr
{

(HB̂+H0)′[H(X ′X)−1H ′]−1(HB̂+H0)Σ̂
−1

}
tends

in distribution to χ2
mh. This fact can be also utilized mainly in connection to a

consideration at the beginning of this section. Other tests based on the matrices Q1

and Q2, respectively, are analyzed in [4] and therefore they are omitted here.

Lemma 2.1. Let Σ =
∑p
i=1 ϑiV i, where ϑi, i = 1, . . . , p, are unknown param-

eters, ϑ ∈ ϑ ⊂ Rp, and V 1, . . . ,V p, are known symmetric matrices. The set ϑ is
open and it is valid ϑ ∈ ϑ ⇒ ∑p

i=1 ϑiV i is p.d. Let the matrix SΣ−1
0

be regular.
Here {

SΣ−1
0

}
i,j

= Tr(Σ−1
0 V iΣ−1

0 V j), i, j = 1, . . . , p,

and Σ0 =
∑p
i=1 ϑ

(0)
i V i,ϑ

(0) = (ϑ(0)
1 , . . . , ϑ

(0)
p )′ is an approximate value of he un-

known parameter ϑ. Then the unbiased ϑ(0)-locally minimum variance quadratic
invariant estimator of the parameter ϑ is

ϑ̂ =
1

n− kS
−1

Σ−1
0




Tr(Y ′MXY Σ−1
0 V 1Σ−1

0 )
...

Tr(Y ′MXY Σ−1
0 V pΣ−1

0 )


 , Varϑ0(ϑ̂) =

2
n− kS

−1

Σ−1
0
.

P r o o f . Cf. [5]. ¤

Now the problem arises whether the matrix Σ(ϑ̂) =
∑p
i=1 ϑ̂iV i can be used

instead the matrix Σ in the statistic (3) without any essential deterioration of the
inference.
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In the following text a procedure for a construction of an insensitivity region
is described. For the sake of simplicity only a problem of the risk α of the test
is analyzed and problems of construction of the insensitivity region for the power
function of the test is omitted.

Lemma 2.2. Let

T (ϑ) = Tr
{

(HB̂ +H0)′[H(X ′X)−1H ′]−1(HB̂ +H0)Σ−1(ϑ)
}
.

Then

∂T (ϑ)
∂ϑi

= −Tr
{

(HB̂ +H0)′[H(X ′X)−1H ′]−1(HB̂ +H0)Σ−1(ϑ)V iΣ−1(ϑ)
}
,

thus T (ϑ+ δϑ) ≈ T (ϑ) +
∑p
i=1

∂T (ϑ)
∂ϑi

δϑi = T (ϑ) + ξ and

ξ ∼1 (−ha′δϑ, 2hδϑ′SΣ−1δϑ),

where a′ = [Tr(V 1Σ−1), . . . ,Tr(V pΣ−1)].

P r o o f . Since under the null hypothesis (2)

E
(
∂T (ϑ)
∂ϑi

)
= −E

(
[vec(HB̂ +H0)]′

{
(Σ−1V iΣ−1)⊗ [H(X ′X)−1H ′]−1

}

×vec(HB̂ +H0)
)

= −Tr
(

((I ⊗H)[Σ⊗ (X ′X)−1](I ⊗H ′)
{

(Σ−1V iΣ−1)

⊗[H(X ′X)−1H ′]−1
})

= −Tr
(

(ΣΣ−1V iΣ−1)⊗
{
H(X ′X)−1H ′

×[H(X ′X)−1H ′]−1
})

= −hTr(V iΣ−1),

we have E
(∑p

i=1
∂T (ϑ)
∂ϑi

δϑi

)
= −ha′δϑ.

Further

cov
(
∂T (ϑ)
∂ϑi

,
∂T (ϑ)
∂ϑj

)
= 2 Tr

(
(I ⊗H)[Σ⊗ (X ′X)−1](I ⊗H ′)

{
(Σ−1V iΣ−1)

⊗[(H(X ′X)−1H ′]−1
}

(I ⊗H)[Σ⊗ (X ′X)−1](I ⊗H ′)
{

(Σ−1V jΣ−1)

⊗[(H(X ′X)−1H ′]−1
})

= 2Tr
[
(Σ−1V iΣ−1V j)⊗ Ih,h

]
= 2h {SΣ−1}i,j ,

i, j = 1, . . . , p. ¤

Theorem 2.3. If H0 is true and δϑ ∈ Nϑ0 , where an insensitivity region is

Nϑ0 =
{
δϑ : (δϑ− u0)′A0(δϑ− u0) ≤ c2

}
,u0 = A−1

0 hδmaxa0,

A0 = 2t2hSΣ−1
0
− h2a0a

′
0, c2 = δ2

max + h2δ2
maxa

′
0A
−1
0 a0,

a′0 = [Tr(V 1Σ−1
0 ), . . . ,Tr(V pΣ−1

0 )],
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then PH0

{
T (ϑ0 + δϑ) ≥ χ2

mh(0; 1 − α)
}
≤ α + ε. Here δmax is a solution of the

equation P
{
χ2
mh(0) + δ ≥ χ2

mh(0; 1− α)
}

= α + ε and t is sufficiently large real
number.

P r o o f . If H0 is true, then for a given δϑ and sufficiently large t the inequality

ξ < −ha′0δϑ+ t
√

2hδϑ′SΣ−1
0
δϑ (5)

occurs with probability near to one. If

−ha′0δϑ+ t
√

2hδϑ′SΣ−1
0
δϑ < δmax, (6)

then P
{
χ2
mh(0) + ξ ≥ χ2

mh(0; 1− α)
}
≤ α+ ε. The inequality (5) is implied by the

inequality (δϑ− u0)′A0(δϑ− u0) ≤ c2. ¤

Remark 2.4. The value t need not be larger than 4. In [3] an optimum choice of
t was studied for some cases and it was found that the value t = 3 can be sufficient
large.

Corollary 2.5 If p = 1, i. e. Σ = σ2V , then the inequality (6) can be rewritten as

−hm
ϑ
δϑ+ t

√
2hm

(δϑ)2

ϑ2
< δmax.

Since δϑ can be negative in this case, it must satisfy the inequality
∣∣ δϑ
ϑ

∣∣ < δmax

hm+t
√

2hm
,

what can be approximated as
∣∣ δσ
σ

∣∣ < 1
2

δmax

hm+t
√

2hm
, where ϑ = σ2. From Lemma 2.1

we obtain
√

Var(σ̂) = 0.707σ√
m(n−k)

. In this case the value ϑ̂, i. e. the matrix Σ̂ = ϑ̂V

can be used in the test (3) instead the actual value if the following inequality

1
2

δmax

hm+ t
√

2hm
À t

0.707√
m(n− k)

is satisfied. If α = 0.05, ε = 0.05, m = 5, h = 4, t = 3, then n − k À 617. It is
quite clear that a requirement on the accuracy of the estimator ϑ̂ can be rigorous.

In the case p = 1 obviously the test from Corollary 1.5 must be used. The example
is given only for a demonstration how large the necessary number of observations
can be.

Remark 2.6. If the matrix 2t2hSΣ−1
0
− h2a0a

′
0 is not p.d., then from the practi-

cal purposes in the spectral decomposition 2t2hSΣ−1
0
− h2a0a

′
0 =

∑m
i=1 λif if

′
i the

negative eigenvalues λi are substituted by their absolute values |λi|. In this way the
shape of the insensitivity region Nϑ0 is always ellipsoid.
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Remark 2.7. If p ≥ 2, and only Σ̂ =
∑p
i=1 ϑ̂iV i is at our disposal, the matrix Σ̂

can be used in the test (3) in such case only that δ̂ϑ ∈ Nϑ0 with certainty. Thus a
consideration on the basis of Var(ϑ̂) from Lemma 2.1 must be made.

If the estimator Σ̂ = 1
n−k (Y −XB̂)′(Y −XB̂) is at our disposal only and the

test (3) is to be used, the analogous consideration as in Theorem 2.3 can be made.

LetA∗B means the Hadamard product of the matricesA andB, i. e. {A ∗B}i,j
= Ai,jBi,j and diag(Σ) means the vector composed of the entries of the diagonal of
the matrix Σ.

If W ∼Wm(n− k,Σ), then

K =
1

n− k {diag(Σ)[diag(Σ)]′ + Σ ∗Σ} (7)

is the matrix with the following property. Its (i, j)th entry is the dispersion of
σ̂i,j = {W }i,j/(n− k).

If δΣ is a matrix of infinitesimal shifts of the entries of the matrix Σ, it is valid
under the null hypothesis H0:

T (Σ + δΣ) ≈ Tr
{

(HB̂ +H0)′[H(X ′X)−1H ′]−1(HB̂ +H0)

×(Σ−1 −Σ−1δΣΣ−1)
}

= χ2
mh(0) + ξ,

where

ξ = −Tr
{

(HB̂ +H0)′[H(X ′X)−1H ′]−1(HB̂ +H0)Σ−1δΣΣ−1
}
.

Further
ξ ∼1

[
− hTr(Σ−1δΣ), 2hTr(Σ−1δΣΣ−1δΣ)

]
.

Theorem 2.8. If H0 is true and δΣ ∈ NΣ0 , where

NΣ0 =
{
δΣ :

[
vec(δΣ)− u0

]′
A0

[
vec(δΣ)− u0

]
≤ c2

}
,

u0 = hδmaxA
−1
0 vec(Σ−1

0 ),
A0 = 2t2h(Σ0 ⊗Σ0)− h2vec(Σ−1

0 )[vec(Σ−1
0 )]′,

c2 = δ2
max + h2δ2

max[vec(Σ−1
0 )]′A−1

0 [vec(Σ−1
0 )],

P
{
χ2
mh(0) + δmax ≥ χ2

mh(0; 1− α)
}

= α+ ε,

then
P{T (Σ0 + δΣ) ≥ χ2

mh(0; 1− α)} ≤ α+ ε.

P r o o f is analogous as in Theorem 2.3. ¤
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Remark 2.9. Let k = vec(K) from (7) and
√
{k}i = {l}i, i = 1, . . . ,m2. The

vector l is composed of the standard deviations
√

Var(σ̂i,j) = li,j of the estimators
1

n−k{(Y −XB̂)′(Y −XB̂)}i,j of {Σ}i,j = σi,j . The vector l generates the class
of 2m

2
vectors which have the same absolute values of their coordinates, however

different signs, e. g.

r = (+l1,1,−l1,2, . . . ,+l1,m, . . . ,+l2,1, . . . ,+l2,m, . . . ,−lm,1, . . . ,−lm,m)′.

Now if the vectors r are sufficiently small with respect to the set NΣ0 , i. e.

−h[vec(Σ−1
0 )]′r + t

√
2hr′(Σ−1

0 ⊗Σ−1
0 )r ¿ δmax,

then the estimator of Σ can be used in the test (3). This check is rather rough,
nevertheless for the first orientation is sufficient.
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