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K Y B E R N E T I K A — V O L U M E 4 3 ( 2 0 0 7 ) , N U M B E R 4 , P A G E S 4 5 3 – 4 6 2

CRITERIA FOR OPTIMAL DESIGN
OF SMALL–SAMPLE EXPERIMENTS
WITH CORRELATED OBSERVATIONS

Andrej Pázman

We consider observations of a random process (or a random field), which is modeled by
a nonlinear regression with a parametrized mean (or trend) and a parametrized covariance
function. Optimality criteria for parameter estimation are to be based here on the mean
square errors (MSE) of estimators. We mention briefly expressions obtained for very small
samples via probability densities of estimators. Then we show that an approximation of
MSE via Fisher information matrix is possible, even for small or moderate samples, when
the errors of observations are normal and small. Finally, we summarize some properties
of optimality criteria known for the noncorrelated case, which can be transferred to the
correlated case, in particular a recently published concept of universal optimality.

Keywords: optimal design, correlated observations, random field, spatial statistics, infor-
mation matrix

AMS Subject Classification: 62K05, 62M10

1. INTRODUCTION

We consider a regression model of the form

y (xi) = η (θ, xi) + ε (xi) (1)

with the points x1, . . . , xN (=the design) taken from a set X (= the design space),
and with an unknown vector parameter θ = (θ1, . . . , θp)T . The model is supposed
to be without systematic errors (i. e. E(ε(xi)) = 0), and the variance-covariance
structure of the observed variables y(xi)

Cov (y (xi) , y (xj)) = C (xi, xj , β)

may depend on another unknown vector parameter β = (β1, . . . , βq)T ∈ B. We
suppose that η(θ, xi) and C(xi, xj , β) are twice continuously differentiable on the
interiors of the parameter spaces Θ or B.

The problem of optimal choice of the design x1, . . . , xN within such a model
appears in several domain of applications: discretization of random processes, spa-
tial statistics [4], computer experiments [13]. The aim is either to obtain a good
prediction of the process or good estimates of parameters.
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We concentrate upon the second aim when designs are compared according to
some optimality criteria, which are functions of the mean squares error matrix of
the estimators θ̂, β̂,

MSEθ,β = Eθ,β

{[(
θ̂

β̂

)
−

(
θ
β

)] [(
θ̂

β̂

)
−

(
θ
β

)]T}
.

So the first problem is to express MSEθ,β in a computationally feasible form.
The problem is easy to solve in the particular case of a linear model

η (θ, xi) = fT (xi) θ (2)

with Θ = Rp, and with error covariances and variances not depending on β. The
MSE of the minimum variance unbiased estimator θ̂ = M−1FT y is equal to its
variance, MSEθ = Var(θ̂) = M−1, where M = FTC−1F is the information matrix,
FT = (f(x1), . . . , f(xN )), {C}ij = Cov(y(xi), y(xj)), and y is the vector of observed
variables. An optimality criterion is usually expressed as a function Φ of M (e. g.
Φ(M) = − ln det(M) for the D-optimality criterion, Φ(M) = tr(M−1) for the A-
optimality criterion, etc.), and it does not depend on θ.

In the nonlinear regression model with uncorrelated observations it is standard
to express the optimality criteria again as functions of the information matrix. This
is justified by the fact, that in the uncorrelated case replications of observations are
allowed, and asymptotically (for large numbers of replications), under some regu-
larity conditions, the maximum likelihood estimators are asymptotically normally
distributed, unbiased, and their variance matrix is equal to the inverse of the Fisher
information matrix.

This argumentation can not be used in case of correlated observations except for
some very special covariance functions (cf. [1]), since replication as a rule are not
allowed. It fails totally when asymptotic approximations are not justified. So for
small samples we have to proceed differently. Notice that we do not consider here
the case of designing independent replications of the whole realization of the random
process.

2. VERY SMALL SAMPLES:
THE MSE BASED ON THE DENSITY OF ESTIMATORS

Here we consider a situation when the density of the MLE, f(θ̂, β̂ | θ, β), is known
or well approximated. Then

MSEθ,β =
∫

Θ

∫

B

[(
θ̂

β̂

)
−

(
θ
β

)][(
θ̂

β̂

)
−

(
θ
β

)]T
f

(
θ̂, β̂ | θ, β

)
dβ̂ dθ̂.

The A-optimality criterion can be expressed as

tr (MSEθ,β) =
∫

Θ×B

[∥∥∥θ̂ − θ
∥∥∥

2

+
∥∥∥β̂ − β

∥∥∥
2
]
f

(
θ̂, β̂ | θ, β

)
dβ̂ dθ̂.
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In [5] it is shown that also the D-optimality criterion, det(MSEθ,β), can be expressed
as one multivariate integral, however with a much higher dimension. Such integral
representations of optimality criteria are necessary to use methods of stochastic op-
timization for finding optimum designs numerically. However, because of complexity
of such a procedure, it can be used only when the number of parameters and the
number of observations are very small.

This approach is also restricted by the necessity to know f(θ̂, β̂ | θ, β). Until now
we have realistically applicable expressions only for the case that β is known (i. e.
C(β) = C) and that the errors are normal. Then for small dimensions of θ, the
density of θ̂ on int(Θ) is very well approximated by the expression (cf. [8] or [9])

q
(
θ̂ | θ

)
=

det
[
Q

(
θ̂, θ

)]

(2π)p/2 det1/2
[
M

(
θ̂
)] exp

{
−1

2

[
η

(
θ̂
)
−η (θ)

]T
C−1P θ̂

[
η

(
θ̂
)
−η (θ)

]}

where η (θ) = (η (θ, x1) , . . . , η (θ, xN ))T , M (θ) is the Fisher information matrix, P θ

is a projector, and Q
(
θ̂, θ

)
is a modification of the observed Fisher information

matrix:

P θ =
∂η (θ)
∂θT

M−1 (θ)
∂ηT (θ)
∂θ

C−1

{
Q

(
θ̂, θ

)}
i,j

= M
(
θ̂
)

+
[
η

(
θ̂
)
− η (θ)

]T
C−1

[
I − P θ̂

] ∂2η (θ)
∂θi∂θj

∣∣∣
θ̂
.

Cf. [11] for the use of q(θ̂ | θ) for obtaining A-optimal designs via the Kiefer–
Wolfowitz stochastic optimization. The observations have been supposed uncorre-
lated, but for a correlated case the method is exactly the same. A method for dealing
with that part of the probability distribution of θ̂ which is located on the boundary
of Θ is explained in [11].

In case that the dimension of θ is higher, the expression q(θ̂ | θ) must be corrected,
in that instead of det[Q(θ̂, θ)] we write an expression which is a polynomial in the
components of Q(θ̂, θ) and of the components of the Riemannian curvature tensor
of the expectation surface {η(θ) : θ ∈ Θ} (cf. [9]). In this more complicated case
accelerated stochastic optimization methods must be applied (cf. [5]).

Although the presented approach of [5] gives very accurate approximations for
MSE and for optimality criteria, it can be used only for rather small dimensions of θ
(because of difficulties with the density of θ̂), and also for a rather small number of
design points (because of the complexity of the stochastic approximation method).
So it make sense to consider further approximations of MSE for small or moderate N .

3. THE FISHER INFORMATION MATRIX AND
THE EXPONENTIAL REPRESENTATION OF THE MODEL

For a fixed design we write the nonlinear regression model (1) in a vector form

y = η (θ) + ε (3)
ε ∼ N (0, C (β))
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where yT = (y(x1), . . . , y(xN )). We suppose that the mapping θ ∈ Θ → η(θ) ∈ RN
is one-to-one, and the N × N covariance matrix C(β) with entries C(xi, xj , β) is
nonsingular. Suppose also that θ̄ and β̄, the true values of θ and β, are points of the
interiors int(Θ), resp. int(B). We consider the MLE

(
θ̂T , β̂T

)T
= arg max

θ∈Θ,β∈B
ln f (y | θ, β)

where

− ln f (y | θ, β) =
1
2

{
[y − η (θ)]T C−1 (β) [y − η (θ)] +

1
2

ln det [C (β)] +
N

2
ln (2π)

}
.

(4)
By taking derivatives we obtain that the Fisher information matrix of model (3) is
(cf. [10] for details)

M (θ, β) = Eθ,β



−




∂2 ln f(y|θ,β)
∂θ∂θT

∂2 ln f(y|θ,β)
∂θ∂βT

∂2 ln f(y|θ,β)
∂β∂θT

∂2 ln f(y|θ,β)
∂β∂βT






 (5)

=

(
∂ηT (θ)
∂θ C−1 (β) ∂η(θ)

∂θT
0

0 1
2 tr

{
C−1 (β) ∂C(β)

∂β C−1 (β) ∂C(β)
∂βT

}
)
.

For further analysis in Section 4 we write model (3) in the exponential family
form, which will allow us to use standard expressions (6, 7 and 8) for the mean,
variances and the Fisher information matrix. We have

ln f (y | θ, β) = yTC−1 (β) η (θ)− 1
2
tr

{
yyTC−1 (β)

}

−1
2
ηT (θ)C−1 (β) η (θ)− 1

2
ln det [C (β)]− N

2
ln (2π) .

Let us denote

t (y) =
(
t1 (y)
t2 (y)

)
=

(
y

vec
(
yyT

)
)

γ (θ, β) =
(
γ1 (θ, β)
γ2 (θ, β)

)
=

(
C−1 (β) η (θ)
− 1

2vec
[
C−1 (β)

]
)
.

The mapping C → γ2 = − 1
2vec[C−1] is one-to-one. So we can define a function

κ (γ) = κ (γ1, γ2) =
1
2

ln det (C) +
1
2
γT1 Cγ1 +

N

2
ln (2π)

with C depending on γ2. With this notation we obtain

f (y | θ, β) = exp
{
tT (y) γ (θ, β)− κ [γ (θ, β)]

}
.

Hence {f(y | θ, β) : θ ∈ Θ, β ∈ B} is an exponential family, t(y) is a sufficient
statistics, and γ(θ, β) is the canonical function (cf. [3]). Important here are the



Criteria for Optimal Design of Small-Sample Experiments with Correlated Observations 457

following known relations: the mean and the variance of t(y) in an exponential
family are equal to

Eθ,β [t (y)] ≡ µ (θ, β) =
[
∂κ (γ)
∂γ

]

γ=γ(θ,β)

(6)

Varθ,β [t (y)] =
[
∂2κ (γ)
∂γ∂γT

]

γ=γ(θ,β)

. (7)

Moreover, the Fisher information matrix (5) can be expressed equivalently in the
form

M (θ, β) =




∂γT (θ,β)
∂θ

∂γT (θ,β)
∂β




[
∂2κ (γ)
∂γ∂γT

]

γ=γ(θ,β)

(
∂γ(θ,β)
∂θT

∂γ(θ,β)
∂βT

)
. (8)

4. APPROXIMATION OF MLE AND MSE
WHEN THE VARIANCES OF THE OBSERVED VARIABLES ARE SMALL

When the variances of the observed variables y(xi) are small, then the variances
of all components of t(y) are small as well. Indeed, we have just to consider the
components of t2(y). In an abbreviated notation we obtain

Var [yiyj ] = E [yiyj − Cij − ηiηj ]2

= E [εiεj + εiηj + εjηi − Cij ]2

= E
[
ε2
i ε

2
j

]
+ Ciiη

2
j + Cjjη

2
i + Cijηiηj

and by the Schwarz inequality we have E2[ε2
i ε

2
j ] ≤ E[ε4

i ]E[ε4
j ] = 9C2

iiC
2
jj , |Cij |2 ≤

CiiCjj . So the variances of all components of t(y) tend to zero with the same spead
as the variances of the observed yi.

The MLE can be expressed as a function of the sufficient statistics t = t (y)

(
θ̂

β̂

)
= arg max

θ∈Θ,β∈B

{
tT γ (θ, β)− κ [γ (θ, β)]

}
. (9)

The domain where this estimator is defined is equal to

T =
{
t =

(
y

vec
(
yyT

)
)

: y ∈ RN
}
.

We define

T ∗ =
{
t =

(
y

vec (Z)

)
: y ∈ RN , Z ∈ RN×N and positive semidefinite

}
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and we denote by
„

θ̃ (t)

β̃ (t)

«
the extension of

„
θ̂ (t)

β̂ (t)

«
from T to T ∗

(
θ̃ (t)
β̃ (t)

)
= arg max

θ∈Θ,β∈B
{yTC−1 (β) η (θ)− 1

2
tr

[
ZC−1 (β)

]

−1
2
ηT (θ)C−1 (β) η (θ)− 1

2
ln det [C (β)]}

= arg max
θ,β
{tγ (θ, β)− κ [γ (θ, β)]} ; t ∈ T ∗. (10)

Notice that this is just a mapping, not an estimator. The idea is to express it as a
Taylor expansion around the point

µ̄ = µ
(
θ̄, β̄

)
=

(
Eθ̄,β̄ (y)

vec
[
Eθ̄,β̄

(
yyT

)]
)

=
(

η
(
θ̄
)

vec
[
C

(
β̄
)

+ η
(
θ̄
)
ηT

(
θ̄
)]

)
.

So we have

θ̃ (t) = θ̃ [µ̄] +
∂θ̃ (t)
∂tT

∣∣∣
t=µ̄

(t− µ̄)

+
1
2

(t− µ̄)T
[
∂2θ̃ (t)
∂t∂tT

]

t=q

(t− µ̄)

and similarly for β̃(t). Here q is a point between t and µ̄. Since θ̃(t) is an extension
of θ̂(t) we can write for t ∈ T

θ̂ (t) .= θ̃ [µ̄] +
∂θ̃ (t)
∂tT

∣∣∣
t=µ̄

(t− µ̄) .

We neglected the term quadratic in t since the variances of the components of the
statistics t are small. Similarly

β̂ (t) .= β̃ [µ̄] +
∂β̃ (t)
∂tT

∣∣∣
t=µ̄

(t− µ̄) .

We can prove that
θ̃ [µ̄] = θ̄, β̃ [µ̄] = β̄ (11)

(
∂θ̃(t)
∂tT

∂β̃(t)
∂tT

)

t=µ̄

= M−1
(
θ̄, β̄

)
(

∂γT

∂θ

∂γT

∂β

)

θ̄,β̄

. (12)

Indeed, using the notation δT = (θT , βT ) we write (10) in the form

δ̃ (t) = arg max
δ
{t γ (δ)− κ [γ (δ)]} .

We take the derivative of {t γ(δ)− κ[γ(δ)]} and use (6)
[
t− µ

(
δ̃ (t)

)]T ∂γ (δ)
∂δT

∣∣∣
δ̃(t)

= 0
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and put t = µ
(
δ̄
)

= µ̄ to obtain (11). Taking the derivative once more but with
respect to t we obtain

[
I − ∂δ̃T (t)

∂t

∂µT (δ)
∂δ

∣∣∣
δ̃(t)

]
∂γ (δ)
∂δT

∣∣∣
δ̃(t)

+
[
t− µ

(
δ̃ (t)

)]T ∂2γ (δ)
∂δ∂δT

∣∣∣
δ̃(t)

∂δ̃ (t)
∂t

= 0.

The second term is zero if t = µ(δ̄). By the implicit function theorem ([14], p. 41)
we have that ∂δ̃T (t)

∂t is the solution of this equation, hence

∂δ̃T (t)
∂t

∣∣∣
t=µ(δ̄)

=
∂γ (δ)
∂δT

∣∣∣
δ̄
M−1

(
δ̄
)

since from (8) it follows that M(δ) = ∂µT (δ)
∂δ

∂γ(δ)
∂δT

. This proves (12) (cf. [10] for more
details).

So we obtain that in case of small variances of y(xi) the approximate expression
for the MLE is

(
θ̂

β̂

)
.=

(
θ̄
β̄

)
+M−1

(
θ̄, β̄

)
(

∂γT

∂θ

∂γT

∂β

)

θ̄,β̄

(t− µ̄) . (13)

This gives

Eθ̄,β̄

[(
θ̂

β̂

)]
.=

(
θ̄
β̄

)

Varθ̄,β̄

[(
θ̂

β̂

)]
.= M−1

(
θ̄, β̄

)
(

∂γT

∂θ

∂γT

∂β

)

θ̄,β̄

Varθ̄,β̄ (t)
(
∂γ

∂θT
∂γ

∂βT

)
M−1

(
θ̄, β̄

)

= M−1
(
θ̄, β̄

)

where we used (7) and (8). Hence within this approximation MSEθ̄,β̄ = M−1(θ̄, β̄)
with M(θ̄, β̄) given by (5). Notice that this does not mean that β̂ is approximately
normally distributed, although β̂ is expressed as a linear function of t, since by
definition t is a quadratic function of the observed variables y(xi).

Summarizing, in case that the errors are normally distributed with sufficiently
small variances, the mean square error matrix of MLE is approximately equal to
the inverse of the information matrix even for small samples. We can apply criteria
functions Φ like in the linear model, just the resulting criteria depend on θ̄, β̄. For
design purposes we do not interpret θ̄, β̄ as the true parameter values, but as some
parameter values taken ad hoc, and we suppose that the true parameter values are
in a neighborhood of θ̄, β̄. As known, this “local” feature of optimality criteria is
unavoidable in nonlinear models.
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5. SOME BASIC PROPERTIES OF OPTIMALITY CRITERIA
AND THE CRITERION OF UNIVERSAL OPTIMALITY

Optimality criteria in linear models can be derived from geometrical properties of
the confidence ellipsoid for θ. This is not possible here, since β̂ is not distributed
normally, even within the considered approximation, and confidence regions are not
ellipsoids. However, still remains the interpretation through the variance matrices
of θ̂ and β̂, and according to the results of Section 4, a criterion can be still be
expressed as a function Φ[M ] of the information matrix M = M(θ̄, β̄). Since this
matrix depends also on the design, say A = {x1, . . . , xN}, we write it sometimes as
M(A; θ̄, β̄).

The aim of this section is to summaries known properties of criteria functions
Φ which can be transferred (eventually after some minor changes) from the linear
model (2) with uncorrelated observations and with allowed replications, to model
(3) allowing no replications.

A good design should give a small variance matrix, therefore traditionally, in most
books on experimental design, the function Φ is related to the variance matrix, and
it is antiisotonic, i. e. if M∗ −M is p.s.d., then Φ[M∗] ≤ Φ[M ] (since the variances
are [M∗]−1 and [M ]−1). Alternatively, as pointed out in [12], criteria should be
“information criteria” i. e. they should have following properties:

i) nonnegativity: Φ (M) ≥ 0,

ii) isotonicity M∗ −M = p.s.d.⇒ Φ [M∗] ≥ Φ [M ]

iii) positive homogeneity: Φ [kM ] = kΦ [M ] ; k > 0

iv) superadditivity: Φ [M +M∗] ≥ Φ [M ] + Φ [M∗] .

For example, Φ[M ] = − ln det[M ], or Φ[M ] = tr[M−1] are antiisotonic forms of
the criteria of D- or of A-optimality, Φ[M ] = ln det[M ] is an isotonic form of the
criterion of D-optimality, which is not homogeneous, and Φ[M ] = [det(M)]1/(p+q)

or Φ[M ] = 1/tr[M−1] are isotonic, homogeneous and concave (superadditive) forms
of the criteria of D- or A-optimality. Notice that we consider the two functions
ln det[M ], and [det(M)]1/(p+q) as different forms of the same criterion, since they
induce the same ordering of information matrices.

A direct consequence of these properties is that Φ is concave (cf. [12]). The
properties i) – iv) are important to define with a proper scaling the relative efficiency
of an experiment (or a design with the matrix M) with respect to another reference
experiment with M∗

effΦ [M |M∗] =
Φ [M ]
Φ [M∗]

. (14)

The information matrix M∗ is used to be “the largest in the given situation”. Stan-
dardly one takes in the linear model with replications

M∗ = arg max
M

Φ [M ] (15)
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where M∗ is computed by convex methods. We can not do this in model (3), so
we propose to take M∗ = M(X ; θ̄, β̄) , since the largest possible information is
obtained when we observe the whole process. (Technical problems connected with
the definition of M(X ; θ̄, β̄) evidently disappear when X is a finite set.)

The choice of a suitable optimality criterion is sometime ambiguous, and we would
like to have designs which are “quite good” with respect to a class of optimality
criteria. One can speak about “universal optimality”, when this class is very large.
Such a class is evidently the class K of all criteria Φ which have properties i) – iv),
and which are orthogonally invariant, i. e. such that

Φ (M) = Φ
(
UMUT

)

for every orthogonal matrix U. Not only the D- and A-optimality criterion belongs
to this class, but also all criteria commonly used in case that we want to estimate
all parameters θi and βj . The “criterion of universal optimality” related to the class
K is equal to “the worst efficiency in the class K”

Ψ
[
M

(
A; θ̄, β̄

)]
= inf

Φ∈K

Φ
(
M

(
A; θ̄, β̄

))

Φ
(
M

(
X ; θ̄, β̄

)) .

However, to deal directly with such a complex criterion is impossible. Surprisingly,
we have the following fundamental result

inf
Φ∈K

Φ
(
M

(
A; θ̄, β̄

))

Φ
(
M

(
X ; θ̄, β̄

)) = min
1≤k≤p+q

ΦEk

(
M

(
A; θ̄, β̄

))

ΦEk

(
M

(
X ; θ̄, β̄

)) (16)

where

ΦEk (M) =
k∑

i=1

λi (M)

is the sum of k minimal eigenvalues of the matrix M . (We remind that M(A; θ̄, β̄)
is a (p+q)× (p+q) matrix.) As a consequence, instead of considering the extremely
large class K we have to consider a finite number of criteria ΦEk(M),where evidently
ΦE1(M) is the well known criterion of E-optimality. Such a result has been first
time proved in [6], Theorem 6, in the context of design in linear experiments with
uncorrelated observation, i. e. using the definition (15). However, if we go carefully
through the proof of the “auxiliary” Theorem 5 in [6], we see that it works for
any positive definite matrix M , so the inner structure of the information matrix
is irrelevant, and the result (16) is obtained straightway from [6] also in a model
without replications and with correlated observations.

We end by a brief remark about potential possibilities to compute a design which
is (nearly) optimum with respect to a given criterion. Since replications of obser-
vations are not allowed, we can not apply convex methods of optimal design, which
are known from experiments with uncorrelated observations. But it seems that we
can apply without essential difficulties some methods known for linear models with
correlated observations, like the method of [2] (cf. [15] for a corresponding exchange
method) or the method of virtual noise (cf. [7]). More details on the last one
extended to the setup of the present paper are given in [10].
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