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RATE OF CONVERGENCE
FOR A CLASS OF RCA ESTIMATORS

PAVEL VANECEK

This work deals with Random Coefficient Autoregressive models where the error pro-
cess is a martingale difference sequence. A class of estimators of unknown parameter is
employed. This class was originally proposed by Schick and it covers both least squares
estimator and maximum likelihood estimator for instance. Asymptotic behavior of such
estimators is explored, especially the rate of convergence to normal distribution is estab-
lished.
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1. INTRODUCTION

In this paper we consider the model of time series called Random Coefficient Au-
toregressive model of the first order (RCA(1) model). This process is defined as a
solution of stochastic equation

Xe=(B+By) Xy 1+ Vs, (1)

where ( is unknown constant parameter, {Y;,¢ € Z} is an error process with zero ex-
pectation and finite constant nonzero variance o2, and {By,t € Z} denotes so called
random coefficient process with zero expectation and constant nonzero variance 0%
such that 5% 4+ 0% < 1.

Both error process and random coefficient process are usually assumed to be
mutually independent sequences of independent and identically distributed random
variables. In this paper we modify these conditions.

After that, we explore a class of estimators of parameter g proposed by Schick
n [10]. We are interested in the rate of convergence of such estimators to normal
distribution.

Let us specify the RCA(1) model by making a few assumptions:

Al: {B;,t € Z} is a sequence of independent and identically distributed random
variables, {Y;,t € Z} is an ergodic and strictly stationary sequence of random vari-
ables, {B;} and {Y;} are mutually independent.
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A2: {Y;,t € Z} is a martingale difference sequence with respect to o-field F; =
o (Bs,Ys; s <t), that is Y; € F; and E [Vi|Fe—1] = 0.

It is known that under Assumption A1l there exists strictly stationary and ergodic
process {X;,t € Z} that satisfies equation (1), see e.g. [8, 12]. This result enables
us the following definition.

Definition 1. Process {X;,t € Z} will be called RCA(1) process, if {X;} satisfies
equation (1) with 3% + 0% < 1 and Assumptions Al and A2.

2. PARAMETER ESTIMATION

We usually employ conditional least squares estimator (LS estimator), its weighted
version (WLS estimator), or maximum likelihood estimator (ML estimator) to esti-
mate parameter § in RCA(1) model. Schick in his paper [10] introduced a new class
of estimators of parameter § for RCA(1) model. For each measurable function ¢(z),
that satisfies z¢(x) > 0 for x # 0, he defined estimator

NgE!

d(Xi—1) - Xu

: (2)
$(Xi1) - Xia

ﬁn((b) =

=5

t=1

and he proved that, for RCA(1) process with independent and identically distributed
error process {Y;}, such estimator is strongly consistent and

-~

Va(Ba(¢) = B) Z N(0,V(¢)) forn — oo,

where

_ B (@(X)u(Xy)

V=g (3(X1)X1)”

(3)
and w(z) = 02 + o%a”.

Notice that the choice ¢(z) = x corresponds to LS estimator and ¢(x) = e)
yields WLS estimator which is identical to ML estimator in our case. Schick showed
that the latter choice of function ¢ leads to estimator 3, (¢) with the smallest asymp-
totic variance V(¢). If we consider RCA(1) model where the error process and the
random coefficient process have the same variances (i.e. 02 = 0%), then the smallest
asymptotic variance is achieved by the choice ¢ = l-k%

We proved consistency and asymptotic normality of estimator of type (2) in
RCA(1) model specified in Definition 1, see [12]. We also performed a simulation
study which revealed that the new estimators seem to possess better statistical
properties than the conventional estimators. The aim of this paper is to derive the
rate of convergence of estimators (3,,(¢) in RCA(1) process for sufficiently large class
of functions ¢.

A special case ¢(z) = = has been studied for instance by Basu and Roy in [1]
or [2]. In the first mentioned article, the authors proved the rate of convergence
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of LS estimator in both univariate and multivariate RCA models. In the second
paper, they proved similar results but they used general autoregressive model with
fixed coefficients instead of RCA process. We can also prove this results using
linear processes. Phillips and Solo in [9] showed an appealing usage of a polynomial
decomposition. Since RCA model can be expressed as an infinite linear filter, we
could easily derive the mentioned results using this decomposition. Unfortunately,
such approach cannot be used for a general function ¢(x).

We extend the results for a general class of RCA(1) estimators. First of all we
have to define the class of all admissible functions ¢(z). Denote h(z) = z¢(x) and
presume that

A3: h(x) >0 for z # 0 and h(z) fulfills Lipschitz condition
|h(Xs) — h(Xy)] < en|Xs — Xy as.

for given process {X;,t € Z}, all s,t € Z, and some constant ¢; > 0.

Remark.

1. If process {X;} is uniformly bounded by some positive constant c¢x then func-
tion h(x) = x? satisfies assumption A3. This can be seen by noticing that
X2 = XP| = |Xs + Xl | X — Xo| < (IXs| + X)X — Xo| < 2ex]Xs — X,

2. Generally, if process {X;} in Assumption A3 satisfies {X; € I,Vt € Z) = 1
for some bounded interval I € R, then any function h(x) with bounded first
derivation on I satisfies assumption A3.

This follows from the Lagrange Mean Value Theorem that states that for
such function h(z) and for each x,y € I there exists z € (z,y) such that
h(y) — hx) = I'(2)(y — ). So |h(X,) — h(Xy)| = [W(Z)] - [(Xs = Xy)| <
max,cr [W(2)] - [(Xs — Xi)| = ep| Xs — X¢| a.s..

Thus, function h(z) = %, which corresponds to ¢(z) = fits for in-

T
T+a?>
stance (see the discussion of the choice of ¢ above).

3. AUXILIARY LEMMAS

We employ similar techniques as Basu and Roy did in [1] where they explored the
rate of convergence of LS estimator in RCA models. To prove the main result we
need some auxiliary lemmas.

Lemma 1. (Accuracy of normal approximation) Let (£2,F,P) be a probability
space and f and g be F-measurable functions.
Then for any € > 0

P(g < x) — o)

sup
z€R

<sup [P(f <y) — 0(y)| + P(lg 1/ >¢) +e,
y€eR
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where ®(z) is the distribution function of the standard normal distribution.

Proof. See [7]. O

Lemma 2. (Berry-Esséen theorem) Let {U;,t € N} be martingale difference se-
quence with constant nonzero variance o2. Let P(|U;| < ¢,Vt € N) = 1 for some
constant ¢ > 0.

Then there exists d > 0 such that for each n € N

1 1 < (Inn)?
sup |P| ——= - —= U<z | -®(x)| <d
ek (m 72 Us ) @) <d- =7
Proof. See [6]. ad

It also turned out that we need a Hoeffding-type exponential inequality for a
function of RCA(1) process {X;}. Specifically we have to ensure that

g

where h(z) is given measurable function and ¢, d are some positive constants. This
inequality is well known when h(xz) = = and either {X;} are independent or they
form a martingale difference sequence. For general function h(z) there were similar
inequalities proved for uniformly ergodic Markov chains { X;} (see working paper [4])
or under some assumptions for ergodic time series (see working paper [11]). Unfor-
tunately, none of these generalizations of Hoeffding inequality was applicable in our
case so we proved inequality (4) using similar techniques as the authors of [5] did for
heteroscedastic RCA(1) model. For that purpose, let us define necessary concepts
and lemmas (all of them can be found in [3]).

1 n—1

- (h(Xt) - Eh(Xt))

n > 5) <coeminet (4)
=0

Definition 2. Let {V,t € Z} be a sequence of random vectors. Let F! __ =
o(Vs,s<t),and FL% = 0(V,,s > t+m) for each t,m € Z.

Sequence {V,} is said to be a-mixing (or strong mixing) if lim,, oo m = 0
where

Q= SUp sup KGN H)-HAGHH)

t +
t€Z \ GeFt ,HEF}T,

Precisely, a sequence is called a-mixing of size —ay if o, = O(m ™) for some a > ag.

In order to prove the main theorem, we have to make another assumption about
mutual structure between the random coefficients and the error process.

A4: {(B;,Y;),t € Z} is a-mixing of size —a for some a > 2.
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Definition 3. Let {X;,¢ € Z} be a sequence of integrable random variables. Let
Fi be a filtration.

Sequence {X;, F;} is called an L,-mixingale if, for p > 1, there exist sequences of
nonnegative constants {c;, t € Z} and {(,,, m € Ny} such that (,, — 0 as m — +o0,
and

|E[X¢| F—ml]ll, < ctlm
(X — E[Xt|]:t+m]||p < elm+1

hold for all t € Z and m € Ng. §
The L,-mixingale is of size —ag > 0 if ,, = O(m™?) for some a > ay.

Definition 4. Let {X;,t € Z} be a sequence of integrable random variables. Let
{Vt € Z} be a sequence, possibly vector-valued, let us define for each t € Z
filtration {F/ T m € Ng} such that /7™ = o(Vi s, Vigm).

Sequence {X,} is said to be near-epoch dependent in L,-norm (L,-NED) on
{V} if, for p > 0, there exist sequences of nonnegative constants {d;,¢t € Z} and

{Vm,m € Ny} such that v,, — 0 as m — 400, and
I, - B[, < dov

hold for all ¢t € Z and m € N.
The L,-NED is of size —ag > 0 if v,,, = O(m™?) for some a > ay.

The idea behind using just defined concepts for proving exponential inequality (4)
is briefly the following: Lipschitz function maintains L,-NED property, L,-NED
process is L,-mixingale under certain assumptions, and sum of L,-mixingale items
can be divided into sum of martingale difference items and some residuum. Precisely,
we make use of the following lemmas:

Lemma 3. Let {X,,t € Z} be Ly-NED of size —a on {V;} with constants {d,}.
Let h(z) be function that satisfies Lipschitz assumption A3 with Lipschitz constant
cp > 0.

Then {h(X¢),t € Z} is also Lo-NED of size —a on {V;} with constants {c - d;}.

Proof. It is a special case of Theorem 17.12 in [3]. O

Lemma 4. Let {X;,t € Z} be an L,-bounded zero-mean sequence, for r > 1. Let
{V,t € Z} be a-mixing of size —a.

If {X,} is L,-NED of size —b on {V,;}, for 1 < p < r with constants {d;},
{X:, Fi} is an Ly-mixingale of size —min(b, a(1/p — 1/r)) with constants {c;}, such
that ¢; = O(max(|| X¢||», d¢)).

Proof. See Theorem 17.5 in [3]. O
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Lemma 5. Let {X;, F;} be a stationary L;-mixingale of size —1.
There exists decomposition

X =Ry — Rypr + Wy, (5)

where E|R;| < 400 and {W;, F;} is a stationary martingale difference sequence.
Equation (5) immediately implies that

n—1 n—1
ZXt:RO*RnJFZWt' (6)
t=0 t=0

Proof. See Theorem 16.6 in [3]. O

Corollary. If sequence {X;} in Lemma 5 is moreover uniformly bounded L-
mixingale of size —1 with bounded constant sequence {c;, ¢ € Z} in Definition 3,
then both sequences {R;} and {W;} are uniformly bounded.

Proof. We make use of proof of Theorem 16.6 stated in [3]. Let us for each
m € N and t € Z define random variable
Ry =Y (B[XipslFot] = Xemomr + B[Xi— 1| Fia]) .
s=0
Now using triangular inequality and L;-mixingale property we have that

m

B <37 ([BIXrsl Bl + [ Ximsmn = BIXe- o] Fia] )
=0

m m m 1
< Z(Ct+s Qo1+ Ct—s—1 - Csy1) < 2c- ZCSH ~ 2c- Z = d,
s=0 s=0

s=0

where ¢; < ¢ for some ¢ > 0. Constant d > 0 exists because of a > 1. Thus, {R,,+}
are bounded uniformly in both m and ¢. In the proof mentioned above there is
shown that for each t € Z, R, converges to R; a.s. as m — +oo. Thus, R, are
uniformly bounded in ¢ because of boundedness of R, ;.

Triangular inequality applied to rearranged equation (5) yields |W;| = | X; — R, +
Ri11] < ex + 2d, which ensures uniform boundedness of W;. O

We have to assume some additional propositions concerning RCA(1) process {X;}
to employ the previous techniques.

A5: H|Xy| < cx) =1 for some constant cx > 0.

A6: H(|By| < cp) =1 for some constant cg > 0.

Since RCA(1) process {X;} is strictly stationary, boundedness of X, according
to A5 ensures uniform boundedness of the whole sequence {X;}, i.e. there exists
constant cx > 0 such that M| Xy| < ex,Vt € Z) = 1.



RCA Estimators 705

Lemma 6. Under Assumptions A5 and A6 both {B,} and {Y;} in the Definition 1
are uniformly bounded.

Proof. Firstly, sequence { B;} is uniformly bounded according to Assumptions Al
and A6 using its strictly stationary property.

Secondly, equation (1) gives us |X;| = [(8+ By)X¢—1 + Yi| > | B Xy—1 + Yy| —
|6X 1|, consequently |B;X;—1 + Y;| < |X¢| +|6X—1| < (1 + |8])ex a.s. owing to
boundedness of {X;}, so we know that {B;X;_1 + Y;} is uniformly bounded.

Finally, |B; X¢—1+Y;| > [Yi|=|Be|[Xi—1], thus [Yy| < [Be Xy 1+Yi|+|By| | Xi—1| < ¢
for some constant ¢ > 0 and all ¢ € Z because all processes on the right hand side
of the inequality are uniformly bounded. o

Lemma 7. Let {X;,t € Z} be RCA(1) process that satisfies Assumptions A4
to A6. Let ¢ : R — R be continuous measurable function such that h(z) = zé(x)
satisfies Assumption A3. Denote Z; = h(X;) — Eh(X,) for each ¢ € Z.

Then there exists decomposition of process {Z;,t € Z} given in Lemma 5 for
Fi = 0(Bs, Ys; s < t) where both sequences {R;} and {W;} are uniformly bounded.

Proof. Firstly, we will show that {X;} is Lo-NED on {B;,Y;} of arbitrary size.
Let us denote F; ™™ = 0(Bs,Ys;8 =t —m,...,t +m) and verify Definition 4:

Definition of RCA(1) model and F,*/"-measurability of B, and Y; for s = t,t —
1,...,t —m yields

1X: = B[XF 0], = |8+ Bo) X1 + Y = B[(B+ Bi) X1 + Vil FE ] |,
= |3+ B)Xi1 — (B+ B)E[X,| 7L,
= |8+ By (X121 — E[Xia1F])

2

_ (ﬁ<5+ BH>) (Xios = B F22))

=0

2

< (ﬁ(ﬂ + Bt—i)) Xi—m-1|| + (ﬁ(ﬁ + Bt-i)) E[X: 1| F0]
=0 2 i=0 9
< (H(ﬁ + Bti)) ex|| + (H(ﬁ + Bti)) cx
1=0 2 i=0 9

The last inequality holds due to uniform boundedness of sequence {X;} by positive
constant cx. Notice that

m m 2 mal m+1
[[B+B—)|| = (E [16B+ Bti)2> = (E(B+By)?*) * = (62 + a?g)
i=0 2 i=0

So we have

m—+1

X~ BXAFER |, <20 ex - (8 + 0%)

m
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m+1

Since it is assumed that 3% + 0% < 1, term (8% + 0%) 2 is O(m™?) for any a > 0
and thus {X;} is Ly-NED with constants d; = 2 - ¢x in Definition 4.

Secondly, {h(X;)} is Lo-NED on {B;,Y;} of arbitrary size with constants d; =
2-c-cp, (due to Lemma 3 and Lipschitz property of function h(x) with some constant
¢p) and so is {Z;} (adding constant does not violate NED condition).

Finally, if we knew that {Z;} is L;-mixingale of size -1 we would have the desired
decomposition of Z; according to Lemma 5. We will show that {Z;} is even Lo-
mixingale (and norm inequality || - [[1 < || - ||z will ensure its L;-mixingale property).
This can be seen by applying Lemma 4 to sequence {Z;} (which is L,-bounded for
any r > 1 because sequence {X;} is bounded and function h(z) is continuous) and
a-mixing sequence {By,Y;} of size —a for some a > 2 (Assumption A4). {Z;} is
Lo-NED of arbitrary size —b, so the size of Lo-mixingale Z; is — min(b, a(1/2—1/r)).
Notice, that min(b,a(1/2—1/r)) = a/2—a/r > 1 because term a/r can be arbitrary
small by increasing r. Constants ¢; in Definition 3 are equal to O(max(||X¢]|, 2
¢ cp)), they are bounded due to the boundedness of {X;}, thus both sequences
{R:} and {W,} in decomposition are uniformly bounded due to the corollary of
Lemma 5. ad

Lemma 8. Let {X;,t € Z} be RCA(1) process that satisfies Assumptions A4
to A6. Let ¢ : R — R be a continuous measurable function such that h(z) = z¢(x)
satisfies Assumption A3.

Then there exist constants ¢ > 0 and d > 0 such that exponential inequality (4)
holds.

Proof. Denote Z; = h(X;) — Eh(X}) for each t € Z. Then Lemma 7 gives us
decomposition (6) of {Z;}, namely 37 Z; = Ry — Ry, + Y~y Wi, where {W;} is a
uniformly bounded martingale difference sequence and {R;} is a uniformly bounded

random sequence. Now we get
( = ) )
70

n—1
’n,t:O n
ZWt > €>
=0

>z >
it
DA (R

-
>n- 2) +cq- dl"(%)2

)

using triangular inequality and Hoeffding inequality for bounded martingale differ-
ences (see for instance [3] Theorem 15.20). An upper bound for the first summand
might be easily obtained as following;:

< P(‘Ro’ n ‘Rn

2

P(\R0| +|Rn| > n- g) - P( e(1Rol+IRnl) 5 o5 ) <E ( e uRolHRnD) e
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<ecgy- e72”(%)2

— i

where finite constant ¢y can be found thanks to uniform boundedness of {R;}. If we
combine this result with the previous estimate, we get

1
p<
n

which should be proved. O

n—1

S

t=0

> €> < rnax(cl, 02) e~ 1nin(d1,2).n.(%)2 —c. efdnsz

4. MAIN RESULT

Now, let us formulate and prove the main theorem about the rate of convergence.

Theorem. Let {X;,t € Z} be RCA(1) process according to Definition 1. Let
Assumptions A4 to A6 be satisfied.

Let ¢ : R — R be a continuous measurable function such that h(z) = x¢(z)
satisfies Assumption A3.

Then there exists ¢ > 0 such that for each n € N

(Buto) - 5)
v

where estimator Bn(rj)) is defined by (2) and asymptotic variance V(¢) is defined
by (3).

<z|-®@x)|<c- —— (7

Remark. This theorem covers both LS estimator (choice ¢(z) = x) nd the es-
timator with the smallest asymptotic variance in model with 0% = o2 (choice

¢(x) = 1752 ), see paragraph 2.

Proof. We basically follow similar proof from [1] for scalar RCA(1) model.
For each n € N let us define

fn IZQS Xe1)(Xe — X)) s

= Z O(Xio1) X1 = Zh(xt_l) :

Then /n(B,(¢) — B) = %. Denote U(¢) = E (¢*(X1)w(X1)) where w(z) = 02 +

0%2% and notice that V(¢) = % > 0, so we have

PV(@@—@< N
e =) T T
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Lemma 1 gives us for any € > 0

P<\/79n a:) — d(x)

sup
a:E]R

<sup
yER

fTL
P( 000 Sy) — @(y)

+P<'Eh~‘&1) - 1‘ > e) te. (8)

It can be easily derived that {¢(Xi—1)(Xy — 8X¢—1)} is 0 (Bs, Ys; s < t)-martingale
difference sequence with variance U(¢) defined previously. Function ¢ is continuous,
process {X;} is uniformly bounded, thus {¢(X;_1)(X; — 8X;—1)} is also uniformly
bounded. So Lemma 2 can be applied to the first term on the right hand side of
inequality (8) and we have

fn
P< 7o) <y> —®(y)

where d > 0 is some constant.
The second term on the right hand side of inequality (8) can be arranged into

sty 1)

!

(Inn)?

\/ﬁ b

<d-

sup
yeR

g — Eh(Xl)‘ >e. Eh(Xl))

. 2": (h(Xt—l) - Eh(Xt—1)>

t=1

>e€- Eh(X1)> s

using definition of g,, and strict stationarity of {X;}. All conditions of Lemma 8 are
met and we have

( Z( (Xi-1) = BR(Xi1))

where p, ¢ > 0 are some constants.
If we sum up all derived results we gain that for any € > 0 there exist positive
constants d, p, ¢ such that

> € - Eh(X1)> <p- e*qn52 :

(Inn)?
vn
(Inn)3

Setting ¢ = o we obtain the desired upper bound c - for some positive
constant c. d

+poe it

sup [P(v (Bu(9) - 8) < 2) - G(a)| < a-

z€R

(Inn)®
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