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KYBERNET IK A — VOLUME 4 2 ( 2 0 0 6 ) , NU MB ER 6 , P AG E S 6 7 3 – 6 9 8

OUTLIERS IN MODELS WITH CONSTRAINTS

Luboḿır Kubáček

Outliers in univariate and multivariate regression models with constraints are under
consideration. The covariance matrix is assumed either to be known or to be known only
partially.

Keywords: univariate regression model, multivariate regression model, constraints, outlier,
variance components

AMS Subject Classification: 62J05

1. INTRODUCTION

The problem is how to test suspicious measurement whether it is a rough error
or a mistake (outlier) in an observation when parameters of a regression model
satisfy some constraints. The covariance matrix need not be known; some unknown
parameters can occur in it. The solution of the mentioned problem or a contribution
to it is the aim of the paper. Although this problem is intensively studied, cf. e. g.
[2], many problems are not yet solved. Some comments to several of them are
presented in the paper.

2. NOTATION AND SYMBOLS

The following notation will be used:

Y . . . n-dimensional random vector (observation vector),

Y . . . n×m random matrix (observation matrix),
β . . . k-dimensional unknown vector parameter,

β . . . k ×m matrix of unknown parameters,

X . . . n× k given matrix (design matrix),

Σ . . . n× n covariance matrix of the observation vector Y
(it is assumed to be positive definite),
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b . . . given q-dimensional vector,

B . . . q × k given matrix,

G . . . q × k given matrix,

H . . . m× r given matrix,

G0 . . . q × r given matrix,

M(A) . . . column subspace of the matrix A,

PA . . . projection matrix (in the Euclidean norm)
on the column subspace of the matrix A,

I . . . identity matrix,

vec(A) . . . vector consisted of the columns
of the matrix A,

MA . . . projection matrix on the orthogonal complement of the subspace M(A),
i. e. MA = I−PA,

A− . . . generalized inverse of the matrix A, i. e. AA−A = A
(in more detail cf. [10]),

A+ . . . the Moore–Penrose inverse of the matrix A, i. e.
AA+A = A,A+AA+ = A+,AA+ = (AA+)′,A+A = (A+A)′

(in more detail cf. [10]),

PΣ−1

A . . . projection matrix in the norm ‖x‖ =
√

x′Σ−1x,x ∈ Rn,
on the column subspace of the matrix A,

MΣ−1

A = I−PΣ−1

A ,

ξ ∼ χ2
q(0) . . . a random variable ξ has the central chi-square
distribution with q degrees of freedom,

H0∼ . . . the random variable is distributed under the true null hypothesis,

χ2
q(0; 1− α) . . . (1− α)-quantile of the central chi-square distribution

with q degrees of freedom,

u(1− α/2) . . . (1− α/2)-quantile of the normal distribution N(0, 1),

F = (ei1 , . . . , eir ), eij ∈ Rn, j = 1, . . . , r,
{
eij

}
k

=
{

0, k 6= ij ,
1, k = ij .

χ2
r(δ) . . . random variable with noncenteral chi-squared distribution

with r degrees of freedom and with the parameter noncentrality equal to δ,

Fr,f (δ) . . . random variable with nonceneral Fisher–Snedecor distribution with r
and f degrees of freedom and with the parameter of noncentrality
equal to δ,

Fr,f (0; 1− α) . . . (1− α)-quantile of the central Fisher–Snedecor
distribution with r and f degrees of freedom,

E =
(
e(m)

i1
⊗ e(n)

j1
, . . . , e(m)

is
⊗ e(n)

js

)
.
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An univariate regression model with normally distributed observation vector and
with constraints will be denoted as

Y ∼ Nn(Xβ,Σ), b + Bβ = 0. (1)

A multivariate regression model [1] with normally distributed observation matrix
and with constraints will be considered in the form

Y ∼ Nnm(Xβ,Σ⊗ I), (2)

where Σ⊗ I is the covariance matrix of the vector vec(Y). Constraints can be given
in different forms, e. g. GβH + G0 = 0,Gβ + G0 = 0, βH + G0 = 0, etc.

The univariate model is regular if the rank of the matrix X is r(X) = k < n, Σ
is positive definite (p.d.) and r(B) = q < k.

The multivariate model considered is regular if r(X) = k < n, r(G) = q <
k, r(H) = r < m and Σ is p.d.

3. MODELS WITH OUTLIERS

3.1. Univariate models

Lemma 3.1.1. In the regular univariate model with constraints the best linear
unbiased estimator (BLUE) is

̂̂
β = β̂ −C−1B′(BC−1B′)−1(Bβ̂ + b)

= (MB′CMB′)+X′Σ−1Y −C−1B′(BC−1B′)−1b,

β̂ = C−1X′Σ−1Y, C = X′Σ−1X,

Var(̂̂β) = C−1 −C−1B′(BC−1B′)−1BC−1 = (MB′CMB′)+.

P r o o f is given, e. g. in [5], p. 80. ¤

Corollary 3.1.2. The residual vector vI = Y −X̂̂
β is distributed as

vI ∼ Nn[0,Var(vI)],
Var(vI) = Σ−X(MB′CMB′)+X′

= Var(Y −Xβ̂) + XC−1B′(BC−1B′)−1BC−1X,

where Var(Y −Xβ̂) = Σ−XC−1X′.
If v′IΣ

−1vI ≥ χ2
n+q−k(0; 1−α) for sufficiently small α, then the measured data are

not compatible with the model. Thus outliers could occur. A thorough inspection
of data, mainly their genesis, must be realized and on this basis it is sometimes
possible to decide which of data are suspicious.
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It is not the only way how to detect outlier (cf. [2, 3]. In the following text also
the way given in [13] pp. 92–94 is followed.

Let the measurements {Y}i1 , . . . , {Y}ir be suspicious. In such a case the model
(1) is rewritten in the form

Y ∼ Nn

[
(X,F)

(
β
∆

)
,Σ

]
, b + Bβ = 0. (3)

In the model (3) the hypothesis H0 : ∆ = 0 versus H0 : ∆ 6= 0, can be tested if
and only if the vector ∆ is unbiasedly estimable. It can be formulated as follows.

Lemma 3.1.3. The hypothesis H0 : ∆=0 versus H0 : ∆ 6=0 can be tested in the
model (3) iff M(XMB′)∩M(F)={0} (intersection both subspaces is the set with a
single point, i. e. null vector 0 only), what is equivalent to M

„
X
B

«
∩M

„
F
0

«
={0}.

P r o o f . The hypothesis can be tested iff (cf. [13])

M
(

0
I

)
⊂M

(
X′, B′

F′, 0

)
⇔ ∃{U,V}X′U + B′V = 0 & F′U = I.

The equality X′U+B′V = 0 impliesM(U) = M(MXMB′ ) &M(V) = M(MBMX′ ).
Further M(F′MXMB′ ) must be equal to M(I) = Rr. Since ([10], p. 137)

r

(
MB′X′

F′

)
= r

(
F′MXMB′

)
+ r(XMB′),

the equality r(F′MXMB′ )=r can be valid iff r
(

MB′X
′

F′

)
=r+r(XMB′) (r(F′)=r),

what is equivalent to M(XMB′) ∩M(F) = {0}.
The equivalence

M(XMB′) ∩M(F) = {0} ⇔M
(

X
B

)
∩M

(
F
0

)
= {0}

is the consequence of the following consideration

M(XMB′) ∩M(F) = {0} ⇔ r

(
MB′X′

F′

)
= r(F′) + r(MB′X′).

However in general

r

(
MB′X′

F′

)
= r(F′MXMB′ ) + r(MB′X′)

and therefore r(F′) = r(F′MXMB′ ). Analogously

M
(

X
B

)
∩M

(
F
0

)
= {0} ⇔ r

(
X, F
B, 0

)
= r

(
X
B

)
+ r(F).
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Further

r

(
X, F
B, 0

)
= r

[
(X,F)M(B,0)′

]
+ r(B)

= r

[
(X,F)

(
MB′ , 0
0, I

)]
+ r(B)

= r(XMB′ ,F) + r(B) = r
(
F′MXMB′

)
+ r(XMB′) + r(B)

= r(F′MXMB′ ) + r

(
X
B

)
.

In both cases the equality r(F′MXMB′ ) = r(F′) is necessary and sufficient condition
for equivalence

M(XMB′) ∩M(F) = {0} ⇔M
(

X
B

)
∩M

(
F
0

)
= {0}. ¤

Lemma 3.1.4. In the regular model (3) the BLUE of the vector
„

β
∆

«
is
 bbβout
bb∆

!
,

where

̂̂
βout = ̂̂

β − (MB′CMB′)+X′Σ−1F ̂̂∆,

̂̂
β = β̂ −C−1B′(BC−1B′)−1(Bβ̂ + b),

β̂ = C−1X′Σ−1Y, C = X′Σ−1X

(the estimator β̂ is the BLUE in the regular model Y ∼ Nn(Xβ,Σ), ̂̂
β is the BLUE

of β in (1)) and

̂̂∆ =
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1(Y −X̂̂
β).

Further

Var(̂̂βout) = Var(̂̂β) + (MB′CMB′)+ X′Σ−1F

×
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1X (MB′CMB′)+ ,

Var(̂̂β) = Var(β̂)−C−1B′(BC−1B′)−1BC−1 = (MB′CMB′)+,

Var(β̂) = C−1,

Var( ̂̂∆) =
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

,

cov(̂̂βout,
̂̂∆) = −(MB′CMB′)+X′Σ−1F

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

.

P r o o f . At first it is to be remarked that the matrix

F′ (MXMB′ΣMXMB′

)+
F
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is regular, what is implied by the assumptions M(XMB′) ∩ M(F) = {0} and
r(Fn,r) = r < n.

Let β0 be any solution of the equation Bβ + b = 0, i. e. β = β0 + MB′γ. Thus
we obtain the model without constraints

Y −Xβ0 ∼ Nn

[
(XMB′ ,F)

(
γ
∆

)
,Σ

]
, γ ∈ Rk,∆ ∈ Rs,

which is not regular, however the assumption M(XMB′)∩M(F) = {0} ensures the
estimability of the vectors MB′γ and ∆. Thus the BLUE of the vector

„
MB′γ

∆

«

is
(

M̂B′γ
̂̂∆

)
=

(
MB′ , 0
0, I

)(
MB′CMB′ , MB′X′Σ−1F

F′Σ−1XMB′ , F′Σ−1F

)+

×
(

MB′X′Σ−1(Y −Xβ0)
F′Σ−1(Y −Xβ0)

)
.

Since
(

MB′ , 0
0, I

) (
MB′CMB′ , MB′X′Σ−1F

F′Σ−1XMB′ , F′Σ−1F

)+

=
(

A1,1, A1,2

A2,1, A2,2

)
,

A1,1 = (MB′CMB′)+ + (MB′CMB′)+X′Σ−1F×
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1X(MB′CMB′)+,

A1,2 = −(MB′CMB′)+X′Σ−1F
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

= A′
2,1,

A2,2 =
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

,

the expressions for the estimators can be easily obtained.

The covariance matrix of the estimator
 bbβout
bb∆

!
is

Var

( ̂̂
βout
̂̂∆

)
=

[(
MB′X′

F′

)
Σ−1(XMB′ ,F)

]+

.

Since
(

MB′ , 0
0, I

)(
MB′CMB′ , MB′X′Σ−1F

F′Σ−1XMB′ , F′Σ−1F

)+

=
(

MB′CMB′ , MB′X′Σ−1F
F′Σ−1XMB′ , F′Σ−1F

)+

,
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the equality
(

MB′CMB′ , MB′X′Σ−1F
F′Σ−1XMB′ , F′Σ−1F

)+

=
(

A1,1, A1,2

A2,1, A2,2

)

is obvious and the proof can be finished. ¤

The following theorem is implied by the preceding lemmas.

Theorem 3.1.5. In regular model (3) the hypothesis

H0 : ∆ = 0 versus Ha : ∆ 6= 0

can be tested by the help of the statistic

̂̂∆
′
[Var( ̂̂∆)]−1 ̂̂∆ ∼ χ2

r(δ), δ = ∆′[Var( ̂̂∆)]−1∆,

̂̂∆ =
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1(Y −X̂̂
β),

Var( ̂̂∆) =
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

,

̂̂
β = (MB′CMB′)+X′Σ−1Y −C−1B′(BC−1B′)−1b.

If for some i∗

| ̂̂∆i∗ | ≥
√

χ2
r(0; 1− α)

√
Var( ̂̂∆i∗),

then the null-hypothesis ∆ = 0 is rejected because of the i∗th measurement {Y}i∗ ,
i. e. it is outlier.

Until now the covariance matrix Σ is assumed to be known. Let Σ = σ2V, where
σ2 is an unknown parameter and V be an n× n p.d. given matrix.

Lemma 3.1.6. In the regular model (3) with the covariance matrix Σ = σ2V the

residual vector vI,out = Y −X̂̂
βout − F ̂̂∆ can be expressed as

vI,out = vI −MV−1

XMB′
F ̂̂∆.

The expression for vI is given by Lemma 3.1.1, however the matrix C must be
substituted by C0 = X′V−1X. Thus

vI = Y −X̂̂
β = Y −X(MBC0MB′)+X′V−1Y + XC−1

0 B′(BC−1
0 B′)−1b

= Y −Xβ̂ + XC−1
0 B′(BC−1

0 B′)−1(Bβ̂ + b).

Another expression for vI,out is

vI,out =
{
I−MV −1

XMB′
F

[
F′ (MXMB′VMXMB′

)+
F

]−1

F′V−1

}
vI .

P r o o f . It is a direct consequence of Lemma 3.1.4. ¤
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Corollary 3.1.7. In the regular model (3) with covariance matrix Σ = σ2V the
best estimator of σ2 is

σ̂2
I,out = v′I,outV

−1vI,out/[n + q − (k + r)] ∼ σ2χ2
n+q−(k+r)(0)/[n + q − (k + r)].

Analogously as in Theorem 3.1.5 the test statistic is now

̂̂∆
′
F′(MXMB′VMXMB′ )

+F ̂̂∆/(rσ̂2
I,out) ∼ Fr,n+q−(k+r)(δ),

δ =
1
σ2

∆′F′(MXMB′VMXMB′ )
+∆,

̂̂∆ =
[
F′ (MXMB′VMXMB′

)+
F

]−1

F′V−1vI .

Remark 3.1.8. The procedure for testing suspicious data can be described by the
following steps.

Let {Y}i1 , . . . , {Y}ir be denoted as possible outliers.
The BLUEs of β and ∆ in the model (3) are

̂̂
βout = ̂̂

β − (MB′C0MB′)+X′V−1 ̂̂∆,

̂̂∆ =
[
F′ (MXMB′VMXMB′

)+
F

]−1

F′V−1(Y −X̂̂
β),

̂̂∆ H0∼ Ns

{
0, σ2

[
F′ (MXMB′VMXMB′

)+
F

]−1
}

.

The residual vector is

vI,out = vI −MV−1

XMB′
F ̂̂∆ = Y −X̂̂

β −MV−1

XMB′
F ̂̂∆

∼ Nn

[
0, Var(vI)−MV−1

XMB′
FVar( ̂̂∆)F′

(
MV−1

XMB′

)′]

and the best estimator of σ2 is

σ̂2
I,out =

v′I,outV
−1vI,out

n + q − (k + r)
∼ σ2

χ2
n+q−(k+r)(0)

n + q − (k + r)
.

The test statistic of the hypothesis ∆ = 0 versus ∆ 6= 0 is

T =
̂̂∆
′
F′ (MXMB′VMXMB′

)+
F ̂̂∆

rσ̂2
I,out

∼ Fr,n+q−(k+r)(δ),

δ =
∆′F′ (MXMB′VMXMB′

)+
F∆

σ2
.

If T > Fr,n+q−(k+r)(0; 1− α), and for some i∗

|{ ̂̂∆}i∗ | ≥
√

rσ̂2
I,outFr,n+q−(k+r)(0; 1− α)

√{[
F′ (MXMB′VMXMB′

)+
F

]−1
}

i∗,i∗
,

then the i∗th measurement contributes to the rejection of the null-hypothesis H0,
thus it is outlier.
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3.2. Multivariate model

Lemma 3.2.1. In the regular multivariate model

Y ∼ Nnm(Xn,kβ
k,m

,Σ⊗ I) (4)

(i. e. r(X) = k < n,Σ is p.d.) with regular constraints

GβH + G0 = 0 (5)

(i. e. r(G) = q < k, r(H) = r < m) the BLUE of the matrix β is

̂̂
β = β̂ − (X′X)−1G′[G(X′X)−1G′]−1(Gβ̂H + G0)(H′ΣH)−1H′Σ,

where β̂ = (X′X)−1X′Y (the BLUE in the model (4) without constraints (5)). The

covariance matrix of the vector vec(̂̂β) is

Var[vec(̂̂β)] = Var[vec(β̂)]

−[ΣH(H′ΣH)−1H′Σ]⊗ {(X′X)−1G′[G(X′X)−1G′]−1G(X′X)−1},

where Var[vec(β̂)] = Σ⊗ (X′X)−1.

P r o o f . It is implied by Lemma 3.1.1. It suffices to rewrite the model in the form

vec(Y) ∼ Nnm[(I⊗X)vec(β),Σ⊗ I], (H′ ⊗G)vec(β) + vec(G0) = 0. ¤

Corollary 3.2.2. The residual matrix vI = Y −X̂̂
β is distributed as

vec(vI) ∼ Nnm {0,Var[vec(v)] + K} .

The matrix vI can be written as

vI = Y −X̂̂
β = Y −Xβ̂ + kI = v + kI ,

kI = X(X′X)−1G′[G(X′X)−1G′]−1(Gβ̂H + G0)(H′ΣH)−1H′Σ.

The matrices v and kI are stochastically independent and thus

Var[vec(vI)] = Var[vec(v)] + Var(vec(kI),
Var[vec(v)] = Σ⊗MX,

Var(vec(kI) = K = [ΣH[H′ΣH)−1H′Σ]⊗ {X(X′X)−1G′[G(X′X)−1

×G′]−1G(X′X)−1X′} = (ΣPΣ
H)⊗PX(X′X)−1G′ .

If Tr(v′IvIΣ
−1) ≥ χ2

m(n−k)+qs(0; 1 − α) for sufficiently small α, then the mea-
sured data are not compatible with the model. (It is to be remarked that Σ−1 is a
generalized inverse of the matrix Var[vec(vI)].) On the basis of thorough inspection
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of the data genesis it is sometimes possible to decide which of data are suspicious.
Let it be made. Then the model (4) and (5) is rewritten as

vec(Y) ∼ Nnm

[
(I⊗X,E)

(
vec(β)

∆

)
,Σ⊗ I

]
, GβH + G0 = 0. (6)

The indices ir, jr in the matrix E are chosen such that

{Y}ir,jr
, r = 1, . . . , s,

are suspicious observations.

Lemma 3.2.3. The hypothesis H0 : ∆ = 0 versus Ha : ∆ 6= 0 in the model (6)
can be tested iff

M
(

I⊗X
H′ ⊗G

)
∩M

(
E
0

)
= {0},

what is equivalent to M
[
(I⊗X)M(H⊗G′)

]
∩M(E) = {0}. The last equality can

be rewritten as
(I⊗X)M(H⊗G′) = MH⊗X + PH⊗(XMG′ ).

P r o o f . It is a consequence of Lemma 3.1.3. ¤

Theorem 3.2.4. The BLUE of the vector
„

vec(β)

∆

«
in the regular model (6) is

0
@ vec(

bbβ
out

)
bb∆

1
A ,

vec(̂̂β
out

) = vec(̂̂β)−
(

I⊗ [(X′X)−1X′]− [ΣH(H′ΣH)−1H′]

⊗{(X′X)−1G′[G(X′X)−1G′]−1G(X′X)−1X′}
)

E ̂̂∆,

vec(̂̂β) = vec(β̂)−
(
[ΣH(H′ΣH)−1]⊗ {(X′X)−1G′[G(X′X)−1G′]−1}

)

×[(H′ ⊗G)vec(β̂) + vec(G0)]

(the BLUE of vec(β) in the model (4) with constraints (5)),

vec(β̂) = {I⊗ [(X′X)−1X′]}vec(Y)

(the BLUE of vec(β) in the model (4) without constraints) and

̂̂∆ =
[
E′ (Σ−1 ⊗MX + [H(H′ΣH)−1H′]⊗PX(X′X)−1G′

)
E

]−1

×E′(Σ−1 ⊗ I)[vec(Y)− (I⊗X)vec(̂̂β)].
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Further

Var[vec(̂̂β
out

)] = Var[vec(
̂̂
β])] + A′Var( ̂̂∆)A,

Var[vec(̂̂β)] = Var[vec(β̂)]− [ΣH(H′ΣH)−1H′Σ]

⊗{(X′X)−1G′[G(X′X)−1G′]−1G(X′X)−1},
Var[vec(β̂)] = Σ⊗ (X′X)−1,

A = E′(Σ−1 ⊗X)
{
MH⊗G′ [Σ−1 ⊗ (X′X)]MH⊗G′

}+

= E′
(
I⊗ [X(X′X)−1]−PΣ

H ⊗ {X(X′X)−1G′

×[G(X′X)−1G′]−1G(X′X)−1}
)
,

Var( ̂̂∆) =
[
E′

(
Σ−1 ⊗MX + (PΣ

HΣ−1)⊗PX(X′X)−1G′

)
E

]−1

,

cov[vec(̂̂β
out

), ̂̂∆] = −A′Var( ̂̂∆).

P r o o f . With respect to Lemma 3.1.4 it is valid

vec(̂̂β
out

) = vec(̂̂β)−
{
MH⊗G′ [Σ−1 ⊗ (X′X)]MH⊗G′

}+
(Σ−1 ⊗X′)E ̂̂∆.

Since
{
MH⊗G′ [Σ−1 ⊗ (X′X)]MH⊗G′

}+

= Σ⊗ (X′X)−1 − [Σ⊗ (X′X)−1](H⊗G′)

×
{

(H′ ⊗G)[Σ⊗ (X′X)−1](H⊗G′)
}−1

(H′ ⊗G)[Σ⊗ (X′X)−1]

= Σ⊗ (X′X)−1 − (ΣPΣ
H)⊗ {(X′X)−1G′[G(X′X)−1G′]−1G(X′X)−1},

the expression for vec(̂̂β
out

) can be easily obtained. Analogously the expression

̂̂∆ =
{
E′

[
M(I⊗X)MH⊗G′ (Σ⊗ I)M(I⊗X)MH⊗G′

]+

E
}−1

E′(Σ−1 ⊗ I)

×[vec(Y)− (I⊗X)vec(̂̂β)]

can be easily reestablished into expression given in the statement. Further, again
with respect to Lemma 3.1.4,

Var[vec(̂̂β
out

)] = Var[vec(̂̂β)] +
{
MH⊗G′ [Σ−1 ⊗ (X′X)]MH⊗G′

}+

(Σ−1 ⊗X′)

×EVar( ̂̂∆)E′(Σ−1 ⊗X)
{
MH⊗G′ [Σ−1 ⊗ (X′X)]MH⊗G′

}+

and Corollary 3.2.2, the proof can be easily finished. ¤



684 L. KUBÁČEK

Corollary 3.2.5. The hypothesis H0 : ∆ = 0 versus Ha : ∆ 6= 0, can be tested
on the base of Theorem 3.2.4. The test statistic is

τ = ̂̂∆
′
[Var( ̂̂∆)]−1 ̂̂∆ ∼ χ2

s(δ), δ = ∆′[Var( ̂̂∆)]−1∆.

If the hypothesis ∆ = 0 is rejected and it is valid

|{ ̂̂∆}i| >
√

χ2
s(0, 1− α)

√
{Var( ̂̂∆}i,i,

then the measurement {vec(Y)}i can be declared to be outlier.
If Σ = σ2V, where σ2 is unknown parameter and V is a known p.d. matrix, then

σ2 must be estimated and the test must be a little modified.

Lemma 3.2.6. Let

v = Y −Xβ̂, β̂ = (X′X)−1X′Y,

vI = Y −X̂̂
β, vI,out = Y −X̂̂

β
out

−E ̂̂∆.

Then

vec(vI,out) = vec(vI)−
[
I⊗MX +

(
PV

H

)′ ⊗PX(X′X)−1G′

]
E ̂̂∆

and

vec(vI,out) ∼ Nnm

{
0, Var[vec(vI)]−

[
I⊗MX +

(
PV

H

)′ ⊗PX(X′X)−1G′

]

×EVar( ̂̂∆)E′ [I⊗MX + PV
H ⊗PX(X′X)−1G′

] }
,

vec(vI) = vec(v) + vec(kI),

kI = X(X′X)−1G′[G(X′X)−1G′]−1(Gβ̂H + G0)(H′VH)−1H′V,

v and kI are stochastically independent,

vec(v) ∼ Nn,m[0, σ2(V ⊗MX)], vec(kI) ∼ Nn,m[0, σ2(VPV
H)⊗PX(X′X)−1G′ ],

and
vec(vI) ∼ Nnm

{
0, σ2

[
V ⊗MX + (VPV

H)⊗PX(X′X)−1G′

]}
.

P r o o f . With respect to Theorem 3.2.4

vec(Y)− (I⊗X)vec(̂̂β
out

)−E ̂̂∆ = vec(Y)− (I⊗X)vec(̂̂β) +
(
I⊗PX − (PV

H)′

⊗PX(X′X)−1G′

)
E ̂̂∆−E ̂̂∆ = vec(vI)−

[
I⊗MX + (PV

H)′ ⊗PX(X′X)−1G′

]
E ̂̂∆.

Since v = MXY and kI is a function of β̂, they are stochastically independent.
Obviously

vec(kI) ∼ Nnm

[
0, σ2

(
VPV

H

)
⊗PX(X′X)−1G′

]
,
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and thus

vec(v + kI) = vec(vI) ∼ Nnm

{
0, σ2

[
V ⊗MX +

(
VPV

H

)
⊗PX(X′X)−1G′

]}
.

Since vI,out can be expressed as

vec(vI,out) =

{
I−

[
I⊗MX +

(
PV

H

)′
⊗PX(X′X)−1G′

]
E

(
E′

{
V−1 ⊗MX

+[H(H′VH)−1H′]⊗PX(X′X)−1G′

}
E

)−1

E′(V−1 ⊗ I)

}
vec(vI),

we have

Var[vec(vI,out)]

=

{
I−

[
I⊗MX +

(
PV

H

)′
⊗PX(X′X)−1G′

]
E

1
σ2

Var( ̂̂∆)E′(V−1 ⊗ I)

}
Var(vI)

×
{

I− (V−1 ⊗ I)E
1
σ2

Var( ̂̂∆)E′(I⊗MX + PV
H ⊗PX(X′X)−1G′)

}
.

Now the equalities

E′(V−1 ⊗ I)Var[vec(vI)](V
−1 ⊗ I)E = σ2E′

(
V−1

⊗MX + [H(H′VH)−1H′]⊗PX(X′X)−1G′

)
E = σ4[Var( ̂̂∆)]−1

and

[I⊗MX + (PV
H)′ ⊗PX(X′X)−1G′ ]E

1
σ2

Var( ̂̂∆)E′(V−1 ⊗ I)Var[vec(vI)]

= [I⊗MX + (PV
H)′ ⊗PX(X′X)−1G′ ]E

1
σ2

Var( ̂̂∆)E′[I⊗MX + PV
H ⊗PX(X′X)−1G′ ]

must be taken into account in order to obtain the expression for Var[vec(vI,out)]. ¤

Corollary 3.2.7. The best estimator of σ2 in the model (4), (5) is

σ̂2
I,out =

[vec(vI,out)]
′(V−1 ⊗ I)vec(vI,out)

nm + qr − (km + s)
=

Tr(v′I,outvI,outV
−1)

m(n− k) + qr − s

∼ σ2
χ2

m(n−k)+qr−s

m(n− k) + qr − s

and the test statistic is

̂̂∆
′
E′

{
V−1 ⊗MX + [H(H′VH)−1H′]⊗PX(X′X)−1G′

}
E ̂̂∆

sσ̂2
I,out

∼ Fs,m(n−k)−s(δ),

δ =
∆′E′

{
V−1 ⊗MX + [H(H′VH)−1H′]⊗PX(X′X)−1G′

}
E∆

σ2
.
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Remark 3.2.8. The hypothesis ∆ = 0 is rejected due to those measurements
{Y}ir,jr for which

| ̂̂∆ir,jr | ≥ σ̂I,out

√
sFs,m(n−k)+qr−s(0; 1− α)

√
(e(m)

ir
⊗ e(n)

jr
)′U(e(m)

ir
⊗ e(n)

jr
),

U =
[
E′

(
V−1 ⊗MX + [H(H′VH)−1H′]⊗PX(X′X)−1G′

)
E

]−1

.

4. PROBLEM OF VARIANCE COMPONENTS

4.1. Univariate models

Let a regular univariate linear model

Y ∼ Nn(Xβ,
∑p

i=1 ϑiVi), β ∈ VI = {u : b + Bu = 0}, (7)
ϑ = (ϑ1, . . . , ϑp)′ ∈ ϑ ⊂ Rp,

be under consideration. Here except β also the vector parameter ϑ is unknown. The
parameter space ϑ is an open set in the p-dimensional Euclidean space, ϑi > 0, i =
1, . . . , p, and symmetric matrices V1, . . . ,Vp, are p.s.d. and known. An estimator
of the variance components ϑ1, . . . , ϑp, is calculated often in an iterative way. An
arbitrary value ϑ0 of the vector is chosen and the ϑ0-MINQUE (minimum norm
quadratic unbiased estimator; in more detail cf. [11] and [5]) ϑ̂ is determined. In
the next step this estimator is chosen instead of ϑ0 and the procedure continues.
For the sake of simplicity in the following text it is assumed that ϑ0 is such good
starting point of this procedure that only one step of iteration is necessary.

Lemma 4.1.1. The MINQUE of the vector ϑ in the model (7) is

ϑ̂ = S−1

(MXM
B′Σ0MXM

B′ )
+




v′IΣ
−1
0 V1Σ−1

0 vI

...
v′IΣ

−1
0 V1Σ−1

0 vI


 ,

{
S(MXM

B′Σ0MXM
B′ )

+

}

i,j

= Tr
[(

MXMB′Σ0MXMB′

)+
Vi

(
MXMB′Σ0MXMB′

)+
Vj

]
, i, j = 1, . . . , p,

Σ0 =
∑p

i=1 ϑ
(0)
i Vi,vI = Y − X̂̂

β, and ̂̂
β is the ϑ(0)-LBLUE (locally best linear

unbiased estimator) of the vector β given by Lemma 3.1.1 for C = X′Σ−1
0 X. If Y

is normally distributed, then Varϑ(0)(ϑ̂) = 2S−1

(MXM
B′Σ0MXM

B′ )
+ .

P r o o f . Cf. [5]. ¤
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The problem is whether ϑ̂ can be used instead of the actual value ϑ∗ of the
vector ϑ.

One approach to the problem is given in the following text.
Let

φ(ϑ) = v′I(ϑ)Σ−1(ϑ)vI(ϑ),

vI(ϑ) = Y −X̂̂
β(ϑ) = Y −Xβ̂(ϑ) + XC−1(ϑ)B′

×[BC−1(ϑ)B′]−1[Bβ̂(ϑ) + b],

β̂(ϑ) = C−1(ϑ)X′Σ−1(ϑ)Y,

C(ϑ) = X′Σ−1(ϑ)X.

Lemma 4.1.2. Under the given notation the following relationships are valid.

φ(ϑ0 + δϑ) = φ(ϑ0) +
p∑

i=1

v′I(ϑ0)
{

2Σ−1(ϑ0)X[MB′C(ϑ0)MB′ ]+

×X′Σ−1(ϑ0)ViΣ−1(ϑ0)−Σ−1(ϑ0)ViΣ−1(ϑ0)
}

δϑi

+ terms of higher orders
= φ(ϑ0) + η′(ϑ0)δϑ + terms of higher orders,

Eϑ0 [η
′(ϑ0)δϑ] = −a′(ϑ0)δϑ + terms of higher orders,

a′(ϑ0) = [a1(ϑ0), . . . , ap(ϑ0)],

ai(ϑ0) = Tr
{[

MXMB′Σ(ϑ0)MXMB′

]+

Vi

}
, i = 1, . . . , p,

Varϑ0 [η
′(ϑ0)δϑ] = 2δϑ′S[MXM

B′Σ(ϑ0)MXM
B′ ]

+δϑ,

{
S[MXM

B′Σ(ϑ0)MXM
B′ ]

+

}
i,j

= Tr
{[

MXMB′Σ(ϑ0)MXMB′

]+

Vi

[
MXMB′Σ(ϑ0)MXMB′

]+

Vj

}
,

i, j = 1, . . . , p.

P r o o f . If the relationship
∂A(ϑ)

∂ϑi
= −A−1(ϑ)

∂A(ϑ)
∂ϑi

A−1(ϑ)

which is valid for any matrix regular in a neighbourhood of the vector ϑ, is taken
into account, we obtain the following relationships (for the sake of simplicity the
dependence on ϑ is not written).

∂φ

∂ϑi
= 2v′IΣ

−1 ∂vI

∂ϑi
− v′IΣ

−1ViΣ−1vI ,

∂vI

∂ϑi
= −X

∂β̂

∂ϑi
+ XC−1X′Σ−1ViΣ−1XC−1B′(BC−1B′)−1(Bβ̂ + b)

−XC−1B′(BC−1B′)−1BC−1X′Σ−1ViΣ−1XC−1B′(BC−1B′)−1
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×(Bβ̂ + b) + XC−1B′(BC−1B′)−1B
∂β̂

∂ϑi
,

∂β̂

∂ϑi
= C−1X′Σ−1ViΣ−1XC−1X′Σ−1Y −C−1X′Σ−1ViΣ−1Y

= −C−1X′Σ−1ViΣ−1(Y −XC−1X′Σ−1Y)

= −C−1X′Σ−1ViΣ−1(Y −Xβ̂).

Let v = Y −Xβ̂. Thus vI = v + XC−1B′(BC−1B′)−1(Bβ̂ + b) and

∂vI

∂ϑi
= +XC−1X′Σ−1ViΣ−1v

+X(MB′CMB′)+X′Σ−1ViΣ−1XC−1B′(BC−1B′)−1(Bβ̂ + b)

+XC−1B′(BC−1B′)−1
[
−BC−1X′Σ−1ViΣ−1v

]

= X(MB′CMB′)+X′Σ−1ViΣ−1XC−1B′(BC−1B′)−1(Bβ̂ + b)
+X(MB′CMB′)+X′Σ−1ViΣ−1v

= X(MB′CMB′)+X′Σ−1ViΣ−1vI .

Thus we have
∂φ

∂ϑi
= v′I

[
2Σ−1X(MB′CMB′)+X′Σ−1ViΣ−1 −Σ−1ViΣ−1

]
vI .

Let
Ai = 2Σ−1X(MB′CMB′)+X′Σ−1ViΣ−1 −Σ−1ViΣ−1.

Thus

E

(
∂φ

∂ϑi

)
= Tr[AiVar(vI)].

Since Var(vI) = Σ−X(MB′CMB′)+X′, we have

Tr[AiVar(vI)] = Tr
[
2Σ−1X(MB′CMB′)+X′Σ−1Vi −Σ−1Vi

−2Σ−1X(MB′CMB′)+X′Σ−1ViΣ−1X(MB′CMB′)+X′

+Σ−1ViΣ−1X(MB′CMB′)+X′
]

= −Tr
[
(MXMB′ΣMXMB′ )

+Vi

]
.

Further

cov
(

∂φ

∂ϑi
,

∂φ

∂ϑj

)
= cov(v′IAivI ,v′IAjvI) = 2Tr

[
AiVar(vI)AjVar(vI)

]

= 2Tr
[
(MXMB′ΣMXMB′ )

+Vi(MXMB′ΣMXMB′ )
+Vj

]

= 2

{
S(MXM

B′ΣMXM
B′ )

+

}

i,j

.

Thus the statement is proved. ¤
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Theorem 4.1.3. Let δmax be a solution of the equation

P{χ2
n+q−k(0) + δmax ≥ χ2

n+q−k(0; 1− α)} = α + ε,

i. e. δmax = χ2
n+q−k(0; 1−α)−χ2

n+q−k(0; 1−α−ε) and let t > 0 be such real number
that P{η′δϑ < δmax} ≥ 1− 1

t2 , i. e.

−a′δϑ + t
√

δϑ′2S(MXM
B′ΣMXM

B′ )
+δϑ ≤ δmax,

where t is sufficiently large. Let

A = 2t2S(MXM
B′ΣMXM

B′ )
+ − aa′.

Then

δϑ ∈ N =
{

δϑ : (δϑ− δmaxA+a)′A(δϑ− δmaxA+a) ≤ δ2
max(1 + a′A+a)

}

⇒ Pϑ0

{
v′I(ϑ0)Σ−1(ϑ0)vI(ϑ0) + η′(ϑ0)δϑ ≥ χ2

n+q−k(0; 1− α)
}
≤ α + ε.

P r o o f . With respect to Lemma 4.1.2, when the terms of higher orders are ne-
glected,

Pϑ0

{
v′I(ϑ0)Σ−1(ϑ0)vI(ϑ0) + η′(ϑ0)δϑ ≥ χ2

n+q−k(0; 1− α)
}
≤ α + ε

⇔ P{η′(ϑ0)δϑ ≤ δmax} = 1,

i. e. Eϑ0(η
′(ϑ0)δϑ) + t

√
Varϑ0 [η′(ϑ0)δϑ] ≤ δmax for sufficiently large t. Let

t2Varϑ0 [η
′(ϑ0)δϑ] ≤ (δmax + a′δϑ)2.

From this inequality we obtain

δϑ′
(

2t2S(MXM
B′ΣMXM

B′ )
+ − aa′

)
δϑ− 2δmaxa′δϑ ≤ δ2

max.

If a ∈M(A), then it can be written as

(δϑ− δmaxA+a)′A(δϑ− δmaxA+a) ≤ δ2
max(1 + a′A+a).

The relationship a ∈M(A) can be proved as follows.
The matrix

(
MXMB′ΣMXMB′

)+ is p.s.d., thus it can be written as JJ′. There-
fore

a′ = [Tr(J′V1J), . . . , Tr(J′VpJ)]

and {
S(MXM

B′ΣMXM
B′ )

+

}
i,j

= Tr(J′ViJJ′VjJ), i, j = 1, . . . , p,
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i. e. the matrix S(MXM
B′ΣMXM

B′ )
+ is the Gramm matrix of the p-tuple {J′ViJ}p

i=1

in the Hilbert space H of the symmetric r(J)×r(J) matrices with the inner product
〈A,B〉 = Tr(AB), A,B ∈ H. Since

Tr(J′ViJ) = Tr(J′ViJI) = Tr
(
J′ViJ

p∑

j=1

αjJ′VjJ
)
,

where
∑p

j=1 αjJ′VjJ is the Euclidean projection of the matrix I on the sub-
space generated by the p-tuple {J′ViJ}p

i=1, the vector a can be expressed as
S(MXM

B′ΣMXM
B′ )

+ α. Thus

a ∈M(S(MXM
B′ΣMXM

B′ )
+) ⇒ a ∈M(2t2S(MXM

B′ΣMXM
B′ )

+ − aa′),

since t2 can be chosen more or less arbitrarily. ¤

More on the nonsensitivity regions and their optimization cf. [6, 7, 8, 9]. With
respect to these references it seems that in practice the value t need not be larger
than 5; in some cases it is sufficient to use the value 3.

Corollary 4.1.4. The random variable v′I(ϑ0 + δϑ)Σ−1(ϑ0 + δϑ)vI(ϑ0 + δϑ) can
be expressed as χ2

n+q−k(0) + η′(ϑ0)δϑ (cf. Lemma 4.1.2). If δϑ ∈ N (Theorem
4.1.3) and

v′I(ϑ0 + δϑ)Σ−1(ϑ0 + δϑ)vI(ϑ0 + δϑ) ≥ χ2
n+q−k(0; 1− α), (8)

then we can conclude that outliers occur in measurement results.
The problem is how to recognize whether ϑ0 + δϑ = ϑ∗ (actual value of the

parameter ϑ) satisfies the relationship ϑ∗ − ϑ0 ∈ N . Some information can be
obtained by a comparison of the set N and the set

C =
{

δϑ : (δϑ− δ̂ϑ)′
[
2S−1

(MXM
B′Σ0MXM

B′ )
+

]−1

(δϑ− δ̂ϑ) ≤ p

α

}
.

It is valid (the Scheffé theorem; cf. [12])

δϑ ∈ C ⇔ ∀{h ∈ Rp}|h′(δϑ− δ̂ϑ)| ≤
√

p

α

√
Varϑ(0)(h′ϑ̂)

⇒ ∀{i = 1, . . . , p}|δϑi − δ̂ϑi| ≤
√

p

α

√
Varϑ(0)(ϑ̂i).

Let
Ci =

{
δϑi : |δϑi − δ̂ϑi| ≤

√
p

α

√
Var(ϑ̂i)

}
.

Then regarding the Chebyshev inequality

P
{
δϑi 6∈ Ci

}
≤ α

p
, i = 1, . . . , p.
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With respect to the Bonferroni theorem (cf. [4], p. 492)

P
{

δϑ ∈ ∩p
i=1(Ci ×Rp−1

}
= 1− P

{
δϑ 6∈ ∪p

i=1(Ci ×Rp−1)
}

≥ 1−
p∑

i=1

P
{
δϑi 6∈ Ci

}
≥ 1− α.

If the difference
P

{
δϑ ∈ ∩p

i=1(Ci ×Rp−1)
}
− P

{
δϑ ∈ C

}

is neglected, then C ⊂ N enables us to use ϑ̂ instead of the actual however unknown
value ϑ∗.

If (8) is valid and ϑ∗ − ϑ0 ∈ N , then by the inspection of data, it is sometimes
possible to indicate suspicious of them. In this case the model

Y ∼ Nn

[
(X,F)

(
β
∆

)
,

p∑

i=1

ϑiVi

]
, b + Bβ = 0, (9)

will be considered.

Lemma 4.1.5. Let in the regular mixed linear model (9) the statistic T (ϑ) =
̂̂∆
′
[Var( ̂̂∆)]−1 ̂̂∆, where (cf. Lemma 3.1.4)

̂̂∆ =
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1(Y −X̂̂
β)

=
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1[MΣ−1

XMB′
Y +

+XC−1B′(BC−1B′)−1b]

=
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′ (MXMB′ΣMXMB′

)+
Y

+
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1XC−1B′(BC−1B′)−b

be considered. Then

∂T

∂ϑi
= − ̂̂∆

′
F′(MXMB′ΣMXMB′ )

+Vi(MXMB′ΣMXMB′ )
+F ̂̂∆

−2 ̂̂∆
′
F′(MXMB′ΣMXMB′ )

+ViΣ−1vI,out,

vI,out = Y −X̂̂
βout − F ̂̂∆.

P r o o f . We have

∂T

∂ϑi
= 2 ̂̂∆

′
[Var( ̂̂∆)]−1 ∂

̂̂∆
∂ϑi

− ̂̂∆
′
[Var( ̂̂∆)]−1 ∂Var( ̂̂∆)

∂ϑi
[Var( ̂̂∆)]−1 ̂̂∆,



692 L. KUBÁČEK

and

∂
̂̂∆

∂ϑi
=

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′ (MXMB′ΣMXMB′

)+
Vi

×
(
MXMB′ΣMXMB′

)+
F

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1

×(Y −X̂̂
β)−

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1ViΣ−1

×(Y −X̂̂
β)−

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1X
∂
̂̂
β

∂ϑi
,

∂
̂̂
β

∂ϑi
=

∂

∂ϑi

[
β̂ −C−1B′(BC−1B′)−1(Bβ̂ + b)

]

=
∂

∂ϑi

[
(MB′CMB′)+X′Σ−1Y −C−1B′(BC−1B′)−1b

]

= (MB′CMB′)+X′Σ−1ViΣ−1X(MB′CMB′)+X′Σ−1Y

−(MB′CMB′)+X′Σ−1ViΣ−1Y −C−1X′Σ−1ViΣ−1XC−1B′

×(BC−1B′)−1b + C−1B′(BC−1B′)−1BC−1X′Σ−1ViΣ−1XC−1

×B′(BC−1B′)−1b

= −(MB′CMB′)+X′Σ−1ViΣ−1
[
Y −X(MB′CMB′)+X′Σ−1Y

+C−1B′(BC−1B′)−1b
]

= −(MB′CMB′)+X′Σ−1ViΣ−1(Y −X̂̂
β).

Thus

∂
̂̂∆

∂ϑi
=

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′ (MXMB′ΣMXMB′

)+

×Vi

(
MXMB′ΣMXMB′

)+
F ̂̂∆

−
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1ViΣ−1(Y −X̂̂
β)

+
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1X (MB′CMB′)+

×X′Σ−1ViΣ−1(Y −X̂̂
β).

Now the equality

Σ−1X(MB′CMB′)+X′Σ−1 −
(
MXMB′ΣMXMB′

)+ = Σ−1

and the relationships

vI,out = Y −X̂̂
β −MΣ−1

XMB′
F ̂̂∆,

(
MXMB′ΣMXMB′

)+ = Σ−1MΣ−1

XMB′
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can be utilized and thus

∂
̂̂∆

∂ϑi
= −

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′Σ−1MΣ−1

XMB′
ViΣ−1vI,out.

The rest of the proof is elementary. ¤

Let in the following text the notation

Ai = F′ (MXMB′ΣMXMB′

)+
Vi

(
MXMB′ΣMXMB′

)+
F

and
Bi = F′ (MXMB′ΣMXMB′

)+
ViΣ−1

be used. Then
∂T

∂ϑi
= − ̂̂∆

′
Ai

̂̂∆− 2 ̂̂∆
′
BivI,out.

It is to be remarked that ̂̂∆ and vI,out are stochastically independent.

Lemma 4.1.6. Let η′ = ∂T
∂ϑ′ . Then

E(η′δϑ) = −a′δϑ,a′ = (a1, . . . , ap), ai = Tr(ZVi), i = 1, . . . , p,

Z =
(
MXMB′ΣMXMB′

)+
F

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

×F′ (MXMB′ΣMXMB′

)+
,

Var(η′δϑ) = δϑ′(4C(MXM
B′ΣMXM

B′ )
+,Z − 2SZ)δϑ,

where {
C(MXM

B′ΣMXM
B′ )

+,Z

}
i,j

= Tr
[(

MXMB′ΣMXMB′

)+

ViZVj

]
,

i, j = 1, . . . , p,{
SZ

}
i,j

= Tr(ZViZVj), i, j = 1, . . . , p.

P r o o f . If the null hypothesis on outliers is valid, i. e. ∆ = 0, then

E

(
∂T

∂ϑi

)
=

= −Tr[AiVar( ̂̂∆)]

= −Tr

{
F′ (MXMB′ΣMXMB′

)+
Vi

(
MXMB′ΣMXMB′

)+
F

×
[
F′ (MXMB′ΣMXMB′

)+
F

]−1
}

= −Tr

{
(
MXMB′ΣMXMB′

)+
F

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

×F′ (MXMB′ΣMXMB′

)+
Vi

}
= −Tr(ZVi).
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Thus E(η′δϑ) = −a′δϑ.
Further

cov
(

∂T

∂ϑi
,

∂T

∂ϑj

)

= cov(− ̂̂∆
′
Ai

̂̂∆− 2 ̂̂∆
′
BivI,out,− ̂̂∆

′
Aj

̂̂∆− 2 ̂̂∆
′
BjvI,out)

= 2Tr[AiVar( ̂̂∆)AjVar( ̂̂∆)] + 4Tr[Var( ̂̂∆)B′
jVar( ̂̂∆)Bi].

Since
Var( ̂̂∆) =

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

and
Var(vI,out) = Σ

(
MXMB′ΣMXMB′

)+
Σ−ΣZΣ,

we have

cov
(

∂T

∂ϑi
,

∂T

∂ϑj

)

= 2Tr

{
F′ (MXMB′ΣMXMB′

)+
Vi

(
MXMB′ΣMXMB′

)+

×F
[
F′ (MXMB′ΣMXMB′

)+
F

]−1

F′ (MXMB′ΣMXMB′

)+

×Vj

(
MXMB′ΣMXMB′

)+
F

[
F′ (MXMB′ΣMXMB′

)+
F

]−1
}

+4Tr

{[
Σ

(
MXMB′ΣMXMB′

)+
Σ−ΣZΣ

]
Σ−1Vj

×
(
MXMB′ΣMXMB′

)+
F

[
F′ (MXMB′ΣMXMB′

)+
F

]−1

×F′ (MXMB′ΣMXMB′

)+
ViΣ−1

}

= 2Tr(ZViZVj) + 4Tr

{[
Σ

(
MXMB′ΣMXMB′

)+
Σ−ΣZΣ

]

×Σ−1VjZViΣ−1

}

= 2Tr(ZViZVj) + 4Tr
[ (

MXMB′ΣMXMB′

)+
VjZVi

]
− 4Tr(ZVjZVi)

= −2Tr(ZViZVj) + 4Tr
[ (

MXMB′ΣMXMB′

)+
VjZVi

]
.

The rest of the proof is elementary. ¤

Now, analogously as Theorem 4.1.3, the following theorem can be stated.
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Theorem 4.1.7. Let δmax be a solution of the equation P{χ2
n+q−(k+s) + δmax ≥

χ2
n+q−(k+s)(0; 1 − α)} = α + ε and let t > 0 be such real number that P{η′δϑ <

δmax} ≥ 1− 1
t2 , i. e.

−a′δϑ +
√

δϑ′(4C(MXM
B′ΣMXM

B′ )
+,Z − 2SZ)δϑ ≤ δmax

for sufficiently large t. Let

A = t2(4C(MXM
B′ΣMXM

B′ )
+,Z − 2SZ)− aa′.

Then

δϑ ∈ Nout = {δϑ : (δϑ− δmaxA+a)′A(δϑ− δmaxA+a) ≤ δ2
max(1 + a′A+a)}

⇒ PH0{
̂̂∆
′
(δϑ0 + δϑ)F′

[
MXMB′Σ(ϑ0 + δϑ)MXMB′

]+

F ̂̂∆(ϑ0 + δϑ)

≥ χ2
n+q−(k+s)(0; 1− α)} ≤ α + ε.

4.2. Multivariate model

The problem to find a nonsensitive region in the regular multivariate models with
constraints

vec(Y) ∼ Nnm

[
(I⊗X)vec(β),

p∑

i=1

ϑi(Vi ⊗ I)

]
, (H′ ⊗G)vec(β) + vec(G0) = 0

and

vec(Y) ∼ Nnm

[
(I⊗X,E)

(
vec(β)

∆

)
,

p∑

i=1

ϑi(Vi ⊗ I)

]
,

(H′ ⊗G)vec(β) + vec(G0) = 0,

respectively, is quite similar as in the preceding section. That is why only statements
with short comments are given as follows.

Theorem 4.2.1. Let δmax be a solution of the equation P{χ2
nm+qr−km + δmax ≥

χ2
nm+qr−km(0; 1 − α)} = α + ε and let t > 0 be such real number that P{η′δϑ <

δmax} ≥ 1− 1
t2 ,

η′δϑ =
p∑

i=1

{
2Tr

[
v′IPXvIΣ

−1ViΣ−1 − v′IPX(X′X)−1G′vIΣ
−1ViΣ−1

×H(H′ΣH)−1H′
]
− Tr(v′IvIΣ

−1ViΣ−1)

}
δϑi,

i. e.

−a′δϑ + t

√
δϑ′2

[
(n− k)SΣ−1 + qSH(H′ΣH)−1H′

]
δϑ ≤ δmax,

a′ = (a1, . . . , ap),
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{
SΣ−1

}
i,j

= Tr(Σ−1ViΣ−1Vj), i, j = 1, . . . , p,

{
SH(H′ΣH)−1H′

}
i,j

= Tr
[
H(H′ΣH)−1H′ViH(H′ΣH)−1H′Vj

]
,

i, j = 1, . . . , p,

ai = Tr

({
Σ−1 ⊗MX + [H(H′ΣH)−1 ⊗PX(X′X)−1G′

}

×(Vi ⊗ I)

)

= (n− k)Tr(Σ−1Vi) + qTr[H(H′ΣH)−1H′],
i = 1, . . . , p,

where t is sufficiently large. Let

A = 2t2
[
(n− k)SΣ−1 + qSH(H′ΣH)−1H′

]
− aa′.

Then

δϑ ∈ N =
{

δϑ : (δϑ− δmaxA+a)′A(δϑ− δmaxA+a) ≤ δ2
max(1 + a′A+a)

}

⇒
P

{
Tr

[
v′I(ϑ0 + δϑ)vI(ϑ0 + δϑ)Σ−1(ϑ0 + δϑ)

]
≥ χ2

nm+qr−km(0; 1− α)
}
≤ α + ε.

P r o o f . It is sufficient to take into account Theorem 4.1.2, the following relation-
ships

η′δϑ =
p∑

i=1

[vec(vI)]
′
(

2(Σ−1 ⊗ I)(I⊗X)
{
MH⊗G′ [Σ−1 ⊗ (X′X)]MH⊗G′

}+

×(I⊗X′)(Σ−1 ⊗ I)(Vi ⊗ I)(Σ−1 ⊗ I)− (Σ−1 ⊗ I)(Vi ⊗ I)

×(Σ−1 ⊗ I)

)
vec(vI)δϑi

=
p∑

i=1

{
2Tr

[
v′IPXvIΣ

−1ViΣ−1 − v′IPX(X′X)−1G′vIΣ
−1ViH

×(H′ΣH)−1H′
]
− Tr(v′IvIΣ

−1ViΣ−1

}
δϑi,

ai = Tr

{[
M(I⊗X)MH⊗G′ (Σ⊗ I)M(I⊗X)MH⊗G′

]+

(Vi ⊗ I)

}

= Tr
({

Σ−1 ⊗MX + [H(H′ΣH)−1H′]⊗PX(X′X)−1G′

}
(Vi ⊗ I)

= (n− k)Tr(Σ−1Vi) + qTr[H(H′ΣH)−1H′Vi],
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and{
S{M(I⊗X)M

H⊗G′ (Σ⊗I)MH⊗X)M
H⊗G′ }

+

}
i,j

= Tr

({
Σ−1 ⊗MX +

[
H(H′ΣH)−1H′]⊗PX(X′X)−1G′

}
(Vi ⊗ I)

×
{
Σ−1 ⊗MX +

[
H(H′ΣH)−1H′]⊗PX(X′X)−1G′

}
(Vj ⊗ I)

)

= Tr
{

(Σ−1ViΣ−1Vj)⊗MX +
[
H(H′ΣH)−1H′ViH(H′ΣH)−1H′]Vj

]

⊗PX(X′X)−1G′

}

= (n− k)Tr(Σ−1ViΣ−1Vj) + qTr
[
H(H′ΣH)−1H′ViH(H′ΣH)−1H′]Vj

]

=

{
(n− k)SΣ−1 + qSH(H′ΣH)−1H′

}

i,j

. ¤

Corollary 4.2.2. If δϑ ∈ N and Tr(v′IvIΣ
−1(ϑ)) ≥ χ2

mr+qr−km(0; 1 − α), then
some outliers can occur in the measurement. Analogously as in preceding sections
the model

vec(Y) ∼ Nnm

[
(I⊗X,E)

(
vec(β)

∆

)
,

p∑

i=1

ϑi(Vi ⊗ I)

]
,

(H′ ⊗G)vec(B) + vec(G0) = 0

will be considered. Let

U =
[
M(I⊗X)MH⊗G′ (Σ⊗ I)M(I⊗X)MH⊗G′

]+

= Σ−1 ⊗MX + [H(H′ΣH)−1H′]⊗PX(X′X)−1G′

and Z = UE(E′UE)−1E′U. Then the following theorem can be proved analogously
as Theorem 4.2.1.

Theorem 4.2.3. Let δmax be a solution of the equation P{χ2
nm+qr−mk−s(0) +

δmax ≥ χ2
nm+qr−mk−s(0; 1 − α)} = α + ε and let t > 0 be such real number that

P{η′δϑ < δmax} ≈ 1, where η′ =
(

∂T (ϑ)
∂ϑ1

, . . . , ∂T (ϑ)
∂ϑp

)
, T = ̂̂∆

′ [
Var( ̂̂∆)

]−1 ̂̂∆ and

∂T (ϑ)
∂ϑi

= − ̂̂∆
′
E′U(Vi ⊗ I)UE ̂̂∆− 2 ̂̂∆

′
E′U[(ViΣ−1)⊗ I]vec(vI,out).

It means E(η′δϑ) + t
√

Var(η′δϑ) ≤ δmax for sufficiently large t,

E(η′δϑ) = −a′δϑ, a′ = (a1, . . . , ap),
ai = Tr[Z(Vi ⊗ I)], i = 1, . . . , p,

Var(η′δϑ) = δϑ(6SZ + 4CU,Z)δϑ.
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Let
A = t2(4CU,Z − 2SZ)− aa′.

Then

δϑ ∈ Nout =
{

δϑ : (δϑ− δmaxA+a)′A(δϑ− δmaxA+a) ≤ δ2
max(1 + a′A+a)

}

⇒ PH0

{ ̂̂∆(δ0 + δϑ)(E′UE)−1
ϑ0+δϑ

̂̂∆(ϑ0 + δϑ) ≥ χ2
nm+qr−km−s(0; 1− α)

}
≤ α + ε.
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