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NONQUADRATIC STABILIZATION
OF CONTINUOUS–TIME SYSTEMS
IN THE TAKAGI–SUGENO FORM

Miguel Bernal, Petr Hušek and Vladiḿır Kučera

This paper presents a relaxed scheme for controller synthesis of continuous-time systems
in the Takagi-Sugeno form, based on non-quadratic Lyapunov functions and a non-PDC
control law. The relaxations here provided allow state and input dependence of the mem-
bership functions’ derivatives, as well as independence on initial conditions when input
constraints are needed. Moreover, the controller synthesis is attainable via linear matrix
inequalities, which are efficiently solved by commercially available software.
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1. INTRODUCTION

Fuzzy control systems have experienced a big growth of industrial applications in
the recent years, because of their reliability and efficiency in dealing with highly
nonlinear behavior, combining accuracy and simplicity [2].

Fuzzy systems in the Takagi–Sugeno form (TSFS) [12] are one of the most suc-
cessful tools for modeling nonlinear systems. They are included in the more gen-
eral class of quasi-LPV systems [1]. Their structure permits stability analysis via
common quadratic Lyapunov functions [13] and controller synthesis via parallel dis-
tributed compensation (PDC). Controller design under this approach can perform
decay rate specification, input and output constraints, robustness and optimality
[14, 16]. Furthermore, results can be stated as linear matrix inequalities (LMIs)
which are computationally solvable.

Nonetheless, common quadratic Lyapunov functions lack flexibility since there
are many stable systems which do not admit them to prove stability. Analysis and
synthesis of TSFS under this approach, specially when a large number of subsystems
are involved, can be very conservative. Several approaches have been developed to
overcome these drawbacks. Dropping the first condition (common functions) led
to piecewise quadratic Lyapunov functions, which have been employed to enrich
the set of candidates used to prove stability as well as to include rules’ antecedent
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information in the searching [3, 8, 10, 11]. Very recent results on controller synthesis
under this approach have appeared [4, 7], but they are still limited to continuous-
time TSFS.

Dropping the second condition (quadratic functions) led to a more general ap-
proach based on non-quadratic Lyapunov functions where non-PDC control laws can
be used [9, 15]. In contrast to the quadratic piecewise approach, the non-quadratic
one can deal with non-linear premise variables, so TSFS’ approximation capabilities
can be fully exploited. Though this approach has been thoroughly developed for
discrete-time TSFS [5], just few results are available for the continuous-time coun-
terpart, mainly due to the difficulty in handling membership functions’ derivatives.

This work intends to eliminate the previous lack by offering a non-quadratic
controller synthesis on the basis of a non-PDC control law. It is shown how to
allow state and input dependence of the membership functions’ derivatives, as well
as independence on initial conditions when input constraints are needed. Moreover,
the results are expressed in terms of LMIs, which are numerically solvable with
commercially available software.

This paper is organized as follows: Section 2 presents the dynamical fuzzy sys-
tems and the non-quadratic approach this work is based on; Section 3 develops the
controller design which stabilizes a given continuous-time TSFS; Section 4 shows an
illustrative example of the results and, finally, Section 5 gathers some concluding
remarks.

2. FUZZY DYNAMIC MODEL AND NON–QUADRATIC APPROACH

Consider the following continuous-time Takagi–Sugeno fuzzy system:

ẋ(t) = Azx(t) + Bzu(t) (1)

where

Az =
r∑

i=1

hi(z(x(t)))Ai, Bz =
r∑

i=1

hi(z(x(t)))Bi,

hi(z(x(t))) =
wi(z(x(t)))∑r
i=1 wi(z(x(t)))

, wi(z(x(t))) =
p∏

j=1

Mij(zj(x(t))),

Mij is the ijth membership function, r is the number of rules, x(t) ∈ Rn is the
state vector, u(t) ∈ R is the control input vector, Ai, Bi are matrices of suitable
dimensions that represent the ith local model of the fuzzy system and z(x(t)) =
[z1(x(t)) . . . zp(x(t))] is the premise vector which depends on the state vector x(t).

Non-PDC control law

u(t) = −




r∑

j=1

hj(z(x(t)))Fj




(
r∑

k=1

hk(z(x(t)))Pk

)−1

x(t)=−FzP
−1
z x(t) (2)

with the Lyapunov function candidate

V (x(t)) = xT (t)

(
r∑

k=1

hk(z(x(t)))Pk

)−1

x(t) = xT (t)P−1
z x(t), Pk = PT

k > 0 (3)
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is considered, which leads to the following closed-loop continuous-time TSFS under
the previous definitions:

ẋ(t) = (Az −BzFzP
−1
z )x(t). (4)

As in [9], hereinafter if Yz =
∑r

k=1 hk(z(x(t)))Yk then Y −1
z =(

∑r
k=1 hk(z(x(t)))Yk)−1,

Y −T
z =

(
Y −1

z

)T , Ẏ −1
z = d

dt

(
Y −1

z

)
and Yz0 = Y (z(x(0))). Congruence with Y for

expression P < 0 is defined as the expression Y PY T < 0.

3. NON–QUADRATIC STABILITY

Theorem. (Non-quadratic stability) Assume that the initial condition x(0) of the
TSFS (4) satisfies ‖x(0)‖ < c. Then, the system (4) is stable if there exist matrices
Fj , Pk = PT

k > 0 and constants φl and µ such that

AiPk + PkAT
i −BiFj − FT

j BT
i −

r∑

l=1

φlPl < 0 (5)

Pk − c2I > 0,

[
Pk FT

j

Fj µ2I

]
> 0, φl < ḣl(x(t)) (6)

i, j, k, l ∈ {1, . . . , r}.

P r o o f . Consider the Lyapunov function candidate (3). Since ∀ k, Pk > 0 and
hk(z(x(t))) > 0, then Pz > 0,∀ z(x(t)). Let λ[M ] and λ[M ] denote the smallest
and highest eigenvalue of matrix M respectively. Since λ[Pz] = λ[P−1

z ] and λ[Pz] =
λ[P−1

z ] then P−1
z > 0 ⇒ V (x(t)) > 0. Then

V̇ (x(t)) = ẋT (t)P−1
z x(t)+xT (t)P−1

z ẋ(t)+xT (t)Ṗ−1
z x(t)

= xT (t)(Az −BzFzP
−1
z )T P−1

z x(t)
+xT (t)P−1

z (Az −BzFzP
−1
z )x(t)

+xT (t)Ṗ−1
z x(t)

= xT (t)
[
(Az −BzFzP

−1
z )T P−1

z

+P−1
z (Az −BzFzP

−1
z ) + Ṗ−1

z

]
x(t).

V̇ (x(t)) < 0 is implied by

(Az −BzFzP
−1
z )T P−1

z + P−1
z (Az −BzFzP

−1
z ) + Ṗ−1

z < 0. (7)

Congruence with Pz gives

PzA
T
z − FT

z BT
z + AzPz −BzFz + PzṖ

−1
z Pz < 0. (8)

Noticing that

− Ṗz =
d
dt

(PzP
−1
z )Pz − Ṗz = PzṖ

−1
z Pz + ṖzP

−1
z Pz − Ṗz = PzṖ

−1
z Pz (9)
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the inequality (8) turns into

PzA
T
z − FT

z BT
z + AzPz −BzFz − Ṗz

< PzA
T
z − FT

z BT
z + AzPz −BzFz − Pφ < 0 (10)

providing that

Ṗz =
r∑

l=1

ḣl(z(t))Pl >
r∑

l=1

φlPl = Pφ, (11)

where

ḣl > min
x,u

[
∂hl

∂z

∂z

∂x

dx

dt

]
= min

x,u

[
∂hl

∂z

∂z

∂x
(Azx + Bzu)

]

= min
x

[
∂hl

∂z

∂z

∂x
(Azx±Bzµ)

]
= ḣmin > φl (12)

with

‖u(t)‖ < µ. (13)

Inequality (10) can be expressed as (5) and it remains to guarantee inequality
(13). To do so, recall that ‖x(0)‖ < c, which can be expressed as

‖x(0)‖2 < c2 ⇔ 1
c2

xT (0)x(0) < 1. (14)

Since the Lyapunov function candidate (3) has been proved to be a positive
function which monotonically decreases, we can assume without loss of generality
that

V (x(t)) < V (x(0)) = xT (0)P−1
z0

x(0) <
1
c2

xT (0)x(0) < 1 (15)

which is equivalent to Pz−c2I > 0 and can be rewritten as the first inequality in (6).
Condition ‖u(t)‖ < µ can be rewritten by means of (2) as follows:

uT (t)u(t) = xT (t)P−T
z FT

z FzP
−1
z x(t) < µ2

⇔ 1
µ2

xT (t)P−T
z FT

z FzP
−1
z x(t) < 1. (16)

Recalling (15), it is clear that the previous inequality holds if

1
µ2

xT (t)P−T
z FT

z FzP
−1
z x(t)<xT (t)P−1

z x(t)=V (x(t)).

This condition is equivalent to

xT (t)
[

1
µ2

P−T
z FT

z FzP
−1
z − P−1

z

]
x(t) < 0. (17)
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Applying congruence with Pz and rearranging terms one gets that the previous
inequality is implied by

Pz −
1
µ2

FT
z Fz > 0 (18)

and by Schur complement [
Pz FT

z

Fz µ2I

]
> 0 (19)

which is implied by the second inequality in (6). 2

Remark 1. The previous stability analysis is semi-global, since it depends of the
range considered by the membership functions. In other words, the wider the mem-
bership functions are, the more global the stability analysis is.

Remark 2. The previous controller design allows input dependence of the mem-
bership functions’ derivatives, since input is constrained by constant µ. This makes
easier the estimation of constants φl, l = 1, . . . , r.

Remark 3. Conditions (5) and (6) in Theorem 3 are LMIs if constants φl,
l = 1, . . . , r are given. Inequality (12) shows that constants φl can be found through
the minimum of ḣl in which µ is fixed.

Remark 4. Note that if ḣl, l = 1, . . . , r do not depend on input u(t), then conditions
(5) guarantee stability of system (4) and conditions (6) can be dropped.

Remark 5. Note that if Pz = P , i. e. if the Lyapunov function is quadratic with
constant matrix P , then conditions (5) reduce to stability conditions found in the
common Lyapunov function approach [14]. Then, the present approach actually
includes the common Lyapunov function one as a particular case, so it reduces
conservativeness.

4. EXAMPLE

Consider the following continuous-time Takagi–Sugeno fuzzy system [15]:

ẋ(t) =
2∑

i=1

hi(z(x(t))) [Aix(t) + Biu(t)] (20)

where

A1 =
[
−5 −4
−1 −2

]
, A2 =

[
−2 −4
20 −2

]
, B1 =

[
1
10

]
, B2 =

[
0
3

]
,

z =
[

z1(t)
z2(t)

]
=

[
x1(t)
x2(t)

]
, h1(z(x(t)))=

1+sin(z1(t))
2

, h2(z(x(t)))=
1−sin(z1(t))

2
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Since z(t) = x(t), z(t) will be omitted in the sequel. Assuming |xi(t)| < π/4,
i = 1, 2, it can be found that:

ḣ1(x(t)) = −ḣ2(x(t)) =
1
2

cos x1(t)ẋ1

=
1
2

cos x1(t)

{
1+sin(x1(t))

2
[−5 − 4]

[
x1(t)
x2(t)

]

+
1−sin(x1(t))

2
[−2 − 4]

[
x1(t)
x2(t)

]
+

(
1+sin(x1(t))

2

)
u(t)

}

= cos x1(t)
(
−7

4
x1(t)− 2x2(t)

)
(21)

−3
4
x1(t) sinx1(t) cos x1(t) + cos x1(t)

(
1+sin(x1(t))

4

)
u(t)

> cos x1(t)
(
−7

4
x1(t)− 2x2(t)

)
(22)

−3
4
x1(t) sinx1(t) cos x1(t)± cos x1(t)

(
1+sin(x1(t))

4

)
µ

> −3.05 = φ1,

as long as ‖u(t)‖ < µ = 2.
Similarly, it can be checked that ḣ2(x(t)) > φ2 = −3.05.
Applying Theorem 1 with the previous constants φl, l = 1, 2 and µ = 2, matrices

Pk and Fj , j, k ∈ 1, 2 were found, so control law (2) stabilizes system (20) as shown
in Figure 1. Note that the existing approaches [6, 15] are unable to stabilize this
system through non-quadratic approach, since ḣl(t) depends on input u(t), so the
presented scheme represents a significant extension.
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Fig. 1. Evolution of the states x1 and x2.

In Figure 2, the control input signal which stabilizes the system is showed. Note
that constraint ‖u(t)‖ < µ = 2 holds since this requirement was implicit in the
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proposed design, though it was employed to establish constants φl, l = 1, 2 rather
than to reduce the magnitude of the control signal.
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Fig. 2. Evolution of the control input signal u(t).

Finally, Figure 3 shows the behavior of the found non-quadratic Lyapunov func-
tion.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (s)

Ly
ap

un
ov

 fu
nc

tio
n 

va
lu

e

Fig. 3. Evolution of the non-quadratic Lyapunov function V (x(t)).

5. CONCLUSION

This paper fully develops a non-quadratic fuzzy design, which permits state and in-
put dependence of the membership functions’ derivatives, as well as independence on
initial conditions when input constraints are needed. The proposed design employs
a non-quadratic Lyapunov function with a non-PDC control law, which is proved to
reduce conservativeness compared with common Lyapunov functions. A simulation
example is provided to illustrate the design procedure and performance.
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[4] M. Bernal and P. Hušek: Controller synthesis with input and output constraints for
fuzzy systems. In: 16th IFAC World Congress DVD-edition, Prague 2005.

[5] M. Bernal: Non-quadratic discrete fuzzy controller design performing decay rate. In:
FUZZ–IEEE Internat. Conference, Reno 2005, CD edition.
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