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KYBERNET IK A — VOLUME 4 2 ( 2 0 0 6 ) , NU MB ER 5 , P AG E S 5 5 7 – 5 6 8

SHAPE FACTOR EXTREMES
FOR PROLATE SPHEROIDS

Daniel Hlubinka

Microscopic prolate spheroids in a given volume of an opaque material are considered.
The extremes of the shape factor of the spheroids are studied. The profiles of the spheroids
are observed on a random planar section and based on these observations we want to
estimate the distribution of the extremal shape factor of the spheroids. We show that
under a tail uniformity condition the Maximum domain of attraction is stable. We discuss
the normalising constants (n.c.) for the extremes of the spheroid and profile shape factor.
Comparing the tail behaviour of the distribution of the profile and spheroid shape factor
we show the relation between the n.c. of the profile shape factor (which can be estimated)
and the n.c. of the spheroid shape factor (cannot be estimated directly) which are needed
for the prediction of the tail behaviour of the shape factor. The paper completes the study
[9] for prolate spheroids.

Keywords: stereology of extremes, shape factor, normalising constants, tail uniformity

Mathematics Subject Classification: 60G70, 62G32, 62P30

1. INTRODUCTION

In recent years the stereology of extremes is attracting more and more interest. The
theoretical results and direct application to the material science can be seen e. g. in
[3, 11, 12, 13], where the extreme of the size in the so called Wicksell’s corpuscle
problem is studied. In a series of papers [7, 8, 9, 10], e. g., we have discussed the
extremes of the size or shape factor respectively for the oblate spheroids rather than
for the balls. We continue in the paper [9] and in particular we complete the previous
study for the prolate spheroids.

The main results of the paper are summarised in Theorems 1 and 4. The Max-
imum domain of attraction of the spheroid shape factor is shown to be ‘translated’
to the profiles under the tail uniformity condition. The tail uniformity condition is
discussed briefly in Sections 3 and 5, for more detailed discussion see [10].

The possible statistical application of the main results is described in Section 4.
We conclude the paper in Section 5 giving some examples of the tail behaviour of the
spheroid shape factor and its relation to the tail behaviour of the profile shape factor.
Comparison of these two tail behaviours is an essential step toward the adjustment
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of the normalising constants which are needed for the prediction of the distribution
of the shape factor extremes of spheroids based on the observation of the profile
shape factor extremes.

2. PROLATE SPHEROIDS

Random prolate spheroidal non-overlapping particles distributed in a given volume
of an opaque material are considered in our study. Recall that prolate spheroids
are ellipsoids with two equal minor semi-axes of length V , and one major semi-axis
of length X. The random nature of the particles lies in the fact that (X,V ) form
a random vector independent on the position and orientation of the particle. The
particles arrangement is, moreover, considered to be isotropic. The restriction to
the prolate family rather than considering general ellipsoids is explained in [2].

The prolate spheroids are usually characterised by their size V and their shape
factor S, where S = X2/V 2 − 1. Evidently, (V, S) form a bivariate random vector.
The joint distribution of (V, S) is further considered to be absolutely continuous
w.r.t. bivariate Lebesgue measure. The joint probability density function (p.d.f.) of
(V, S) is further denoted g(v, s).

The spheroids cannot be observed directly. We can observe random profiles –
result of a section of the given volume by a (random) plane. The profiles form a
sample of random ellipses. The profiles are characterised, analogous to the original
particles, by their size W (length of the minor semi-axis) and shape factor T =
Y 2/W 2 − 1, where Y is the length of the major semi-axis. The joint distribution of
(W,T ) is again absolutely continuous and its joint p.d.f. is

f(w, t) =
w

2M(1 + t)2

∫ Xf

w

∫ Sf

t

(1 + s)3/2g(v, s) dsdv√
s
√

s− t
√

v2 − w2
, (1)

where M is the population mean size of particles (half of the mean calliper diameter).
∞ is the upper endpoints of the distribution of the size, i. e., Xf = inf{x : P[X ≤
x] = 1}, and Sf is the upper endpoint of the shape factor distribution. In what
follows we will always consider Xf =∞.

3. STABILITY OF MAXIMUM DOMAIN OF ATTRACTION

Recall that if for a univariate cumulative distribution function (c.d.f.) H exist
normalising constants (n.c.) an and bn such that as n→∞ it holds

Hn(anx + bn) −→





Λ(x) = exp(−e−x), x ∈ R, (Gumbel distr.), or
Φα(x) = exp(−x−α), x ≥ 0, (Fréchet distr.), or
Ψα(x) = exp(−(−x)α), x ≤ 0, (Weibull distr.)

(2)

for some α > 0, then H is said to belong into a maximum domain of attraction
(H ∈ MDA(·)) of a c.d.f. Λ, Φ or Ψ respectively. There are no other possible
limiting distributions.
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There are well known sufficient conditions for H ∈ MDA(·) if H is an absolutely
continuous c.d.f. with a p.d.f. h. In particular if one of the following conditions

lim
s↗Sf

h(s + ub(s))
h(s)

= e−u, u ∈ R, (3)

lim
s→∞

h(us)
h(s)

= u−(α+1), u > 0, Sf = +∞, (4)

lim
s↘0

h(Sf − us)
h(Sf − s)

= uα−1, u > 0, Sf < +∞ (5)

hold for some auxiliary function b(·) or for some α > 0 then

(3)⇒ H ∈ MDA(Λ), (4)⇒ H ∈ MDA(Φα), and (5)⇒ H ∈ MDA(Ψα).

Now we are ready to prove the stability of MDA.

Theorem 1. (Stability of MDA for the shape factor I) Suppose that the conditional
density function gv(s) of the shape factor given the size V = v satisfies one of the
conditions (3), (4) or (5) uniformly in v. Then for the conditional d.f. fw(t) of the
profile shape factor given the profile size W = w the same condition holds for a
parameter β = α + 1/2 for the conditions (4) and (5).

Remark 2. In particular the Maximum domain of attraction is not changed up to
the parameter of the limiting distribution. Since the MDA can be estimated from
the observed data (profiles) and since for the Weibull and Fréchet distributions the
parameter can be also estimated based on the profiles one can conclude that under
the uniformity condition we know also the limiting distribution, and its parameter
respectively, for the particle shape factor extremes.

Remark 3. The uniformity assumption of Theorem 1 in particular implies that
the parameter α of (4) and (5) is the same for all values of v and also that the
auxiliary function b(·) of (3) is the same for all values of v. It also means that the
upper endpoint Sf does not depend on v.

P r o o f . We shall treat the three limiting distributions separately. More details
can be found in the proof of similar theorem for the oblate spheroids, see [7, 8].

Fréchet limit: We need to study

lim
t→∞

fw(at)
fw(t)

= lim
t→∞

(1 + t)2

(1 + at)2

∫∞
w

∫∞
at

(1+s)3/2g(v,s) dsdv√
s
√

s−at
√

v2−w2

∫∞
w

∫∞
t

(1+s)3/2g(v,s) dsdv√
s
√

s−t
√

v2−w2

= lim
t→∞

a(1 + t)2

(1 + at)2

∫∞
w

∫∞
t

(1+as)3/2gv(as)gV (v) dsdv√
as
√

as−at
√

v2−w2

∫∞
w

∫∞
t

(1+s)3/2gv(s)gV (v) dsdv√
s
√

s−t
√

v2−w2

(6)
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= lim
t→∞

a−1/2 (1 + t)2

(a−1 + t)2

∫∞
w

∫∞
t

(a−1+s)3/2gv(as)gV (v) dsdv√
s
√

s−t
√

v2−w2

∫∞
w

∫∞
t

(1+s)3/2gv(s)gV (v) dsdv√
s
√

s−t
√

v2−w2

= a−
(
(α+1/2)+1

)
.

The last equality follows from the fact that (a−1 + t)/(1 + t) → 1 as t → ∞ and
gv(as)/gv(s) → a−(α+1) as s ≥ t →∞ uniformly in v and using Lemma 1.2.1 of [5]
for the limit of the ratio of integrals.

Weibull limit: Using similar arguments as for (6) we obtain

lim
t→0

fw(Sf − at)
fw(Sf − t)

= lim
t→0

(1 + Sf − t)2

(1 + Sf − at)2

∫∞
w

∫ Sf

Sf−at
(1+s)3/2g(v,s) dsdv√

s
√

s−(Sf−at)
√

v2−w2

∫∞
w

∫ Sf

Sf−t
(1+s)3/2g(v,s) dsdv√
s
√

s−(Sf−t)
√

v2−w2

= lim
t→0

a(1 + Sf − t)2

(1 + Sf − at)2

∫∞
w

∫ t

0
(1+Sf−as)3/2gv(Sf−as)gV (v) dsdv√
Sf−as

√
(Sf−as)−(Sf−at)

√
v2−w2

∫∞
w

∫ t

0
(1+Sf−s)3/2gv(Sf−s)gV (v) dsdv√

Sf−s
√

(Sf−s)−(Sf−t)
√

v2−w2

= lim
t→0

a1/2(1 + Sf − t)2

(1 + Sf − at)2

∫∞
w

∫ t

0
(1+Sf−as)3/2gv(Sf−as)gV (v) dsdv√

Sf−as
√

t−s
√

v2−w2

∫∞
w

∫ t

0
(1+Sf−s)3/2gv(Sf−s)gV (v) dsdv√

Sf−s
√

t−s
√

v2−w2

= aα−1/2 = a(α+1/2)−1.

(7)

The second equality follows from the substitutions s ↔ Sf − as and s ↔ Sf − s in
the numerator and denominator respectively. Lemma 1.2.1 of [5] and uniformity (in
v) of the limit gv(Sf − as)/gv(Sf − s)→ aα−1 as s↘ 0 finish the proof.

Gumbel limit: The situation is now complicated by the auxiliary function b(·). Recall
(see e. g. Chapter 3 in [4]) that b(s) can be chosen such that it is differentiable for
s < Sf and

lim
s→∞

b′(s) = 0 and lim
s→∞

s−1b(s) = 0 if Sf =∞, or

lim
s→Sf

b′(s) = 0 and lim
s→Sf

(Sf − s)−1b(s) = 0 if Sf <∞.

Hence, using for the second equality below the substitution s ↔ s + ab(s) and the
limit

lim
t→Sf

1 + t + ab(t)
1 + t

= 1
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following from the properties of b(·), we obtain

lim
t→Sf

fw(t + ab(t))
fw(t)

= lim
t→Sf

(1 + t)2

(1 + t + ab(t))2

∫∞
w

∫ Sf

t+ab(t)
(1+s)3/2g(v,s) dsdv√

s
√

s−(t+ab(t))
√

v2−w2

∫∞
w

∫ Sf

t
(1+s)3/2g(v,s) dsdv√

s
√

s−t
√

v2−w2

= lim
t→Sf

∫∞
w

∫ Sf

t
(1+s+ab(s))3/2(1+ab′(s))gv(s+ab(s))gV (v) dsdv√

s+ab(s)
√

(s+ab(s))−(t+ab(t))
√

v2−w2

∫∞
w

∫ Sf

t
(1+s)3/2gv(s)gV (v) dsdv√

s
√

s−t
√

v2−w2

= exp{−s}

(8)

by Lemma 1.2.1 of [5] again. We need in particular to check only that

lim
t→Sf

(s + ab(s))− (t + ab(t))
s− t

= 1 where s > t.

But this follows from the properties of b(·). It holds

(s + ab(s))− (t + ab(t))
s− t

= 1 + a
b(s)− b(t)

s− t
= 1 + ab′(ξ),

for some t ≤ ξ ≤ s and since b′(t)→ 0 as t→ Sf the proof is finished. ¤

Theorem 4. (Stability of MDA for the shape factor II) Suppose that the con-
ditional density function gv(s) of the shape factor given the size V = v satisfies
one of the conditions (3), (4) or (5) uniformly in v and for some parameter α > 0
respectively. Then

1. the marginal d.f. g(s) of the shape factor and the conditional d.f. g>v(s) of the
shape factor given the size V > v satisfy, with the parameter α respectively,
the same of the conditions (3) – (5) as gv(s) does.

2. the marginal d.f. f(t) of the profile shape factor and the conditional d.f. f>w(s)
of the profile shape factor given the profile size W > w satisfy, with the
parameter β = α + 1/2 respectively, the same of the conditions (3) – (5) as
gv(s) does.

P r o o f . The proof is an analogue of the proof of Theorem 1. Let us start with
the marginal density functions.

To check that for the Fréchet limiting case it holds

lim
s→∞

gS(as)
gS(s)

= lim
s→∞

∫∞
0

gv(as)gV (v) dv∫∞
0

gv(s)gV (v) dv
= a−(α+1)

is an easy consequence of the uniformity assumption. The other two limiting cases
are completely similar.
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The marginal density of the profile shape factor is

fT (t) =
∫ ∞

0

f(w, t) dw =
1

2M(1 + t)2

∫ ∞

0

∫ Sf

t

(1 + s)3/2vg(v, s) dsdv√
s
√

s− t
. (9)

The arguments of (6) – (8) can be repeated again and the proof for the marginal
density functions can be concluded.

For the conditional density functions let us first note that

g>v(s) =

∫∞
v

gu(s)gV (u) du∫∞
v

gV (u) du
, and f>w(t) =

∫∞
w

fu(t)fW (u) du∫∞
w

fW (u) du
(10)

and the denominators do not depend on the shape factor. Hence we must analyse
for the Fréchet limiting case

lim
s→∞

g>v(as)
g>v(s)

=

∫∞
v

gu(as)gV (u) du∫∞
v

gu(s)gV (u) du
= a−(α+1)

again as a simple consequence of the uniformity assumption. The same argument
may be used for the other two limiting cases.

For the last part of the proof it is sufficient to use arguments of (6) – (8) once
again and the fact that

f>w(t) =
1

2M(1 + t)2

∫ ∞

w

∫ Sf

t

(1 + s)3/2
√

v2 − w2g(v, s) dsdv√
s
√

s− t

1∫∞
w

fW (u) du
. ¤

Remark 5. The reason for the uniformity assumption can be of course seen from
the proofs of the Theorems 1 and 4. There is, however, also an intuitive reasoning
for the uniformity assumption. Since it holds that 0 ≤ W ≤ V it is clear that in
the sample of profiles with a given size, the spheroids of any greater size can belong.
Hence the limiting behaviour of the profile shape factor extreme is influenced by the
limiting behaviour of the shape factor extreme of any spheroid whose size is larger
than the size of the observed profile.

If the uniformity assumption is not valid then we may expect that there can be
some dominating extreme value behaviour for the shape factor extremes and this
dominating behaviour is connected to some values of the size. But then it would be
impossible to recover the non-dominating limiting behaviour of the shape factor for
the other (conditioning) values of the size.

4. NORMALISING CONSTANTS AND STATISTICAL APPLICATION

In this section we shall discuss the possible statistical application of Theorems 1
and 4. In particular we shall describe a method how the extremes of the shape
factor of spheroids can be predicted using the shape factor extremes of the profiles
under the uniformity assumptions of Theorems 1 and 4.
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Recall, that normalising constants form a sequence of pairs (an, bn) such that
(2) holds. In particular it follows by (2) that normalising constants are not defined
uniquely. Actually if (an, bn) are appropriate n.c. then consider any sequence (a′n, b′n)
such that a′n/an → 1 and (bn − b′n)/an → 0 as n → ∞. It is easy to verify that
a′n and b′n are also n.c. Thus one could consider a class of equivalent normalising
constants. Below we shall refer to the normalising constants having the previous
observation in mind. To determine the n.c. we are usually required to analyse the
tail behaviour of the distribution function at hand.

The normalising constants for the observed profile shape factors can be estimated
in many ways. The two most common include maximum likelihood estimator based
on the k largest observations and the estimator based on the k block’s maxima.
The MDA of the observed sample can be also determined using the estimator of the
power parameter α in (3) – (5). See [1], e. g., for more details.

Let us say that (ân, b̂n) are the estimated normalising constants for the observed
shape factor profiles (for the marginal distribution, e. g.) and that Υα is the limiting
distribution, α = ∞ for the Gumbel distribution. Hence we know that the shape
factor of the spheroids belongs to the MDA(Υα−1/2). The approximated distribution
of the extremal shape factor of the spheroids SN :N is therefore

P [SN :N < aNx + bN ] .= Υα−1/2(x),

where N is the estimated number of particles in the given volume of material and
(aN , bN ) are the normalising constants which must be derived from the estimate
(ân, b̂n). This question will be discussed further.

The recalculation of the profile n.c. to the spheroid n.c. is a procedure requir-
ing the determination of the normalising constants according to the parametric tail
assumption on the corresponding distribution function. In this connection the fol-
lowing lemma is often useful.

Lemma 6. (Normalising constants) Suppose that a distribution function K has an
upper endpoint Mf . Then the following statements are valid.

1. If Mf = ∞ the d.f. K belongs to the Gumbel domain of attraction and if
there exist constants α > 0, β, γ > 0, δ > 0 such that

lim
v→∞

1−K(v)
αvβe−γvδ = 1,

then the normalising constants can be chosen as

an =
(

log n

γ

)1/δ−1 1
γδ

,

bn =
(

log n

γ

)1/δ

+
β
δ (log log n− log γ) + log α

(
log n

γ

)1−1/δ

γδ

.
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2. If the distribution function K belongs to the Fréchet domain of attraction and
if there exist constants α > 0, β, γ > 0 such that

lim
v→∞

1−K(v)
αv−γ

= 1,

then the normalising constants can be chosen as

an = (nα)1/γ , bn = 0.

3. If the distribution function K belongs to the Weibull domain of attraction and
if there exist constants β > 0 and γ > 0 such that

lim
v→Mf

1−K(v)
γ(v/Mf )β(Mf − v)α

= 1,

then the normalising constants can be chosen as

an = (nγ)−1/α, bn = Mf .

Hence our plan is the following. For some parametric model describing the asymp-
totic tail behaviour of the spheroid shape factor we shall derive the normalising con-
stants (as

n, bs
n) using Lemma 6, where n is considered to be a variable rather than

the constant. The same Lemma 6 and the relation (1) can be used to derive the
normalising constants (ap

m, bp
m) for the profile shape factor. Comparison of these two

pairs of the normalising constants will suggest the way how to estimate the n.c. of
the spheroid shape factor using the estimated n.c. of the profile shape factor.

Remark 6. Note that the adjustment of the estimated n.c. of the profiles to the n.c.
of the spheroids results in a need of a parametric tail assumption. If we can observe
the spheroids directly there is no need to assume parametric model since both the n.c.
and the MDA can be estimated directly from the observations nonparametrically.

It is, however, sufficient to consider only an asymptotic class of the parameter
model specifying the dominating terms only. If we consider, for example, the Hall
class (see [6]) the tail of the distribution function K is specified simply by

1−K(u) = Cu−α + o(u−α), as u→∞. (11)

Lemma 6 can be applied directly to such a class of distributions.
Note that on the other hand the convergence of the term o(u−α) to zero in (11)

can be extremely slow. In this case the generalisation of Lemma 6 [10, Lemma
3.8] may be of particular interest. For the case when 1 −K(u) = C(log u)βu−α +
o
(
(log u)βu−α

)
see Lemma 2 in [8].
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5. APPROXIMATION OF THE SHAPE FACTOR TAILS

Let us introduce a relation ≈ for the distribution functions and probability densities
(p.d.f.). Let K(·) be a distribution function and k(·) its p.d.f. and let Ξ(·) and ξ(·)
be some suitable functions. We write for Mf being the upper endpoint of the d.f. K

1−K(x) ≈ Ξ(x) ⇐⇒ lim
x→Mf

1−K(x)
Ξ(x)

= 1

k(x) ≈ ξ(x) ⇐⇒ lim
x→Mf

∫ Mf

x
k(u) du

∫ Mf

x
ξ(u) du

= 1
(12)

respectively.
In order to apply Lemma 6 we need to study the behaviour of

1− FT (t) =
1

2M

∫ ∞

0

vgV (v)I(v, t) dv, (13)

1− Fw(t) =
1

2MfW (w)

∫ ∞

w

wgV (v)√
v2 − w2

I(v, t) dv, (14)

1− F>w(t) =
1

2M
(
1− FW (w)

)
∫ ∞

w

√
v2 − w2gV (v)I(v, t) dv, (15)

where

I(v, t) =
∫ Sf

t

1
2
√

s


2

√
(s− t)(1 + s)

1 + t
+ log

1 +
√

s−t
1+s

1−
√

s−t
1+s


 gv(s) ds,

and to compare it with

1−GS(s) =
∫ ∞

0

gV (u)
∫ Sf

s

gu(r) drdu, (16)

1−Gv(s) =
∫ Sf

s

gv(r) dr, (17)

1−G>v(s) =
1

1−GV (v)

∫ ∞

v

gV (u)
∫ Sf

s

gu(r) drdu, (18)

respectively. It is obvious that it is in particular the behaviour of gv(s) for s close
to the upper endpoint Sf (recall that it is assumed to be uniform in v) which needs
to be analysed.

The question of uniformity assumption of Theorems 1 and 4 is broadly discussed
in [10] and [9]. Let us recall that the generalised Farlie–Gumbel–Morgenstern (FGM)
family of bivariate distributions is considered as an appropriate model for the bi-
variate distribution of size and shape factor when the tail uniformity is assumed.
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If we use the generalised FGM family, then the conditional p.d.f. gv(s) can be for
s close to Sf approximated by

gv(s) ≈ ζ(s)L(s, v)ψ
(
GV (v)

)
+ o

(
ζ(s)

)
,

where the function L(·, v) is slowly varying at Sf (uniformly in v) and the function
ζ(s) is either regularly varying (therefore the limiting distribution is Fréchet or
Weibull) or rapidly varying in Sf (and hence the limiting distribution is Gumbel).
For more facts about the regular variation and its application to the theory of sample
extremes see e. g. [5].

Hence all we need is to analyse the integral

J(t) =
∫ Sf

t

1
2
√

s


2

√
(s− t)(1 + s)

1 + t
+ log

1 +
√

s−t
1+s

1−
√

s−t
1+s


 ζ(s) ds (19)

when t → Sf for different choices of the limiting behaviour of ζ(s). The further
analysis of the normalising constants is then analogous to the discussion of Sections 4
and 5 in [9]. We give here just two examples of exponential and polynomial tail. We
shall further assume that the right endpoint Sf =∞ hence we do not need to study
the Weibull limiting case.

5.1. Exponential tails with infinite right endpoint

Let us consider that Sf = ∞, and the p.d.f. gv(s) ≈ ζ(s)ψ
(
GV (v)

)
, where the

function ζ(s) = αsβ exp{−γs} as s → ∞ (see (12) for the ≈ notation). Hence (19)
becomes

J(t) =
∫ ∞

t

1
2
√

s


2

√
(s− t)(1 + s)

1 + t
+ log

1 +
√

s−t
1+s

1−
√

s−t
1+s


 αsβ exp{−γs}ds

=
∫ ∞

0

1
2
√

s + t


2

√
s(1 + s + t)

1 + t
+ log

1 +
√

s
1+s+t

1−
√

s
1+s+t


 α(s + t)βe−γ(s+t) ds

=
αtβe−γt

t + 1

∫ ∞

0

√
1 + s + t

s + t

√
s
(
1 +

s

t

)β

e−γs ds

+
αtβe−γt

t1/2

∫ ∞

0

1
2

log
1 +

√
s

1+s+t

1−
√

s
1+s+t

(
1 +

s

t

)β−1/2

e−γs ds

≈ αtβ−1e−γt

∫ ∞

0

√
se−γs ds +

1
2
αtβ−1/2e−γt

∫ ∞

0

log
1 +

√
s

1+s+t

1−
√

s
1+s+t

e−γs ds

≈ 2αtβ−1e−γt

∫ ∞

0

√
se−γs ds = αγ−3/2tβ−1e−γtΓ

(
1
2

)
,
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where Γ(·) is the Euler gamma function. Lemma 6 can be now applied directly to
this approximation as, for example, (13) and (16) become

1− FT (t) ≈ 1
2M

∫ ∞

0

vgV (v)ψ
(
GV (v)

)
dv αγ−3/2tβ−1e−γtΓ

(
1
2

)
, (20)

1−GS(s) ≈
∫ ∞

0

gV (u)ψ
(
GV (u)

)
duαγ−1sβe−γs. (21)

5.2. Polynomial tails with infinite right endpoint

Consider the function ζ(s) = αs−β−1 now and let us approximate (19) again. It is
now little bit more difficult. We get

J(t) =
∫ ∞

t

1
2
√

s


2

√
(s− t)(1 + s)

1 + t
+ log

1 +
√

s−t
1+s

1−
√

s−t
1+s


αs−β−1 ds

=
∫ ∞

0

1
2
√

s + t


2

√
s(1 + s + t)

1 + t
+ log

1 +
√

s
1+s+t

1−
√

s
1+s+t


α(s + t)−β−1 ds

≈ α

∫ ∞

0

√
s(t + s)−β−2 2t + s + 1

t + 1
ds

= α(t + 1)−1t−β−1

∫ ∞

0

√
s
(
1 +

s

t

)−β−2
(

2 +
s + 1

t

)
ds

≈ αt−β−1/2

∫ ∞

0

√
s(1 + s)−β−2(2 + s) ds = t−β−1/2

∫ ∞

1

√
s− 1s−β−2(1 + s) ds

= αt−β−1/2

∫ 1

0

√
(1− s)sβ−3/2(1 + s) ds

= αt−β−1/2

[
B

(
3
2
, β − 1

2

)
+ B

(
3
2
, β +

1
2

)]
,

where B(·, ·) is the beta function. Lemma 6 can be again applied directly to this
approximation.
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1992, pp. 205–220.
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