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MARGINALIZATION IN MULTIDIMENSIONAL
COMPOSITIONAL MODELS

Vladislav B́ına and Radim Jiroušek

Efficient computational algorithms are what made graphical Markov models so popular
and successful. Similar algorithms can also be developed for computation with compo-
sitional models, which form an alternative to graphical Markov models. In this paper
we present a theoretical basis as well as a scheme of an algorithm enabling computation
of marginals for multidimensional distributions represented in the form of compositional
models.
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1. INTRODUCTION

Representation and processing of multidimensional probability distributions were
made possible by success achieved in the field of graphical Markov models (see e. g.
[7]) during the last twenty years. Here we have in mind not only ample theoretical
background but also thoroughly elaborated algorithmic apparatus, which enabled
design of very efficient software packages (e. g. HUGIN [2]). As an alternative to
graphical models, during approximately the past eight years we have been studying
the non-graphical approach of compositional models, which is based on the idea that
multidimensional distributions can be assembled – composed – from a system of
low-dimensional ones.

In this paper we present a theoretical background supporting a possible solu-
tion of one hard problem, which has not been implemented even in such systems as
HUGIN: the marginalization of multidimensional distributions. For Bayesian net-
works a solution of this problem was proposed by Ross Shachter in [8, 9]. His famous
procedure is based on two rules: node deletion and edge reversal . Roughly speaking,
the efficiency of his approach corresponds to the efficiency of our process if we did
not employ the speed-up theoretically supported by Theorem 2 presented below.
This theorem, namely, takes advantage of the main difference between Bayesian
networks [3] and compositional models revealed in [6]. This advantage consists of
the fact that compositional models, when represented by perfect sequences, express
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explicitly some marginals, whose computation in a Bayesian network may be com-
putationally expensive. However, it should be stressed up front that in cases where
Theorem 2 cannot be applied (i. e. there does not exist a respective decomposition)
the proposed procedure only increases the computational time because we do not
have an efficient procedure recognizing such a disadvantageous situation.

2. OPERATORS OF COMPOSITION

In this paper we will consider a system of finite-valued random variables with indices
from a non-empty finite set N . All the probability distributions discussed in the
paper will be denoted by Greek letters. For K ⊂ N , κ(xK) denotes a distribution
of variables XK = {Xi}i∈K , which is defined on all subsets of a Cartesian product
×i∈KXi.

Having a distribution κ(xK) and L ⊂ K, we will denote its corresponding
marginal distribution either κ(xL), or, using the notation used by Glenn Shafer
and Prakash Shenoy (see e. g. [10]), κ↓L. These symbols are used when we want to
highlight the variables for which the marginal distribution is defined. If we want to
specify variables which are eliminated in the process of marginalization, we will use
the symbol κ−M , where M is a set of indices of the variables which do not appear
among the arguments of the resulting marginal distribution. In our case, M = K\L.

In order to describe how to compose low-dimensional distributions to get a dis-
tribution of a higher dimension we will use the following operator of composition.

Definition 1. For two arbitrary distributions κ(xK) and λ(xL) their composition
is given by the formula

κ . λ =





κ·λ
λ↓K∩L

when κ↓K∩L ¿ λ↓K∩L,

undefined otherwise,

where the symbol κ↓M ¿ λ↓M denotes that κ↓M is dominated by λ↓M , which means
(in the considered finite setting)

∀xM ∈ ×i∈MXi (λ(xM ) = 0 =⇒ κ(xM ) = 0).

Remark. If the marginal λ↓K∩L dominates κ↓K∩L then the formula in the defini-
tion is evaluated point-wise, i. e., for each x ∈ XK∪L value

(κ . λ)(x) =
κ(xK) · λ(xL)

λ(xK∩L)

is computed (in case that λ(xK∩L) = 0 we define 0·0
0 = 0).

Since the outcome of the composition (if it is defined) is a new distribution, we
can iteratively repeat the application of this operator, composing a multidimensional
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model. This is why these multidimensional distributions are called compositional
models. To describe such a model it is enough to introduce an ordered system of
low-dimensional distributions κ1, κ2, . . . , κn. We will refer to this as to a generating
sequence, to which the operator is applied from left to right:

κ1 . κ2 . κ3 . . . . . κn−1 . κn = (. . . ((κ1 . κ2) . κ3) . . . . . κn−1) . κn.

Then we say that a generating sequence defines (or represents) a multidimensional
compositional model.

In the process of marginalization we will also need another important operator.

Definition 2. For two arbitrary distributions κ(xK), λ(xL) and a set of indices of
variables M ⊂ N , by application of an anticipating operator parameterized by the
index set M , we understand computation of the following distribution

κ©.M λ =
(
λ↓(M\K)∩L · κ

)
. λ.

Remark. Notice that κ©.M λ is undefined only if κ . λ is undefined. Analogously
to Definition 1, if the composition is defined, computation of the expression

(κ©.M λ)(xK∪L) =
(
λ(x(M\K)∩L) · κ(xK)

)
. λ(xL)

is performed point-wise.

3. BASIC PROPERTIES

In the following text we will need three simple lemmas which follow almost imme-
diately from the definition of the operator of composition (their proofs can also be
found in our previous papers).

Lemma 1. Consider two distributions κ(xK) and λ(xL). If the composition κ . λ
is defined then

(κ . λ)↓K = κ.

Lemma 2. Let for two distributions κ(xK) and λ(xL) their composition κ . λ is
defined and L ⊆ M ⊆ K ∪ L. Then

κ . λ = κ . (κ . λ)↓M .

Lemma 3. Let M be such that K ∩ L ⊆ M ⊆ L; then

κ . λ = (κ . λ) . λ.

The remaining four lemmas are more complex and therefore we present them
with their proofs.
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Lemma 4. Let K,L,M ⊆ N . If K ∪ L ⊇ M ⊇ K ∩ L then for any probability
distributions κ(xK) and λ(xL)

(κ . λ)↓M = κ↓K∩M . λ↓L∩M .

P r o o f . Let us first mention that κ . λ is not defined only if κ↓K∩L 6¿ λ↓K∩L.
However, because of the assumption laid on M , K ∩ L = (K ∩M) ∩ (L ∩M), and
therefore it holds true if and only if κ↓K∩M . λ↓L∩M is not defined, too. Therefore,
if one composition is not defined then neither is the other composition defined. To
prove the assertion in case that κ . λ is defined, let us first compute

(κ . λ)(xK∪M ) =
∑

xL\M∈XL\M

κ(xK)λ(xL∩M , xL\M )
λ(xL∩K)

=
κ(xK)λ(xL∩M )

λ(xL∩K)

∑

xL\M∈XL\M

λ(xL\M |xL∩M ) = κ(xK) . λ(xL∩M ).

Now we can compute the required marginal distribution

(κ . λ)(xM ) = ((κ . λ)(xK∪M ))↓M = (κ(xK) . λ(xL∩M ))↓M

=
∑

xK\M∈XK\M

κ(xK∩M , xK\M )λ(xL∩M )
λ(xL∩K)

=
κ(xK∩M )λ(xL∩M )

λ(xL∩K)

∑

xK\M∈XK\M

κ(xK\M |xK∩M ) = κ(xK∩M ) . λ(xL∩M ). ¤

Let us emphasize that when describing a generating sequence it is necessary
to explain that the operator of composition is always applied from left to right.
This is because the operator is neither commutative nor associative. So, generally
κ1 . κ2 . κ3 6= κ1 . (κ2 . κ3). Situations under which it is possible to exchange the
ordering of operators are described in the following two assertions.

Lemma 5. If κ1(xK1), κ2(xK2) and κ3(xK3) are such that K1 ⊇ (K2 ∩K3) then

κ1 . κ2 . κ3 = κ1 . κ3 . κ2. (1)

P r o o f . First, let us show that the left hand side expression in (1) is not defined
iff the right hand side of this formula is not defined. From the definition of the
operators we know that κ1 . κ2 . κ3 is not defined iff

κ↓K1∩K2
1 6¿ κ↓K1∩K2

2 or (κ1 . κ2)↓(K1∪K2)∩K3 6¿ κ
↓(K1∪K2)∩K3
3 .

Analogously, κ1 . κ3 . κ2 is not defined iff

κ↓K1∩K3
1 6¿ κ↓K1∩K3

3 or (κ1 . κ3)↓(K1∪K3)∩K2 6¿ κ
↓(K1∪K3)∩K2
2 .
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Under the given assumption K1 ⊇ (K2 ∩K3), these two conditions coincide because

(K1 ∪K2) ∩K3 = K1 ∩K3 & (K1 ∪K3) ∩K2 = K1 ∩K2, (2)

and

(κ1 . κ2)↓(K1∪K2)∩K3 = κ↓K1∩K3
1 & (κ1 . κ3)↓(K1∪K3)∩K2 = κ↓K1∩K2

1 .

Now, let us assume that both the expressions in formula (1) are defined. Because of
(2) the expressions

κ1 . κ2 . κ3 =
κ1κ2κ3

κ↓K1∩K2
2 κ

↓K3∩(K1∪K2)
3

,

κ1 . κ3 . κ2 =
κ1κ2κ3

κ↓K1∩K3
3 κ

↓K2∩(K1∪K3)
2

are equivalent to each other, which finishes the proof. ¤

Lemma 6. If κ1(xK1), κ2(xK2) and κ3(xK3) are such that κ1 . (κ2©.K1
κ3) is

defined, then

κ1 . κ2 . κ3 = (κ1 . κ2) . κ3 = κ1 . (κ2©.K1
κ3). (3)

P r o o f . Assume that κ1 . (κ2©.K1
κ3) is defined. It means that

κ
↓K1∩(K2∪K3)
1 ¿ (κ2©.K1

κ3)↓K1∩(K2∪K3), (4)

and, as a consequence of the fact that dominance holds also for the respective
marginal distributions, κ↓K1∩K2

1 ¿ κ↓K1∩K2
2 . This guarantees that κ1 . κ2 is de-

fined. Let us now show by contradiction that (κ1 . κ2) . κ3 must also be defined.
Assume it is not defined. It means that there exists x ∈ XK1∪K2∪K3 such that in
the expression

(κ1 . κ2 . κ3)(x) =
κ1(xK1) · κ2(xK2) · κ3(xK3)

κ2(xK2∩K1) · κ3(xK3∩(K1∪K2))

κ3(xK3∩(K1∪K2)) = 0 and simultaneously κ1(xK1) · κ2(xK2) > 0. This, however,
contradicts to our assumption that κ2©.K1

κ3 is defined: as we can see from the
respective formula

(κ2©.K1
κ3)(x) =

κ3(x(K1\K2)∩K2) · κ2(xK2) · κ3(xK3)
κ3(xK3∩(K1∪K2))

,

κ3(xK3∩(K1∪K2)) = 0 =⇒ κ2(xK2) = 0.



410 V. BÍNA AND R. JIROUŠEK

Now, assuming κ1 . (κ2©.K1
κ3) is defined let us compute (using the definition of

the operator ©. and Lemma 4):

κ1 . (κ2©.K1
κ3) =

κ1
κ
↓(K1\K2)∩K3
3 κ2κ3

κ
↓(K1∪K2)∩K3
3(

κ
↓(K1\K2)∩K3
3 κ2κ3

κ
↓(K1∪K2)∩K3
3

)↓(K2∪K3)∩K1

=
κ
↓(K1\K2)∩K3
3

κ1κ2κ3

κ
↓(K1∪K2)∩K3
3

κ
↓(K1\K2)∩K3
3

(
κ2κ3

κ
↓(K1∪K2)∩K3
3

)↓(K2∪K3)∩K1
=

κ1κ2κ3

κ
↓(K1∪K2)∩K3
3(

κ2κ3

κ
↓(K1∪K2)∩K3
3

)↓(K2∪K3)∩K1
,

where the second modification is feasible because

(K1 \K2) ∩K3 ⊆ (K2 ∪K3) ∩K1.

Let us focus our attention on the denominator of the last fraction. It is a marginal
of a product of κ2 with a conditional distribution

κ3(xK3\(K1∪K2)|xK3∩(K1∪K2)).

When computing this marginal, we have to sum up over all combinations of values
of variables X(K2∪K3)\K1 . In the following computations we will separate these
variables into two groups: XK2\K1 and XK3\(K1∪K2). xK2 ∈ XK2 is thus a vector of
values of variables XK2 which can be split into two parts: xK2 = (xK2\K1 , xK2∩K1).
Analogously, for xK3∩(K1∪K2) ∈ XK3∩(K1∪K2) we will consider parts

xK3∩(K1∪K2) = (xK3∩K1 , x(K3∩K2)\K1)).

Using this notation, we can compute:

(
κ2(xK2)κ3(xK3\(K1∪K2)|xK3∩(K1∪K2))

)↓(K2∪K3)∩K1

=
∑

xK2\K1∈XK2\K1

∑

xK3\(K1∪K2)∈XK3\(K1∪K2)

κ2(xK2∩K1 , xK2\K1)

·κ3(xK3\(K1∪K2)|x(K3∩K2)\K1 , xK3∩K1)

= κ2(xK2∩K1)
∑

xK2\K1

κ2(xK2\K1 |xK2∩K1)

∑

xK3\(K1∪K2)

κ3(xK3\(K1∪K2 |x(K3∩K2)\K1 , xK3∩K1)

= κ2(xK2∩K1).
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Substituting this result back into the denominator of the fraction, we get

κ1 . (κ2©.K1
κ3) =

κ1κ2κ3

κ
↓(K1∪K2)∩K3
3

κ↓K2∩K1
2

=
κ1κ2κ3

κ↓K2∩K1
2 κ

↓(K1∪K2)∩K3
3

= κ1 . κ2 . κ3.

which completes the proof. ¤

Remark. Notice that Lemma 6 does not claim that equality (3) holds true when
κ1 . κ2 . κ3 is defined.

4. MARGINALIZATION IN COMPOSITIONAL MODEL

Now we will focus our attention on possibilities of marginalization of distributions
given by generating sequences. From now on, we will consider a generating sequence

κ1(xK1) . κ2(xK2) . . . .κn(xKn).

Therefore whenever we use distribution κj , we assume it is defined for variables XKj .
A direct corollary of the following important assertion formulates rules which make
it possible to decrease dimensionality of compositional models by one. By iterative
application of these rules we may obtain any required marginal.

Theorem 1. Let κ1, κ2, . . ., κn be a generating sequence, and ` ∈ N and I ⊆
{1, . . . , n} be such that1

` ∈
∩

i∈I

Ki & ` /∈
∪

i 6∈I

Ki.

For all i ∈ I, i 6= min(I) denote the maximal preceding index from I by a(i):

a(i) = max (I ∩ {1, . . . , i− 1}) ,

and Mi = (K1 ∪ . . .∪Ki−1) \ {`}. Further denote for i = min(I) πi = κi and for all
other i ∈ I, i 6= min(I)

πi = πa(i)©.Mi
κi,

and
λi = π

−{`}
i ,∀i ∈ I & λi = κi,∀i 6∈ I.

If all the distributions πi as well as distribution λ1 .λ2 . . . . .λn .πmax(I) are defined
then

(κ1 . κ2 . . . . . κn) = λ1 . λ2 . . . . . λn . πmax(I),

and therefore
(κ1 . κ2 . . . . . κn)−{`} = λ1 . λ2 . . . . . λn. (5)

1i 6∈ I stands for i ∈ {1, . . . , n} \ I.



412 V. BÍNA AND R. JIROUŠEK

P r o o f . Let us start proving the theorem for |I| = 1 and denote i ∈ I. Since
K1 ∪ . . . ∪Ki−1 does not contain `, we can apply Lemma 3, which yields

κ1 . . . . . κi−1 . κi = κ1 . . . . . κi−1 . κ
−{`}
i . κi = λ1 . . . . . λi . κi.

Distribution (λ1.. . ..λi) is defined for variables with indices from (K1 ∪ . . . ∪Ki) \ {`};
this contains Ki ∩ Kj for all j = i + 1, . . . , n, because none of these Kj contain `.
Therefore, applying Lemma 5 (n− i)-times, we get

κ1 . . . . . κi . κi+1 . . . . . κn = λ1 . . . . . λi . κi . κi+1 . . . . . κn

= λ1 . . . . . λi . κi+1 . . . . . κn . κi = λ1 . . . . . λn . πi.

Now, we will prove the assertion for a general I assuming that it has been proven
for the situations when ` is contained in a smaller number of sets than |I|. Denote
i = max(I) and a(i) = max(I ∩ {1, . . . , i − 1}). In the following computations we
will first use Lemma 3, then Lemma 6, and finally (n− im)-times Lemma 5.

κ1 . . . . . κi−1 . κi . . . . . κn = λ1 . . . . . λi−1 . πa(i) . κi . . . . . κn

= λ1 . . . . . λi−1 .
(
πa(i)©.Mi

κi

)
. κi+1 . . . . . κn

= λ1 . . . . . λi−1 . π
−{`}
i . πi . κi+1 . . . . . κn

= λ1 . . . . . λi . πi . κi+1 . . . . . κn

= λ1 . . . . . λi . κi+1 . . . . . κn . πi = λ1 . . . . . λn . πi.

Validity of Equation (5) follows immediately from the preceding formula and the fact
that X` appears among the argument of no λi. Since we assume that all distributions
πi as well as λ. . . ..λn are defined, all the expressions in the preceding computations
are defined due to Lemma 6 (application of Lemmas 3 and 5 cannot cause any
problems). ¤

Iterative application of Theorem 1 always leads to the desired marginal distri-
bution and fully corresponds to the Shachter’s marginalization procedure. In fact,
application of the anticipating operator in a way corresponds to the inheritance of
parents in his edge reversal rule. So one should not be surprised that the computa-
tional complexity of this process strongly depends on the number of occurrences of
the variable ` among the arguments of the distributions in the considered generat-
ing sequence (it can be to some extent controlled by a proper ordering of variables
which are to be eliminated). Beginning from the second occurrence of this variable
we should replace distribution κi with an expression containing one or more antici-
pating operators. However, when the variable which is to be deleted is contained in
the argument of only one of the distributions, Theorem 1 simplifies into the following
Corollary. In this case, it is sufficient to marginalize only one distribution and all the
others remain unchanged. This describes situations when Shachter’s deletion rule
may be applied either directly (the node is terminal), or when application of the
edge reversal rule does not introduce new edges in the considered Bayesian network.
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Corollary. Let κ1, κ2, . . ., κn be a generating sequence. If ` ∈ Kj for some j ∈
{1, . . . , n} and ` 6∈ Ki for all i 6= j then

(κ1 . κ2 . . . . . κn)−{`} = κ1 . . . . . κj−1 . κ
−{`}
j . κj+1 . . . . . κn.

More effective marginalizing procedures are, however, based on the following
assertion, which is a generalization of Theorem 11 from [5]. It describes conditions
under which a number of variables may be deleted in one computationally simple
step. But first let us define the auxiliary notion of a reduction of a generating
sequence, which will simplify formulations in the following text.

Definition 3. Let κ1, κ2, . . . , κn be a generating sequence, and s ∈ Z  {1, . . . , n}
be such that 

 ∪

j∈Z

Kj


 ∩


 ∪

j 6∈Z

Kj


 ⊆ Ks.

Then we say that s and Z determine a reduction of generating sequence κ1, . . . , κn

(or simply that (s, Z) is a reduction).

Theorem 2. Let s ∈ Z and Z  {1, . . . , n} determine a reduction of a generating
sequence κ1, κ2, . . . , κn, and let all distributions κi be positive. Let J =

∪
j∈Z Kj ,

µ = (κ1 . κ2 . . . . . κn)↓Ks , and distributions λi be defined

λj = κj for j ∈ Z,
λj = µ↓J∩Oj for j 6∈ Z and Oj =

∪
i∈{1,...,j}\Z

Ki.

Then the marginal distribution (κ1 . κ2 . . . . . κn)↓J can be expressed as a composi-
tional model

(κ1 . κ2 . . . . . κn)↓J = λ1 . λ2 . . . . . λn.

P r o o f . Let {`1, `2, . . . , `m} = (K1 ∪ . . . ∪Kn) \ J be any ordering of the indices
to be eliminated. Let ν1

1 , ν1
2 , . . . , ν1

n be a generating sequence received by application
of Theorem 1 to the sequence κ1, κ2, . . . , κn and the index `1. What can be said
about the generating sequence ν1

1 , ν1
2 , . . . , ν1

n?

1. (κ1 . κ2 . . . . . κn)−{`1} = (κ1 . κ2 . . . . . κn)↓J∪{`2,...,`m} = ν1
1 . ν1

2 . . . . . ν1
n;

2. For all j ∈ Z, ν1
j = κj ;

3. For each j 6∈ Z, ν1
j is a distribution of variables with indices from Kj and

possibly some other indices from Oj but not `1. Therefore, the respective set
of indices contains Kj \ {`1} and is contained in Oj \ {`1}.
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Now, iterative application of Theorem 1 to the generating sequences νi
1, νi

2, . . . ν
i
n

and the indices `i+1 yields sequences νi+1
1 , νi+1

2 , . . . , νi+1
n for i = 1, . . . , m−1. Denote

by N i
j the sets of indices of variables in the argument of νi

j . Analogous to the first
step, we can see that for all of these sequences:

4. (κ1 .κ2 .. . ..κn)−{`1,...,`i} = (κ1 .κ2 .. . ..κn)↓J∪{`i+1,...,`m} = νi
1 .νi

2 .. . ..νi
n;

5. For all j ∈ Z, νi
j = κj , and thus N i

j = Kj ;

6. For each j 6∈ Z, Kj \ {`1, . . . , `i} ⊆ N i
j ⊆ Oj \ {`1, . . . , `i}.

Since (κ1 . κ2 . . . . . κn)↓J = νm
1 . νm

2 . . . . . νm
n , to finish the proof we have to show

that νm
1 . . . . . νm

n = λ1 . . . . . λn. The elements with indices j ∈ Z equal each other:
κj = νm

j = λj . Therefore, what has remained to be shown is that substituting νm
j

with λj for j 6∈ Z does not change the generated distribution.
From the relationships presented in the above items 4. and 6. (and using the fact

that Oj \ {`1, . . . , `i} = Oj ∩ J) we get

Nm
j ⊆ Oj ∩ J ⊆

j∪

i=1

Nm
i .

This enables us to apply Lemma 2 (where M = J ∩Oj), getting

(νm
1 . νm

2 . . . . . νm
j−1) . νm

j = (νm
1 . νm

2 . . . . . νm
j−1) . (νm

1 . . . . . νm
j )↓J∩Oj .

Since both (νm
1 . . . . . νm

j ) and µ are marginal distributions of κ1 . . . . . κn, their
common marginals must equal each other:

(νm
1 . . . . . νm

j )↓J∩Oj = µ↓J∩Oj = λj ,

and therefore

(νm
1 . νm

2 . . . . . νm
j−1) . νm

j = (νm
1 . νm

2 . . . . . νm
j−1) . λj .

Repeating these considerations for all j 6∈ Z, one can substitute νm
j by λj for all

j 6∈ Z, which completes the proof. ¤

Remark. The reader familiar with our preceding papers knows that one of the
most important notions of theory of compositional models is a so called perfect
sequence. All distributions κi appearing in a perfect sequence are marginals of the
represented distribution κ1 . . . . . κn. Thus, if Theorem 2 is applied to a perfect
sequence, µ = κs, which further simplifies the necessary computations. So we see
that application of this assertion to perfect sequences is trivial and computationally
inexpensive.
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Remark. The assumption of positivity for distributions κ1, κ2, . . . , κn was intro-
duced just to avoid problems with application of Theorem 1 (positive distributions
dominate each other and therefore any generating sequence of positive distributions
defines a compositional model). The reader certainly noticed that even for general
distributions κi (i. e., not necessarily positive) it holds that if κ1 . κ2 . . . . . κn is de-
fined then λ1 .λ2 .. . ..λn is also defined. This follows from the fact that if there is a
relationship of dominance between two distributions then the same relationships also
holds between their respective marginal distributions. Therefore we are convinced
that there must exist another proof which avoids application of Theorem 1.

In many cases Theorem 2 offers us a possibility to substantially reduce dimension
of a considered compositional model in one step. Unfortunately, it gives us no
instructions for how to find a set of indices Z (along with the index s) determining
a reduction. Nevertheless, keeping in mind that in practical situations the process
described in this assertion enables deleting of tens or hundreds of variables in one
step, its realization will be discussed in the next section. For this, three simple
lemmas will be useful. To formulate them in a transparent way we will use the
following auxiliary symbol. Having a set Z ⊂ {1, . . . , n} and j 6∈ Z the symbol
W (Z, j) denotes the following subset of indices:

W (Z, j) =

{
s ∈ {1, . . . , n} :

(∪

i∈Z

Ki

)
∩Kj ⊆ Ks

}

(the reader should certainly keep in mind that sets W (Z, j) depend not only on Z
and j but naturally also on the considered generating sequence).

Lemma 7. If for Z (∅ 6= Z  {1, . . . , n}) there exists s ∈ Z, for which s ∈∩
i 6∈Z W (Z, i), then s and Z determine a reduction (of the considered generating

sequence).

P r o o f . For s meeting the assumption of this Lemma
(∪

i∈Z Ki

)
∩Kj ⊆ Ks for

all j 6∈ Z, and therefore (
∪

i∈Z Ki) ∩ (
∪

i 6∈Z Ki) ⊆ Ks. ¤

Lemma 8. If for j 6∈ Z (∅ 6= Z  {1, . . . , n}) W (Z, j) ∩ Z = ∅ then for any
reduction (s, Z ′)

Z ⊂ Z ′ =⇒ W (Z, j) ∩ Z ′ 6= ∅.

P r o o f . If j ∈ Z ′ the assertion holds because j is always an element of W (Z, j).
If j 6∈ Z ′ ⊇ Z then for a reduction (s, Z ′)

(∪

i∈Z

Ki

)
∩Kj ⊆

( ∪

i∈Z′

Ki

)
∩


 ∪

i 6∈Z′

Ki


 ⊆ Ks,

and therefore s ∈ W (Z, j) ∩ Z ′. ¤
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Lemma 9. Let for two nonempty disjoint subsets Z,Z1 of {1, . . . , n} there exist
s ∈ Z such that 

 ∪

j∈Z

Kj


 ∩


 ∪

j∈Z1

Kj


 ⊆ Ks.

If for all pairs of indices j1 ∈ Z1, j2 ∈ Z2 = {1, . . . , n} \ (Z ∪ Z1)

Kj1 ∩Kj2 ⊆
∪

j∈Z

Kj ,

then s and Z ∪ Z2 determine a reduction.

P r o o f . To show that s and Z ∪ Z2 determine a reduction we have just to show
that 

 ∪

j∈Z2

Kj


 ∩


 ∪

j∈Z1

Kj


 ⊆ Ks.

We know that

Kj1 ∩Kj2 ∩


N \

∪

j∈Z

Kj


 = ∅,

or equivalently

Kj1 ∩Kj2 ⊆


 ∪

j∈Z

Kj


 ,

for all j1 ∈ Z1, j2 ∈ Z2. From this one immediately gets

(
∪

j∈Z2

Kj) ∩


 ∪

j∈Z1

Kj


 ⊆


 ∪

j∈Z

Kj


 ,

and therefore also

 ∪

j∈Z2

Kj


 ∩


 ∪

j∈Z1

Kj


 ⊆


 ∪

j∈Z

Kj


 ∩


 ∪

j∈Z1

Kj


 ⊆ Ks,

which finishes the proof. ¤

5. MARGINALIZATION PROCEDURE

In this section we will briefly formulate the main ideas of an efficient algorithm for
marginalization of compositional models. The whole procedure is based on applica-
tion of Lemma 1, Theorem 1 and its Corollary. However, our goal is to minimize use
of Theorem 1. The whole process will be illustrated by an example in the following
section.
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1. If applicable, the simplest way of marginalization is a commutative employ-
ment of Lemma 1 and Corollary. The former makes it possible to delete one
or several distributions from the generating sequence, the latter deletes vari-
able(s) in a very efficient way. Therefore, we use them as the first step of the
procedure, and then whenever the assumptions of one of these assertions are
fulfilled. It is important to realize that application of Corollary decreases only
the number of variables for which individual distributions are defined, while
application of Lemma 1 may decrease both the number of variables and dis-
tributions. Therefore commutative application of these two assertions may be
necessary.

2. When step 1 is no longer applicable, and there are still more than a few vari-
ables to be deleted, it is advisable to try to find a reduction and apply Theo-
rem 2 (this option is discussed in more detail below). If this is successful, the
idea of step 1 should be repeated.

3. If neither step 1 nor step 2 is applicable one should marginalize the resulting
generating sequence using Theorem 1. After deletion of each variable one
should try to apply procedures from step 1. (We do not discuss it in this paper
but the order in which the variables are eliminated affects the time demands.
To solve this problem efficiently one can, for example, take advantage of the
heuristics proposed by R. Shachter for Bayesian network marginalization.)

The most computationally demanding part is step 2. Its implementation in-
fluences the total time requirements of the marginalization procedure. To find a
reduction one can adapt one of the procedures proposed for decomposition of (hy-
per)graphs; see e. g. [1]. Here we present an alternative procedure based on Lem-
mas 7 – 9.

Consider a situation when we are to compute (κ1 . κ2 . . . . . κn)↓M , and neither
Lemma 1 nor Corollary can be applied. Let us start with a minimum Z for which

M ⊆
(∪

i∈Z

Ki

)
,

and compute W (Z, j) for all j 6∈ Z. Lemma 8 gives us instructions which indices
j 6∈ Z must be added to Z if one wants to have a chance to find a reduction (s, Z ′)
for which Z ′ ⊇ Z. One has to consider all j 6∈ Z for which W (Z, j) ∩ Z = ∅. If
W (Z, j) = {j}, then j must be added to set Z. If W (Z, j) contains more indices,
then we have to add (at least) one k ∈ W (Z, j) (a heuristic recommendation saying
which one should be selected may be a result of computational experiments).

If Lemma 8 cannot be applied to Z, i. e. W (Z, j)∩Z 6= ∅ for all j 6∈ Z, then there
are two possibilities. The best case occurs when there exists s ∈

(∩
j 6∈Z W (Z, j)

)
∩Z;

then s and Z determine a reduction due to Lemma 7 and the process is finished; no
other reduction exists.

When neither Lemma 7 nor 8 can be applied there is still a chance that Lemma 9
helps us. Using the notation of this Lemma, it is obvious that if j, k 6∈ Z are such
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that
Kj ∩Kk 6⊆

∪

i∈Z

Ki,

then both j, k must be either in Z1 or in Z2. Therefore we recommend partitioning
set {1, . . . , n} \ Z into subsets Ẑ1, . . . , Ẑt in the way that two indices j1, j2 are in
the same Ẑi if and only if there exists an “outer connection” of Kj1 with Kj2 ; i. e.,
a sequence of indices k1 = j1, k2, k3, . . . , kr = j2 such that

Kk`
∩Kk`+1 6⊆

∪

i∈Z

Ki,

for all ` = 1, . . . , r− 1. (Notice that since the relation of having an outer connection
is reflexive, symmetric and transitive, Ẑ1, . . . , Ẑt is a partition of {1, . . . , n}\Z.) For
each Ẑi one of the following three situations becomes effective.

(a) There exists si ∈
∩

j∈Ẑi
W (Z, j). In this case si and {1, . . . , n} \ Ẑi determine

a reduction due to Lemma 9. Realization of marginalization according to
Lemma 7 does not influence the other sets from the partition Ẑ1, . . . , Ẑt.

(b) The other possibility is that there are two indices j1, j2 ∈ Ẑi, for which
W (Z, j1) ∩ W (Z, j2) = ∅. It means that there does not exist Z1 with the
properties required by Lemma 9 containing both j1 and j2. Therefore, both
these indices, along with the indices of the shortest “outer connection” must
be added to Z. Then (after processing all other sets from the considered parti-
tion) one should go back in the process and again test whether Lemma 8 does
not recommend further extension of Z.

(c) Though it is rather improbable, in very special situations it may happen that
neither of the above two situations is applicable (an example of such a situation
is shown in Figure 1 – here Z contains the three distributions which are defined
for the three “inner” variables). In this case one should add all those j ∈ Ẑi

to Z for which W (Z, j) ∩ Ẑi ⊆ {k ∈ Ẑi : W (Z, j) ⊇ W (Z, k)} (in the example
these are the distributions “connecting” the “inner” triangle with the “outer”
circle). Also in this case, after processing all other sets from the considered
partition one should go back in the process and again test whether Lemma 8
does not recommend further extension of Z.

6. EXAMPLE

Let us consider distributions κ1, κ2, . . ., κ14 with the following sets of variables (as
shown in Figure 2):

K1 = {1, 3, 7, 8}, K2 = {1, 2}, K3 = {3, 4},
K4 = {4, 5}, K5 = {5, 6, 7}, K6 = {8, 9},
K7 = {9, 10, 11, 12}, K8 = {12, 13, 19}, K9 = {10, 14},
K10 = {14, 15, 16}, K11 = {16, 17}, K12 = {17, 18},
K13 = {11, 18, 19, 20}, K14 = {20, 21}.
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Fig. 1. Case (c) of marginalization procedure.
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Fig. 2. Sets of variables, for which distributions κ1, κ2, . . ., κ14 are defined.

Those distributions, as a generating sequence, define a multidimensional compo-
sitional model κ1 . κ2 . . . . . κ14 and assume that our goal is to compute

(κ1 . . . . . κ14)↓{11,12,18}.

We start with deletion of distribution κ14; this is enabled by Lemma 1. Then,
all the variables appearing only in one distribution may be marginalized out using
Corollary. So, we get

(κ1 . . . . . κ14)−{2,6,13,15,20,21} = κ1 . κ
−{2}
2 . κ3 . κ4 . κ

−{6}
5 . κ6 . κ7

. κ
−{13}
8 . κ9 . κ

−{15}
10 . κ11 . κ12 . κ

−{20}
13 .

Now, Lemma 1 can be applied again to this expression; we may omit distribution
κ
−{2}
2 = κ

↓{1}
2 . (Actually, we do not need to calculate marginal κ

−{2}
2 , instead we

may simply leave κ2 out.)
After this simplification we can also see that variable X1 appears only among the

arguments of one distribution (κ1) and Corollary may be used once more. In this
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way we get the following simplified model

(κ1 . . . . . κ14)−{1,2,6,13,15,20,21} = κ
−{1}
1 . κ3 . κ4 . κ

−{6}
5 . κ6 . κ7

. κ
−{13}
8 . κ9 . κ

−{15}
10 . κ11 . κ12 . κ

−{20}
13 .

Further application of neither Lemma 1 nor Corollary is possible. So we have to
start considering application of Theorem 2 as recommended in step 2 of the previous
section.

Table. Searching for a reduction.

Z j W (Z, j) ∩ Z j W (Z, j) ∩ Z
7, 13 1 7, 13 3 7, 13

4 7, 13 5 7, 13
6 7 8
9 7 10 7, 13
11 7, 13 12 13

7, 8, 13 1 7, 8, 13 3 7, 8, 13
4 7, 8, 13 5 7, 8, 13
6 7 9 7
10 7, 8, 13 11 7, 8, 13
12 13

The task is to find a marginal distribution for variables X11, X12, X18; there-
fore we start considering the smallest set of distributions covering these variables:
Z = {7, 13}. When computing all W (Z, j) (see Table, where W (Z, j) ∩ Z is de-
picted) one can see that W (Z, 8) = {8}. Therefore Lemma 8 may be applied with
the conclusion that to find a reduction, Z must be extended by (at least) index 8.
For Z = {7, 8, 13} all W (Z, j) (for j 6∈ Z) contains at least one index from Z. So, in
accordance with the recommendation described in Section 5, we find a partition of
{j : j 6∈ Z} into subsets containing indices of distributions for which there exists an
“outer connection”:

Ẑ1 = {1, 3, 4, 5, 6}, Ẑ2 = {9, 10, 11, 12}.
Since 7 ∈ ∩

j∈Ẑ1
W (Z, j), Lemma 9 says that 7 and {7, 8, 9, 10, 11, 12, 13} deter-

mine a reduction, and therefore application of Theorem 2 yields

(κ1.. . ..κ14)−{1,2,3,4,5,6,7,8,13,15,20,21} = (κ1.. . ..κ14)↓{9,10,11,12,14,16,17,18,19}

= µ↓{9} . µ↓{9} . µ↓{9} . µ↓{9} . µ↓{9} . κ7 . κ
−{13}
8 . κ9

. κ
−{15}
10 . κ11 . κ12 . κ

−{20}
13

= µ↓{9} . κ7 . κ
↓{12,19}
8 . κ9 . κ

↓{14,16}
10 . κ11 . κ12 . κ

↓{11,18,19}
13 ,

where
µ↓{9} = (κ1 . κ3 . κ4 . κ5 . κ6)↓{9}.
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For Ẑ2 the set
∩

j∈Ẑ2
W (Z, j) is empty and therefore, in accordance with point (b),

we are checking whether there are two indices j1, j2 ∈ Ẑ2, for which W (Z, j1) ∩
W (Z, j2) = ∅. This property holds for j1 = 9, j2 = 12, and point (b) recommends2

us to add all the indices from Ẑ2 to Z. Thus we see that there does not exist another
reduction and therefore to proceed further we have to start applying Theorem 1.

Let us apply Theorem 1 to delete variable X9:

(κ1 . . . . . κ14)↓{10,11,12,14,16,17,18,19}

= µ↓{∅} . (µ↓{9}©.∅κ7)−9 . κ
↓{12,19}
8 . κ9 . κ

↓{14,16}
10 . κ11 . κ12 . κ

↓{11,18,19}
13

= (µ↓{9}©.∅κ7)−9 . κ
↓{12,19}
8 . κ9 . κ

↓{14,16}
10 . κ11 . κ12 . κ

↓{11,18,19}
13

Let us show how to marginalize yet another variable out, for example, X16. The
rest will be left to the reader (as a rather trivial repetition of the described process).

(κ1 . . . . . κ14)↓{10,11,12,14,17,18,19} =

= (µ↓{9}©.∅κ7)−9 . κ
↓{12,19}
8 . κ9 . κ

↓{14}
10 .

(
κ
↓{14,16}
10 ©.{10,11,12,14,19}κ11

)−{16}

. κ12 . κ
↓{11,18,19}
13

= κ1 . κ
↓{12,19}
8 . κ9 . κ2 . κ12 . κ

↓{11,18,19}
13 ,

where

κ1(x10, x11, x12) = (µ↓{9}©.∅κ7)−9

κ2(x14,17) =
(
κ
↓{14,16}
10 ©.{10,11,12,14,19}κ11

)−{16}
=

(
κ
↓{14,16}
10 . κ11

)−{16}
.

Let us mention that deletion of κ
↓{14}
10 from the generating sequence was enabled by

Lemma 1.

7. CONCLUSION

We introduced a theoretical background for efficient marginalization of multidimen-
sional compositional models. The efficiency of our approach stems from a possibility
to eliminate a set of variables in one computationally simple step. To find a required
reduction we introduced a technique based on properties of sets W (Z, j), which leads
to a straightforward, algorithmically simple procedure.

Analysis of computational complexity as well as implementation of the whole
process, which can take advantage of published algorithms for testing acyclicity
of hypergraphs, still remain to be done. In any case, practical implementation of
the process is a challenge for a sophisticated application of a number of heuristic
steps controlling specific situations, in which, for example, direct marginalization by
multiple application of Theorem 1 may be faster than searching for a reduction that
would enable a deletion of only a small number of variables.

2Point (b) recommends to add the shortest “outer connection” of j1, j2 to Z, but in the consid-

ered situation it is the whole Ẑ2.
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