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K Y B E R N E T I K A — V O L U M E 4 2 ( 2 0 0 6 ) , N U M B E R 2 , P A G E S 1 6 1 – 1 8 0

MONOTONICITY AND COMPARISON RESULTS FOR
NONNEGATIVE DYNAMIC SYSTEMS

Part II: Continuous-Time Case

Nico M. van Dijk and Karel Sladký

This second Part II, which follows a first Part I for the discrete-time case (see [3]), deals
with monotonicity and comparison results, as generalization of the pure stochastic case, for
stochastic dynamic systems with arbitrary nonnegative generators in the continuous-time
case.

In contrast with the discrete-time case the generalization is no longer straightforward.
A discrete-time transformation will therefore be developed first. Next, results from Part I
can be adopted.

The conditions, the technicalities and the results will be studied in detail for a reliability
application that initiated the research. This concerns a reliability network with dependent
components that can breakdown. A secure analytic performance bound is obtained.

Keywords: Markov chains, monotonicity, nonnegative matrices

AMS Subject Classification: 60J27, 90A16

1. INTRODUCTION

As a continuation of Part I for the discrete-time case (see [3]), this second Part II
is devoted to the continuous-time case. For a more general introduction, for more
examples of dynamic nonnegative systems and for a more general motivation of the
research, the reader is referred to the introduction of Part I. In this section, a more
specific motivation for the continuous-time case is given. In Section 2 the reliability
model that initiated the research is described in detail.

1.1. Motivation: Stochastic case

Continuous-time Markov chains are widely known in the literature for modeling a
variety of practical systems, most notably among which in the areas of queuing,
telecommunication, computer performance evaluation and reliability. In continuous
time the evolutionary characterization of and motivation for these continuous-time
Markov chains and related performance measures have the mathematical (functional)
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form: 



d
dtxt = Qxt, t ≥ 0 and

d
dtW t = r +QW t t ≥ 0

where t represents a time parameter, xt the state vector, and W t a total or cumu-
lative reward vector, while Q is the infinitesimal generator matrix (kernel). This
latter generator matrix (or kernel) thus essentially determines the dynamic behavior
of the system.

As the state process involved with the applications mentioned will generally be
prohibitively large for computational purposes, also monotonicity and comparison
results may become of interest such as to:

• study the qualitative nature as a function of time,

• compare the system with a simplified system, or

• provide a secure performance bound.

As discussed more detailed in Part I for the stochastic case a substantial liter-
ature, initiated by the pioneering work of Stoyan [9], on monotonicity and com-
parison results has appeared over the last decades (cf. Part I, references [1–6],
[10], [12], [13], [15]). The results from these references can be applied to both the
discrete- and continuous-time case as based upon the so-called technique of uni-
formization. This technique enables one to transform continuous-time Markov chains
into discrete-time Markov chains ([5, 8]).

Particularly, in Keilson and Kester [6] and Massey [7] monotonicity results were
established for reliability systems, under the condition that components can break
down and be repaired independently.

1.2. Motivation: Nonnegative case

A natural mathematical extension of the Markovian continuous-time structure given
above, that is with a stochastic generator Q, and thus necessarily row sums equal
to 0, is its generalization where Q is replaced by an arbitrary nonnegative matrix
A, that is with nonnegative off-diagonal elements without row sums equal to 0.

As in the discrete-time case, one classical example of interest is Leontieff’s so-
called input-output model in economic analysis. But also other examples in line
with the discrete-time case can be thought of. Most notably, though, also the class
of substochastic models is included with natural examples such as from reliability
analysis.

In fact, our research has been motivated and initiated by a specific substochastic
reliability application (as will be dealt with in Section 5). For this application, time
monotonicity results were of interest.

Unfortunately, as in the discrete-time case no general monotonicity or comparison
results appear to be available in the literature for this more general nonnegative case.
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1.3. Results for Part II

The following results will be established.

• First, in order to extend the discrete-time results from Part I to the continuous-
time case, a complication arises in that the uniformization technique men-
tioned for the stochastic case could no longer be applied. An extension of this
uniformization technique will therefore be developed first (Section 3). This
extension is of interest in itself.

• Next, based upon this extended uniformization the monotonicity and compar-
ison results for the discrete-time case will be transformed into the continuous-
time case (Section 4).

• Finally, the results will be applied to a general class of reliability models as of
our primary interest. These include reliability systems with dependent compo-
nents and a substochastic feature. Neither of these two aspects has been dealt
with before in the literature in the setting of monotonicity results.

2. CONTINUOUS–TIME SYSTEMS OF INTEREST

2.1. General form

We are interested in continuous-time systems of the form





d
dtxt = Axt, (1a)

d
dtW t = r +AW t (1b)

or more detailed:




d
dtxt(i) =

∑
j

a(i, j)xt(j), (2a)

d
dtW t(i) = r(i) +

∑
j

a(i, j)W t(j), (2b)

for all i = 1, 2, . . . and t ≥ 0,

where




A = (a(i, j)) is an arbitrary transition generator at a finite
or countable state space S with nonnegative
off-diagonal elements,

xt and W t are vectors at S, for all t ≥ 0, and

r represents a reward rate vector.
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Stochastic case

For the special stochastic (Markovian) case the matrix A has the form:

A = Q with
∑
j

q(i, j) = 0 for all i probability generator matrix.

In this case, xt(i) represents a marginal expectation for given initial state i,

xt(i) = (P tf)(i) =
∑
j

P t(i, j)f(j), x0(i) = f(i)

for some given initial vector function f , where P t is the transition probability matrix
over time t, while W t(i) is the cumulative expected reward for given initial state i,

W t(i) =
∫ t

0

(P srds)(i) =
∫ t

0





∑

j

P s(i, j) r(j)



 ds.

Limits

As in the discrete-time case in Part I and in analogy with the stochastic case, also
the transient and average reward case might be of interest, as defined by:

W = lim
t→∞

W t for the transient case (3a)

G = lim
t→∞

1
t
W t for the average case. (3b)

The vectors W and G represent the cumulative expected reward up to some random
(usual exit) time respectively the expected reward per unit of time. In the special
irreducible case the vector G will be a constant vector, say with constant value g.

General conditions for these limits to exists can be adopted from the literature
(e.g. [1] similar to the discrete-time case as in Section 2.4 of Part I. As these will not
be used explicitly in this part, they are not listed here. Moreover, by Result 3.1 in
Section 3 sufficient conditions to this end can be concluded from the discrete-time
case (that is, Section 2.3 from Part I).

2.2. Motivational examples

2.2.1. Stochastic case and queuing

For the special stochastic case the areas of queuing and queuing networks received
considerable attention in the literature as a main field of research by itself. In line
with the objectives of this paper, several monotonicity and comparison results in the
literature have been motivated by and applied to queuing systems (for details, cf.
Part I and references therein). In this respect, the results that will come out in this
second part, for the more general nonnegative case, may also expand the insights
and results for the stochastic case and queuing applications.
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2.2.2. Input-output models

In analogy with Section 2.2.1 from Part I, also continuous-time versions of the clas-
sical Leontieff’s input-output models in economic analysis have been studied in the
literature, as of the form:





0 = d+Ax ⇐⇒ x = lim
t→∞

xt (static case)

d
dtxt(i) = d(i) +

∑
j

a(i, j)xt(j), (i = 1, . . . , N) (dynamic case)

where

xt(j) = gross production of an industry (or sector) j at time t

d(j) = net (or final) demand (or output) of industry (sector) j

a(i, j) = attribution rate of the production xt(i) from industry i

for industry j.





With the interpretation that in the dynamic case the production (and consumption)
quantities of N industries (or sectors) with internal exchanges (productions for one
another) are in full balance as input and output (consumption and production) per
industry separately while in the static case the system is in economic equilibrium.

2.2.3. Reliability models

Reliability models have become of growing practical interest over the last two decades.
In such models the operability of a system is studied which consists of a number of
components which can individually break down, as well as possibly be repaired, at
rates which generally depend on the total state of the system, and thus the state of
other components. For example, in the front-end data base system as shown below
each of the individual components: front-end (FE), data base (DB), a processor, a
memory or a switch or just the whole system can individually break down.

Let xt denote the state of the system, which represents the components that are
up (working). Then xt is generally governed by a system of the form:

d
dt
xt = Axt

where A is a matrix determined by breakdown and repair rates, depending on the
present state. Here this matrix A is not necessarily purely stochastic (i. e. with row
sums equal to 0). It can be substochastic as the system may become totally inopera-
tive. With f(x) some operability function, for example counting the number of com-
ponents that are up (working), a typical question of interest is the time-dependent
behavior of f(xt). More precisely, time-monotonicity results for f(xt) may guar-
antee secure bounds, such as based on steady state bounds, for time-dependent
performance measures like the availability of components or the operability of the
system (see Figure 2 below).
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In fact, for the pure stochastic case such questions have been analyzed by stochas-
tic comparison results (e. g. [4, 6, 7, 9]). The extension of such results actually moti-
vated the research for this paper (both Part I and II). The results will be presented
in Section 5.
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Parametrization. To specify this primary motivational application of our re-
search more detailed, let us give a more detailed description and corresponding
parametrization of the generator A. This parametrization will used in Section 5.

Consider a reliability system with N components numbered 1, . . . , N , such as
illustrated in Figure 1. Each component can be in an up and down state. Let the
state
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H = {h1, h2, . . . , hn} ⊂ {1, . . . , N}
denote that components h1, h2, . . . , hn (say in increasing number order) are currently
down. Then in that state H either one of the following events may occur at rates:

α(H) : The total system may break down
δ(h|H) : A down component h ∈ H is repaired (for any h ∈ H)
β(h|H) : Another component h ∈/ H also goes down (for any h ∈/ H).

When the system has broken down, it can no more become operable. In order to
evaluate the operability level of the system at time t, we need to keep track of the
state H. Its corresponding generator matrix, where we identify i and j with H and
H
′
, is then given by:

a(H,H
′
) =





β(h|H), H
′

= H ∪ h all h ∈\ H
δ(h|H), H

′
= H/h all h ∈ H

−[α(H) +
∑
h∈/ H

β(h|H) +
∑
h∈H

δ(h|H)], H
′

= H.

(4)
As we do not take into account the broken down state of the total system, we thus
obtain a substochastic generator matrix with state dependent (nonnegative) row
sums −α(H) in state H.

3. UNIFORMIZATION OF NONNEGATIVE SYSTEMS

In order to extend the monotonicity and comparison results for the discrete-time case
to the continuous-time case, in this section we first present a generalized uniformiza-
tion result. To this end, also referring to Remark 3.1 below for a brief discussion on
its generality, we impose the following condition.

Condition 3.1. There exists a strictly positive eigenvector u forA with real eigen-
value λ 6= 0, that is:

Au = λu or equivalently (5a)

a(i, i)u(i)− λu(i) = −
∑

j 6=i
a(i, j)u(j) all i. (5b)

Remark 3.1. Except for special examples, Condition 3.1 is most naturally ful-
filled. More precisely, for finite irreducible nonnegative matrix this condition is
always trivially fulfilled by the Perron–Frobenius theorem (e. g. [1]). For the in-
finite or reducible case it need not be necessarily fulfilled. When A is finite and
reducible, Condition 3.1 is fulfilled if and only if each irreducible class which has
a real eigenvector less than λ has access to some irreducible class which has a real
eigenvalue λ.
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Remark 3.2. Normalized case λ = 0. The special case for which λ = 0, that is

a(i, i)u(i) = −
∑

j 6=i
a(i, j)u(j), for all i (6)

includes the pure stochastic case (for which u ≡ 1) as well as several non-stochastic
systems, most notably open and closed economic input-output models.

Now let the family of matrices {M t = (mt(i, j))| t ≥ 0} and the family of vectors
{W t| t ≥ 0} be defined by





d
dtM t = AM t, with M0 = I, the identity matrix, (7a)

d
dtW t = r +AW t, with W 0 = 0, the null vector. (7b)

The following lemma can then be regarded as a generalization of the standard
uniformization (or randomization) technique in the stochastic case (e. g. [5, 8]).

Result 3.1. Under Condition 3.1, let B <∞ such that

∑

j 6=i
a(i, j)

u(j)
u(i)

≤ B (8)

and define the nonnegative matrix M = (m(i, j)) by:

M =
(

1− λ

B

)
I +

1
B
A, (9)

i. e.

m(i, j) =





a(i,j)
B , j 6= i

(
1− λ

B

)
+ a(i,i)

B , j = i.
(10)

Then, for all t:

M t = eλt
∞∑

k=0

e−tB
(tB)k

k!
Mk (11)

and

W t =
∞∑

k=0

e−t(B−λ) (t(B − λ))k

k!
W k (12)

where
W k+1 =

1
B − λ r +

B

B − λMW k (k ≥ 0), W 0 = 0. (13)

P r o o f . The proof will follow in three steps. First, in Lemma 3.1 we show that the
system can be stochasticized. Next, in Lemma 3.2 we will then apply the standard
uniformization for Markov chains which will eventually lead to the expression (11).
Finally, in Lemma 3.3 expression (12) is proven. 2
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Lemma 3.1. Under Condition 3.1 there exists a unique probability transition
semigroup {P t} of a continuous-time Markov chain with generator Q = (q(i, j))
defined by:

q(i, j) =

{
a(i, j) u(j)

u(i) , j 6= i (14a)

a(i, i)− λ, j = i. (14b)

Furthermore, with U the diagonal matrix with elements u(i, j) = 0 for j 6= i and
u(i, i) = u(i) for all i, for M t (cf. (7a)) we have

M t = eλt (U P t U
−1). (15)

P r o o f . That Q is a stochastic generator is an immediate consequence of Condi-
tion 3.1. Next, by (14), note that

Q = U−1AU − λI (16a)

A = UQU−1 + λI. (16b)

By substituting (15) we thus obtain

d
dt

(M t) = eλ t U

(
d
dt
P t

)
U−1 + λ eλ t UP t U

−1

= eλ t (UQP t)U−1 + λ eλ t UP t U
−1

= (UQU−1)(eλ t I) (UP t U
−1) + λ (eλ t I)UP t U

−1

= [(U QU−1) + λ I] [eλt(U P t U
−1)] = AM t. (17)

By quoting the unique solution M t of the equation d
dt (M t) = AM t for given initial

matrix M0 = I, the proof is hereby completed. 2

Lemma 3.2. If Condition 3.1 and (8) hold, then (11) is valid for all t ≥ 0.

P r o o f . First note that by (6) and (8)

0 =
∑

j 6=i
a(i, j)

u(j)
u(i)

+ a(i, i)− λ ≤ (B − λ) + a(i, i), (18)

so that (
1− λ

B

)
+

1
B
a(i, i) ≥ 0. (19)

Hence, M defined by (9) is a nonnegative matrix. Furthermore, with Q as by (14)
we directly conclude from (8) that for all i:

∑

j 6=i
q(i, j) ≤ B <∞. (20)
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As a consequence, the corresponding stochastic semigroup {P t} from Lemma 3.1
can be transformed into a discrete expansion by virtue of the standard uniformization
(also called randomization) method (e. g. [5, 8]). This yields

P t =
∞∑

k=0

e−tB
(tB)k

k!
P k t ≥ 0 (21)

where P is the stochastic matrix defined by P = I +Q/B or equivalently

P (i, j) =





q(i, j)/B j 6= i

1−∑
j 6=i q(i, j)/B j = i.

(22)

Furthermore, by (9) and (14):

M =
(

1− λ

B

)
I +

1
B
A =

(
1− λ

B

)
I +

1
B

(
UQU−1 + λI

)

= I +
1
B
UQU−1 = U

(
I +

1
B
Q

)
U−1 = (UPU−1). (23)

Since also by repetition: (UPU−1)k = UP kU−1, we can thus conclude from
Lemma 3.1, (21) and (23)

M t = eλtUP tU
−1

= eλtU

( ∞∑

k=0

e−tB
(tB)k

k!
P k

)
U−1 = eλt

( ∞∑

k=0

e−tB
(tB)k

k!
UP kU−1

)

= eλt
∞∑

k=0

e−tB
(tB)k

k!
(UPU−1)k = eλt

∞∑

k=0

e−tB
(tB)k

k!
Mk. (24)

2

Lemma 3.3. Under the same conditions as in Lemma 3.2 (that is, Condition 3.1
and (8)), (12) holds for all t ≥ 0.

P r o o f . To verify that W t is a solution to (1b) or to (7b) written as

d
dt
W t = r +AW t (25)

we calculate d
dtW t. From (12) we get
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d
dt
W t = −(B − λ)W t + (B − λ)

∞∑

k=1

e−t(B−λ) (t(B − λ))k

k!
W k+1. (26)

By inserting (13) and (9) into (26) we conclude that

d
dt
W t = −(B − λ)W t + (B − λ)

{
1

B − λr +
B

B − λMW t

}

= −(B − λ)W t + r + [(B − λ)I +A]W t = r +AW t. (27)

2

By Result 3.1 we are now able to transform the monotonicity and comparison re-
sults for the discrete-time case, as developed in Part I, into those for the continuous-
time case. The various continuous-time results, with direct references to Part I for
proofs, will be provided in Section 4. Herein we restrict our presentation to mono-
tonicity and comparison results in one direction, leaving the other as obvious by
reversing signs.

4. MONOTONICITY AND COMPARISON RESULTS

4.1. Monotonicity results

Similarly to the discrete-time case in Section 3.1 of Part I and with the family of
matrices {M t| t ≥ 0} determined by (7), for given initial vector y define:

(M tf |y) :=
∑

i

y(i)mt(i, j)f(j) =
∑

i

y(i)M tf(i).

Then as a direct consequence of (11):

(M tf |y) = eλt
∞∑

k=0

e−tB
(tB)k

k!
(Mkf |y). (28)

Now, as in Part I, let M be a monotonicity class which is closed under M , i. e.

Mf ∈M for all f ∈M. (29)

Result 4.1. (Monotonicity in time) Let y be such that with M defined by (9):

(Mf |y) ≤ (f |y) ∀ f ∈M. (30)

Then for any f ∈M: [
(M tf | y)

eλt

]
↓ (t) (31)
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P r o o f . By Lemma 3.2 of Part I we directly conclude that

(Mkf | y) ↓ (k). (32)

To complete the proof, by (28) note that

(M t+sf |y)
eλ(t+s)

=
∞∑

k=0

e−(t+s)B [(t+ s)B)]k

k!
(Mkf |y)

=
∞∑

z=0

∞∑

u=0

e−tB
[tB]z

z!
e−sB

[sB]u

u!
(Mz+uf |y),

by virtue of its Poissonian expansion and conditioning up on epoch t. By (32) the
right hand side can be estimated from above by:

≤
∞∑

z=0

∞∑

u=0

e−tB
(tB)z

z!
e−sB

(sB)u

u!
(Mzf |y)

=
∞∑

z=0

e−tB
(tB)z

z!
(Mzf |y)

{ ∞∑

u=0

e−sB
(sB)u

u!

}
=

(M tf |y)
eλt

. (33)

2

Remark 4.1.1. For the special normalizable case (that is with λ = 0), as naturally
satisfied for instance for economic input-output systems, note that the monotonicity
in (31) also holds for (M tf |y).

Remark 4.1.2. Clearly, for λ > 0 we also conclude from (31): (M tf | y) ↓ t. This
case corresponds to the ‘instable’ case for which a limit as t→∞ does not generally
exists.

Corollary 4.1. Suppose that conditions (29) and (30) hold for some initial vector
y while in addition for some given function r ∈M and value r∞:

(Mkr|y)→ r∞.

Then
(M tr|y)
eλt

↓ r∞.

P r o o f . Immediate by (28) and Result 4.1. 2
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4.2. Comparison results

By virtue of the discrete Poissonian expressions (11) and (12), also comparison
results for the continuous-time case can directly be expressed in terms of the one-
step matrix M as in line with the discrete-time case in Part I, Section 3.

Consider two continuous-time dynamic nonnegative systems as in (1) with gen-
erators A and A, and suppose that condition (5) is satisfied for both A and A with
possibly different eigenvalues λ and λ. Furthermore, let B be such that (8) is also
satisfied with a(i, i) and u(i) replaced by a(i, i) and u(i). Define M and M as by
(9), that is

M =
(
1−B−1λ

)
+B−1A (34a)

M =
(
1−B−1λ

)
+B−1A (34b)

and letM⊂ {f : |S → R} (with S ⊂ S) such thatM is closed under both M and
M , i. e.:

Mf ∈M for all f ∈M
Mf ∈M for all f ∈M.

The following two results are then an immediate consequence of the expression
(9), and a combination of Result 4.1 and Corollary 4.1, from Part I (Result 4.2)
respectively Results 4.2 and 4.3 from Part I (Result 4.3).

Result 4.2. (Marginal and total reward case) If

Mf ≥Mf for all f ∈M. (35)

Then, for any f ∈M
M tf ≥M tf, t ≥ 0. (36)

W t ≥W t, t ≥ 0. (37)

Result 4.3. (Total reward case) Result (37) also holds if for the given reward
function r and all k ≥ 0 :

(r − r) + (M −M)W k ≥ 0 (38)

or for all i,
{ ∑

jm(i, j) =
∑
jm(i, j) and (39a)

(r − r)(i) +
∑
j [m(i, j)−m(i, j)][W k(j)−W k(i)] ≥ 0. (39b)
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Clearly under either the strong condition (35) or its relaxations (38) or (39) and
provided the limits exist, as in Corollary 4.1 of Part I, we can also conclude that

W ≥ W (40a)

G ≥ G. (40b)

However, in parallel with the discrete-time case in Section 4.3 of Part I a more
practical form for the average reward case, in analogy with the stochastic case, can
be given. To this end, similarly to the discrete-time case in Part I, assume that there
is a function µ(i) such that

∑

j

m(i, j)µ(j) = µ(i) ∀ i (41a)

∑

j

m(i, j)µ(j) = µ(i) ∀ i. (41b)

The following result is then immediate from the expansion (12) and Result 4.4
from Part I.

Result 4.4. (Average reward case) Under (41):

G ≥ G, provided the limits exist, (42)

if for all i and k:
(
r

µ
− r

µ

)
(i) +

∑

j

[m(i, j)−m(i, j)]
µ(j)
µ(i)

[
W k(j)
µ(j)

− W
k(i)

µ(i)

]
≥ 0. (43)

5. RELIABILITY MODEL

In this section we will study the reliability model, which initially motivated our
research, as introduced in Section 2.2.3. Although our primary interest concerned
the time monotonicity, as will be dealt with in Section 5.1, in Section 5.2 we will also
illustrate the possibility of comparison results for the purpose of illustration as well
as of possible practical interest by itself. A combination is given by Corollary 5.3.

5.1. Time monotonicity

Recall the notation and rate parametrization as given in Section 2.2.3.

Interest. We aim to investigate the behavior of (M tr|y) for appropriate initial
condition y and some given function r ∈M. For example, by

r(H) = N − |H|,
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with |H| the cardinality of H, we would simply count the number of up components,
as availability measure of the system. By y = 1{∅} we would represent a ‘perfect’
starting state of the system.

In order to study the monotonicity of this availability measure in time, we aim
to apply Result 4.1. The essential step to this end, is the verification of condition
(30) for a proper set of availability functions. Under Condition 5.1 below, this will
be established in Lemma 5.1.

First, we need to define some notation and an appropriate monotonicity class.
Let S be the set of states: S = {H|H ⊂ {1, . . . , N}} and for convenience write

H + h = H ∪ {h}, H − h = H \ {h}. As the operability status is our measure of
interest, it is natural to look at the subclass M :

M = {f : S → R| f(H + h) ≤ f(H) for all H,H + h ∈ S; f ≥ 0}.

Furthermore, note that necessarily there exists a negative eigenvalue λ (see e. g.
[1]) with minH α(H) < −λ < maxH α(H) and some corresponding positive eigen-
value u, satisfying (5), and let B be some sufficiently large number satisfying (8).
(In fact, the actual values of λ and B are not required but in the proof of Lemma
5.1 we will choose B sufficiently large.) Let M be the corresponding matrix as by
(9). The following lemma is crucial. This lemma shows that M is closed under M
under the natural monotonicity conditions as given by Condition 5.1.

Condition 5.1.

β(h|H + s) ≥ β(h|H) for any H, s and h /∈ (H + s) (44a)

δ(h|H + s) ≤ δ(h|H) for any H, s and h ∈ H (44b)

α(H + s) ≥ α(H) for any H, s. (44c)

Lemma 5.1. Under Condition 5.1, M is closed under M , i. e.:

Mf ∈M for any f ∈M.

P r o o f . By substituting (4) and (10) we obtain:

Mf(H) = B−1
∑
s∈/H

β(s|H)f(H + s)+

B−1
∑
s∈H

δ(s|H)f(H − s) +
(
1− λ

B

)
f(H)−

B−1

[
∑
s∈/H

β(s|H) +
∑

s∈H+h

δ(s|H) + α(H)

]
f(H)

(45)
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and

Mf(H + h) = B−1 P
s∈/H+h

β(s|H + h)f(H + h+ s)+

B−1 P
s∈H+h

δ(s|H + h)f(H + h− s) +
`
1− λ

B

´
f(H + h)−

B−1

"
P

s∈/H+h

β(s|H + h) +
P

s∈H+h

δ(s|H + h) + α(H + h)

#
f(H + h)

(46)

In expressions (45) and (46) now artificially add and subtract the following terms:

B−1[δ(h|H + h) +
∑

s∈/H+h

[β(s|H + h)− β(s|H + h)] f(H) in (45)

B−1[β(h|H) +
∑
s∈H

[δ(s|H)− δ(s|H + h)] f(H + h). in (46).

In addition, rewrite:

α(H) = α(H + h) + [α(H)− α(H + h)]
β(s|H + h) = β(s|H) + [β(s|H + h)− β(s|H)]
δ(s|H) = δ(s|H + h) + [δ(s|H)− δ(s|H + h)].

Then by subtracting (46) from (45), we find

Mf(H) −Mf(H + h)
= B−1[α(H + h)− α(H)]f(H)
+B−1

∑
s∈/H+h

β(s|H)[f(H + s)− f(H + h+ s)]

+B−1
∑

s∈/H+h

[β(s|H + h)− β(s|H)][f(H)− f(H + h+ s)]

+B−1
∑
s∈H

δ(s|H + h)[f(H − s)− f(H + h− s)]

+B−1
∑
s∈H

[δ(s|H)− δ(s|H + h)][f(H − s)− f(H + h)]

+[(1− λ
B )−B−1{α(H + h) +

∑
s∈/H+h

β(s|H + h) + β(h|H)

+
∑
s∈H

δ(s|H) + δ(h|H + h)}] [f(H)− f(H + h)].

(47)

Now note that so far we have only assumed, that a value B can be found such that
in state H + h: (

1− λ

B

)
+

1
B
a(H + h,H + h) ≥ 0.

However, we can also enlarge B such that

„
1− λ

B

«
−B−1

(
a(H + h,H + h) +B−1

"
β(h|H) +

X

s∈H
[δ(s|H)− δ(s|H + h)]

#)
≥ 0
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which corresponds exactly to the coefficient for [f(H)− f(H + h)] in (47). By also
writing

f(H − s)− f(H + h) = [f(H − s)− f(H + h− s)] + [f(H + h− s)− f(H + h)]

f(H)− f(H + h+ s) = [f(H)− f(H + h)] + [f(H + h)− f(H + h+ s)]

and recalling that

f(H)− f(H + h) ≥ 0 and f(·) ≥ 0, for all f ∈M

by substitution in (47) we have proven that for any H and H + h:

Mf(H)−Mf(H + h) ≥ 0.
2

Result 5.1. (Time monotonicity) Under the natural monotonicity Condition 5.1,
for any monotone reward function r ∈ M and starting with a ‘perfect’ system, i. e.
y = 1{∅}, we have

(M tr|y) ↓ (t). (48)

P r o o f . This is a direct consequence of Result 3.1 by also recalling that λ < 0 (so
that in fact even stronger results than (48) can also be achieved) provided equation
(29) is satisfied with y = 1{∅} and ≤ sign. To this end, let f ∈M. Then by (4):

(Mf |y) = Mf(∅) = B−1
∑

h

β(h|∅)f(h)

+

{(
1− λ

B

)
− 1
B

[∑

h

β(h|∅) + α(∅)
]}

f(∅) ≤ f(∅) = (f |y = 1{∅}).

where the inequality follows by virtue of the fact that f(∅) ≥ 0 while
∑
h β(h|∅)[f(h)−

f(∅)] ≤ 0. As condition (29) is hereby proven, the proof is completed. 2

Remark 5.1. (Dependent components) Results of the form (48) for reliability
systems have been reported in the literature Keilson and Kester [6], Stoyan [9] and
Massey [7])but only for the case of independent components, that is with δ(h|H)
and β(h|H) not depending on H.

Remark 5.2. (Essence of initial condition) Note here the essence of the specific
appropriate initial condition y, as announced earlier (see Part I, Section 3.1).

Special stochastic case

As a special case, consider the situation that α(H) ≡ 0 for all H. In other words,
the situation in which the system will always continue to operate. Under rather
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general stability assumptions a steady state value r∞ will then exist. This value can
be obtained by either

r∞ =
∑

H

π(H)r(H) (49)

and numerically solving the steady state equations:

π(H)

[∑

s/∈H
β(s|H) +

∑

s∈H
δ(s|H)

]

=
∑

s/∈H
π(H + s)δ(s|H + s)) +

∑

s∈H
π(H − s)β(s|H − s)) (50)

or by standard simulation. By virtue of Result 5.1 we would thus have established
a secure lower bound for the reward over time, as shown below.

Here the reward function might typically represent the ‘availability’ or ‘operability
level’ of the system.

5.2. Comparison results

To also illustrate the application of the general comparison results, as well as for its
interest in itself as indicated below, assume that the rates α, β and δ are modified
into α, β and δ such that for all H and s:

Condition 5.2. (Monotonicity condition)

α(H) ≥ α(H) (51a)
β(h|H) ≥ β(h|H) (h /∈ H) (51b)
δ(h|H) ≤ δ(h|H) (h ∈ H). (51c)

Intuitively, one may thus expect that the modified system will be less ‘available’ or
‘operable’ than the original system. However, one can construct counter-intuitive
examples at sample path basis. Formal results, therefore, have been provided on an
expectational basis by means of stochastic ordering results (see [8] and [9]. These
however, do not cover the general nonnegative case under investigation nor the
situation with component dependent components, as allowed above. A formal result
is therefore of interest.

To this end, we choose B = B by the general breakdown and repair rates as given
in Section 2.2.3, and with some restriction of generality, we also assume that λ = λ.
For example, when α(H) = α(H) = α independent of H (a state independent system
breakdown) this is easily verified, while α = α = 0 (no system breakdown) leads to
the pure stochastic case with λ = λ = 0. The essential comparison Result 3.3 then
applies as by
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Result 5.2. Under Condition 5.2 for any r ∈M and all t ≥ 0:

M tr ≤M tr. (52)

P r o o f . We need to prove the comparison condition (35). To this end, by recalling
(45) for the original and modified system we find

(Mf −Mf)(H)

= B−1
∑

s/∈H

[
β(s|H)− β(s|H)

]
f(H + s)

+B−1
∑

s∈H

[
δ(s|H)− δ(s|H)

]
f(H − s)

−B−1

{∑

s/∈H

[
β(s|H)− β(s|H)

]
+

∑

s∈H

[
δ(s|H)− δ(s|H)

]
}
f(H).

By reorganizing these terms and using that f ∈ M, i. e. [f(H − s) − f(H)] ≥ 0
while f(H + s) − f(H) ≤ 0, and by applying the monotonicity condition (51) we
easily verify (Mf −Mf) ≤ 0; i. e. condition (35). Application of Result 4.2 now
completes the proof. 2

By combining the monotonicity Result 5.1 and the comparison Result 5.2 and
assuming the existence of an asymptotic value r∞ for the modified system, the
following corollary is achieved. This corollary can be regarded as a main result for
practical interest, which motivated the research, as illustrated also by Figure 2.

Corollary 5.3. (Long run availability bound) Under the monotonicity and com-
parison Conditions 5.1 and 5.2, and under the assumption of the existence of an
asymptotic value r∞ for the modified system:

M tr(0) ↓ r∞.

Example. For example, for the stochastic case with α(H) = 0 for all H, and with
S the set of possible (admissible) states H, we could modify the original dependent
system into an independent system by:

β(h|H) = max
H∈S
{β(h|H)} =: β(h) all h

δ(h|H) = min
H∈S
{δ(h|H)} =: δ(h) all h (53)

for which the steady state equation (50) for the modified system directly leads to
the solution:

π(H) = c
∏

h∈H

[
βh
δh

]
for all H ∈ S. (54)
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The value r∞ is then directly computed as in (49). In fact, the form (54) also holds
if the components have individual repair and breakdown rates as in (53) but with
(natural) dependence, provided specific priorities are imposed that preserve the state
space of admissible states S (see [2], Chapter 7).

Accordingly, various modifications of the original unsolvable reliability model
can so be studied in order to provide simple secure lower bounds for the system
‘availability’ as based upon Corollary 5.3.
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