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KYBERNET IKA — VOLUME 41 (2005) , NUMBER 3 , P A G E S 3 2 9 - 3 4 8 

EXTENSION TO COPULAS AND QUASI-COPULAS 
AS SPECIAL 1-LIPSCHITZ AGGREGATION OPERATORS 

ERICH P E T E R KLEMENT AND ANNA KOLESÁROVÁ 

Smallest and greatest 1-Lipschitz aggregation operators with given diagonal section, 
opposite diagonal section, and with graphs passing through a single point of the unit cube, 
respectively, are determined. These results are used to find smallest and greatest copulas 
and quasi-copulas with these properties (provided they exist). 
Keywords: copula, quasi-copula, 1-Lipschitz aggregation operator, diagonal 

AMS Subject Classification: 60E05, 26B99 

1. INTRODUCTION 

Copulas (first mentioned in [17], for an excellent survey see [13]) and quasi-copulas 
(introduced in [1] and conveniently characterized in [9]) play a key role in the analysis 
of bivariate distribution functions with given marginals. The basic result in this 
context is Sklar's Theorem [17, 18] showing that the joint distribution of a random 
vector and the corresponding marginal distributions are linked by some copula. 

A current field of research is the extension of functions defined on a subset of the 
unit square, e.g., on its diagonal or in a single point, to quasi-copulas or copulas. 
Several results in this context can be found in [2, 7, 8, 14, 15, 19]. 

Aggregation operators form a rather new and very general framework to combine 
different pieces of information (for a recent survey see [3]), and many well-known 
operations in logic, probability theory, statistics, and decision theory fit into this 
concept. 

As a matter of fact, many results for copulas and quasi-copulas can be derived 
mainly because they are 1-Lipschitz aggregation operators [11]. Therefore, a careful 
study of such aggregation operators is helpful for the understanding of the structure 
of copulas and quasi-copulas, too. 

In this paper we look for 1-Lipschitz aggregation operators with given diagonal 
and opposite diagonal section, as well as those whose graphs pass through a single 
point of the unit cube. Each of these sets of 1-Lipschitz aggregation operators will 
be shown to have a smallest and a greatest element. 

These results can be carried over to the case of quasi-copulas with the correspond­
ing properties. Again, the sets of quasi-copulas with given diagonal and opposite 
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diagonal section, as well as those whose graphs pass through a single point of the 
unit cube, have a smallest and a greatest element. 

In several cases they also can be used to determine smallest and greatest copulas 
with the desired properties. However, some sets of copulas, e.g., the set of copulas 
with given diagonal section, do not always have a greatest element. 

2. PRELIMINARIES 

Recall that a (binary) aggregation operator is a function A : [0, l ] 2 —* [0,1] which is 
non-decreasing (in each component) and satisfies -4(0,0) = 0 and .4(1,1) = 1. 

An aggregation operator A satisfying the Lipschitz condition with constant 1, 
i.e., for &l\x\,x2,y\,y2 G [0,1] 

\A(x\,y\) - A(x2,y2)\ < \x\ - x2\ + \y\ - y2\, 

will be called a 1-Lipschitz aggregation operator. 
Many well-known binary aggregation operators, such as the arithmetic mean, the 

product, the minimum, the maximum, and weighted means are 1-Lipschitz aggre­
gation operators (for more details see, e.g., [3]). Also copulas and quasi-copulas are 
special 1-Lipschitz aggregation operators. 

A (two-dimensional) copula is a function C : [0, l ] 2 —> [0,1] such that C(0,x) = 
C(x,0) = 0 and C(l,x) = C(x, 1) = x for all x G [0,1], and C is 2-increasing, i.e., 
for all x\,x2,y\,y2 G [0,1] with x\ < x2 and y\ < y2 for the volume Vc of the 
rectangle [xi,X2] x [yi,2/2] we have 

Vc([x\,x2}x [y\,y2})=C(x\,y\)-C(x\,y2) + C(x2,y2)-C(x2,y\)>0. (2.1) 

A (two-dimensional) quasi-copula is a function Q : [0, l ] 2 —» [0,1] such that 
Q(0,x) = Q(x,0) = 0 and Q(l,x) = Q(x,l) = x for all x G [0,1], Q is non-
decreasing (in each component), and Q is 1-Lipschitz. 

Obviously, each copula is a quasi-copula but not vice versa, and a 1-Lipschitz 
aggregation operator A : [0,1]2 —> [0,1] is a quasi-copula if and only if -4(0,1) = 
.4(1,0) = 0 (see [11]) or, equivalently, if A < M, where the Frechet-Hoeffding upper 
bound M is given by M(x,y) = min(x,y). To simplify some formulas, we shall also 
use the infix notations x A y for min(x, y) and x V y for max(x, y). 

Each 1-Lipschitz aggregation operator A satisfies 

W < A<W\ (2.2) 

where the Frechet-Hoeffding lower bound W is given by W(x, y) = (x + y — 1) V 0, 
and its dual W*(x,y) = (x + y) A 1. Each quasi-copula Q satisfies 

W <Q<M, (2.3) 

and the same holds for copulas. 
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Note that each of the following sets of functions from [0, l ] 2 to R forms a lattice 
(with respect to the usual pointwise order): 

R | F is non-decreasing in the first component}, (2.4) 

R | F is non-decreasing in the second component}, (2.5) 

R | F is 1-Lipschitz}, (2.6) 

i.e., monotonicity and the 1-Lipschitz property are preserved under minimum and 
maximum (compare [11, 12]). 

Starting from a non-decreasing 1-Lipschitz function, it is possible to force the 
boundary conditions to obtain a 1-Lipschitz aggregation operator and a quasi-copula. 

L e m m a 2.1. 

(i) If F : [0, l ] 2 —> R is non-decreasing and 1-Lipschitz then 

(W V F) A W* = W V (F A W*) 

is a 1-Lipschitz aggregation operator. 

(ii) If A : [0, l ] 2 —» [0,1] is a 1-Lipschitz aggregation operator then M A A is a 
quasi-copula. 

P r o o f . Observe first that (WVF) AW* = W\/(FAW*) follows from W < W*. 
Since the sets in (2.4-2.6) are lattices, the functions (W V F) A W* and M A A 
are both non-decreasing and 1-Lipschitz. The respective boundary conditions are 
implied by W < (W V F) A W* < W* and by the fact that M A A is 1-Lipschitz. • 

The following concept is motivated by the Frank functional equation [5], originally 
studied and solved in the context of associative copulas (compare also [10, 16]): 

For each 1-Lipschitz aggregation operator A the function A* : [0, l ] 2 —* [0,1] 
given by 

A*(x,y) = x + y-A(x,y), (2.7) 

is also a 1-Lipschitz aggregation operator [11]. Clearly, for 1-Lipschitz aggregation 
operators A, B we have A* < B* if and only if A > B. 

3. 1-LIPSCHITZ AGGREGATION OPERATORS WITH GIVEN 
DIAGONAL SECTION 

Given a 1-Lipschitz aggregation operator A, its diagonal section 5A : [0,1] —• [0,1] 
given by SA(X) = A(x,x) necessarily satisfies the following properties: 

(Dl) 6A(0) = 0*nd5A(l) = 1, 

(D2) 5A is non-decreasing, 
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(D3) 5A is 2-Lipschitz. 

The question arises whether for each function 5 : [0,1] —• [0,1] satisfying proper­
ties (D1)-(D3) (briefly called a diagonal in the sequel) there is some 1-Lipschitz 
aggregation operator whose diagonal section coincides with 5. 

Clearly, for each diagonal 5 the functions A\,A2 : [0, l ] 2 —• [0,1] which are given 
by A\(x,y) = ^ ^ ™' and A2(x,y) = &(~^) are 1-Lipschitz aggregation operators 
with diagonal section 5. 

Moreover, it will turn out that the set of 1-Lipschitz aggregation operators with 
given diagonal section 5 always has a greatest element A and a smallest element 
A . As a consequence, each 1-Lipschitz aggregation operator A with A5 < A < A 
also has diagonal section 5. 

It is not difficult to see that for each 1-Lipschitz aggregation operator A, for all 
(x, y) e [0, l ] 2 and for each z G [x A y, x V y] we get 

A(x,y)<x\'y + 6A(z)-z. (3.8) 

The infimum of the right-hand side of this inequality turns out not only to be a 
1-Lipschitz aggregation operator, but the greatest 1-Lipschitz aggregation operator 
with diagonal section 5A-

Theorem 3.1. For each function 5 : [0,1] -+ [0,1] satisfying (D1)-(D3), the 
function A5 : [0, l ] 2 -> [0,1] defined by 

A (x, y) = x V y + f\ {5(z) - z | z e [x A y, x V y]} 

is the greatest 1-Lipschitz aggregation operator with diagonal section 5. 

P r o o f . Obviously, the diagonal section of A coincides with S, and the boundary 
conditions A* (0,0) = 0 and A (1,1) = 1 hold. 

Since the function A is commutative it suffices to prove its monotonicity in the 
first component. Fix arbitrary numbers x\,x2,y e [0,1] with x\ < x2 and consider 
the following three cases. 

(i) If y < %i < x2 then we have 

A (x2,y) = / \{5(z) + x2-z\ze[y,x2]} 

= f\{5(z) + x2-z | ze [y,x\]}Af\{6(z) + x2-z | ze [x\,x2]} 

= (x2-x\+A (x\,y)) A /\{6(z) + x2 - z\z e [x\,x2]} 

> (x2 - x\ + A (x\,y)) A 6(x\) 

> A (x\,y) 

s 
because of f\ {5(z) +x2- z\z e [x\,x2]} > 5(x\) > A (x\,y). 
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(ii) If x\ < x2 < y then we get 

A6(x2,y) = f\{6(z) + y-z\z£[x2,y}} 

> f\{S(z) + y-z\ze[x\,y}} 

= A (x\,y). 

(iii) If x\ < y < x2, the first two cases imply 

A (x2,y) >A6(y,y) >AS(x\,y). 

These cases together prove the monotonicity of A in its first component. 
Because of the commutativity of A it suffices to prove the 1-Lipschitz property 

of A in its second component. Fix again arbitrary numbers x\,x2,y E [0,1] with 
x\ < x2 and consider the following three cases. 

(i) If y < -Ci < %2, then similarly as in the corresponding case in the proof of the 
monotonicity of A we get 

A (x2,y) = (x2-x\+A (x\,y)J A /\{6(z)+x2 -z\z£ [x\,x2]} 

< A (x\,y) + x2 -x\. 

(ii) If x\ < x2 < y then we get, taking into account that the function 6 is 2-
Lipschitz, 

r<5/ 
A (xuy) = A {x2,y)Af\{5(z) + y-z\ze[xi,x2}} 

> A (x2,y)A(A (x2,y)-(x2-x\)) 

= A (x2,y)- (x2 -x\), 
C C 

i.e., A (x2,y) < A (x\,y) + x2 — x\, because of 

/\{6(z) + y- z | z e [x\,x2]} > 6(x2) + y-x2-(x2 - x\) 

> f\{S(z) + y- z | z e [x2,y]} - (x2 -x\) 

= A (x2,y)-(x2 -x\). 

(iii) If x\ < y < x2, then the first two cases imply 

A5(x2, y) = A5(x2, y)-A (y, y) + A (y, y) 

< x2-y + A (x\,y) + y-x\ 

= A (x\,y) + x2-x\. 

Cases (i)-(iii) show that A is 1-Lipschitz in its second, component. 
Finally, since (3.8) holds for all z G [x Ay,x V y], A is the greatest 1-Lipschitz 

aggregation operator whose diagonal section coincides with 5. • 
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Fig. 1. Domain, contour and 3D plots of the smallest (top) and greatest 1-Lipschitz 
aggregation operators with diagonal section OTI (see Example 3.3 (iii)). 

For each diagonal S, the function S* : [0,1] —> [0,1] defined by S*(x) = 2x — S(x) is 
also a diagonal. Moreover, a 1-Lipschitz aggregation operator A has diagonal section 
5 if and only if A*, as defined by (2.7), has diagonal section S*. 

Since the transition from A to A* reverses the order between aggregation opera­
tors, we get immediately the following result concerning smallest 1-Lipschitz aggre­
gation operator with given diagonal section. 

Corollary 3.2. For each function 5 : [0,1] -> [0,1] satisfying (D1)-(D3), the 
function A5 : [0, l ] 2 -* [0,1] defined by 

A5(x,y) =xAy + \J {5(z)-z \ z e [x A y,x V y}} 

is the smallest 1-Lipschitz aggregation operator with diagonal section S. 

(3.9) 

-rí* Note that this means (A5)* = A° and (A )* = A5*. Let us illustrate these 
results for the diagonal sections of the Frechet-Hoeffding bounds M and W, for the 
product n and for some other diagonal. 

Example 3.3. Consider the diagonal sections 5M,S\V, Sn : [0,1] —•> [0,1] of M, W 
and n given by SM(%) = x, Sw(x) = (2x - 1) V 0 and 5n(x) = x2, respectively. 
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(i) The greatest and smallest 1-Lipschitz aggregation operators A.6M and A6M 

with diagonal section SM are M* and M, respectively. 

(ii) The greatest 1-Lipschitz aggregation operator A w with diagonal section Sw 
is given by 

A5w(x,y) = { W{-X^ i f ( ^ y ) e [ o , i ] 2 u ] i , i ] 2 , 
[ xV y — ^ otherwise. 

Obviously, W is the smallest 1-Lipschitz aggregation A6w operator with diag­
onal section 5w> 

(iii) The greatest 1-Lipschitz aggregation operator A n and the smallest 1-Lipschitz 
aggregation operator A6n with diagonal section o*n are given by 

A п (x, y) = < 

( ar2 Vy2 if (x,y) € [0, \]\ 

'x - y\ + x2 A y2 if {x,y) 6 ] \, l ] 2 , 
^ V y — \ otherwise. 

ASn(x ) = I x2^V2 ifx + y<l, 
-~ v ' ' \ x2 V y2 - |x - y\ otherwise. 

Observe that we have the strict inequalities A6n < U < A n . 

Example 3.4. Consider the function S : [0,1] —> [0,1] defined by 

S(x) = (2x - 1) V (x - \) V 0. (3.10) 3' 

Clearly 5 satisfies (D1)-(D3), and the greatest 1-Lipschitz aggregation operator A 
and the smallest 1-Lipschitz aggregation operator A with diagonal section S are 
given by 

A5
{x,y) = fw{x,y) if(x,y)G[0,I]2u[|,l]2 , ( 3 n ) 

| x V y — | otherwise, 

A'(x,y) = [ XAy-l i f ^ 2 l ) e [ i l ] 2 ' (3.12) 
I W(x,y) otherwise. 

4. 1-LIPSCHITZ AGGREGATION OPERATORS WITH GIVEN 
OPPOSITE DIAGONAL SECTION 

In this section we show that also the set of 1-Lipschitz aggregation operators with 
given opposite diagonal section possesses a greatest and a smallest element. 
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Fig. 2. Smallest (left) and greatest 1-Lipschitz aggregation operators with diagonal 
section 5 (see Example 3.4). 

Given a 1-Lipschitz aggregation operator A, then its opposite diagonal section 
UJA : [0,1] —> [0,1] is defined by U>A(X) = A(x, 1 — x). For an arbitrary 1-Lipschitz 
aggregation operator A we can only say that uA is a 1-Lipschitz function from [0,1] 
to [0,1]. 

It is not difficult to see that, as a consequence of its monotonicity and its 1-
Lipschitz property, for each 1-Lipschitz aggregation operator A and for all (x, y) G 
[0, l ] 2 we have 

A(x, y) < W(x, y) + f\{uA{z) \ z € \x A (1 - y), x V (1 - y)}}. (4.13) 

Again, we start with an arbitrary 1-Lipschitz function u : [0,1] —•> [0,1] and look 
whether there is some 1-Lipschitz aggregation operator A such that for all x G [0,1] 
we have u(x) = A(x, 1 — x), i. e., whose opposite diagonal section coincides with u, 
and try to identify the greatest and smallest 1-Lipschitz aggregation operators with 
this property, provided they exist. 

Motivated by (4.13), we obtain the following result: 

Proposition 4.1. For each 1-Lipschitz function u : [0,1] —> [0,1], the function 
Fu : [0, l ] 2 -+ R defined by 

F„(x, y) = W(x, y) + f\{u(z) \ z G [x A (1 - y), x V (1 - y)]} (4.14) 

is a non-decreasing 1-Lipschitz function with FUJ(x, 1 — x) = to(x) for all x G [0,1]. 

P r o o f . The monotonicity and the 1-Lipschitz property of Fu can be shown in a 
similar way as in the proof of Theorem 3.1. Evidently, Fu(x, 1 - x) = tv(x) for all 
xG[0 , l ] . • 

For example, for the trivial functions u0,ui : [0,1] -> [0,1] given by u>0(x) = 0 
and ui(x) = 1 we obtain FUQ = W and FUl = W + 1. Note that FWl is not an 
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aggregation operator because of Ran(Fu>1) = [0,2]. Indeed, in general we only know 
F„(0,0) > 0 and F w ( l , l ) > 1. Therefore, the function Fw defined by (4.14) is a 
1-Lipschitz aggregation operator if and only if it satisfies the boundary conditions 
for aggregation operators: 

Proposition 4.2. Let u : [0,1] —> [0,1] be a 1-Lipschitz function and assume that 
Fu : [0, l ] 2 -> R is as in (4.14). Then the function A^ : [0, l ] 2 -> [0,1] defined by 

ALJ = FbJAW* (4.15) 

is the greatest 1-Lipschitz aggregation operator with opposite diagonal section u. 

P r o o f . That A^ is a 1-Lipschitz aggregation operator follows from Proposi­
tion 4.1 and Lemma 2.1, taking into account W < F^. Clearly Au(x, 1 — x) = u(x) 
for each x G [0,1], and due to (4.13) and (2.2), Au is the greatest 1-Lipschitz aggre­
gation operator with this property. • 

As an immediate consequence of Proposition 4.2 we get: 

Corollary 4.3. Let u : [0,1] —+ [0,1] be a 1-Lipschitz function. The function 
Fu - [0, l ] 2 —> [0,1] defined by (4.14) is the greatest 1-Lipschitz aggregation operator 
with opposite diagonal section u if and only if u satisfies /\{u(z) \ z G [0,1]} = 0. 

Note that a 1-Lipschitz aggregation operator A has opposite diagonal section UA 
if and only if the 1-Lipschitz aggregation operator A* given by (2.7) has opposite 
diagonal section UA*, the latter being given by UA*(X) = 1 — UA(X). 

Since the transition from A to A* reverses the order between aggregation op­
erators, for each 1-Lipschitz function u : [0,1] —•> [0,1] the smallest 1-Lipschitz 
aggregation A^ operator with opposite diagonal section is given by A^ = ( A J * ) , 
where u*(x) = 1 — u(x). To be precise, in analogy to Propositions 4.1 and 4.2 and 
Corollary 4.3 we get: 

Corollary 4.4. Let u : [0,1] —• [0,1] be a 1-Lipschitz function. 

(i) The function G^ : [0, l ] 2 -> R defined by 

G„(x, y) = W*(x, y) - 1 + \J{u(z) \ z G [x A (1 - y), x V (1 - y)}} (4.16) 

is a non-decreasing 1-Lipschitz function with Gu(x, 1 — x) = u(x) for all x G 
[0,1]. 

(ii) The function A^ : [0, l ] 2 -> [0,1] defined by A^ = Gu MW is the smallest 1-
Lipschitz aggregation operator with opposite diagonal section u. 

(iii) The function G^ is the smallest 1-Lipschitz aggregation operator with opposite 
diagonal section u if and only if \}{u(z) \ z G [0,1]} = 1. 
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Fig. 3. The smallest (top) and greatest 1-Lipschitz aggregation operators with opposite 
diagonal section u>n (see Example 4.5 (iii)). 

Example 4.5. Consider the opposite diagonal sections u>w, % , ^n • [0,1] —» [0,1] 
of W, M and II given by UJW(X) = 0, CJM(Z) = x A (1 - x) and o;n(-c) = x • (1 — x), 
respectively. 

(i) W is the only 1-Lipschitz aggregation operator with opposite diagonal section 

(ii) The smallest 1-Lipschitz aggregation operator with opposite diagonal section 
u>M is ((0, 5, W), ( | , 1 , W ) ) , i.e., an ordinal sum of two copies of the Frechet-
Hoeffding lower bound W. It can be shown that M is the greatest 1-Lipschitz 
aggregation operator with opposite diagonal section COM-

(iii) The greatest 1-Lipschitz operator A(JJU and the smallest 1-Lipschitz operator 
AWn with opposite diagonal section wn are given by 

AJП(X,У) = 
(x A y) • (1 - x A y) if x + y < 1, 

W(x, y) + (x V y) • (1 - x V y) otherwise, 
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Fig. 4. The smallest (left) and greatest 1-Lipschitz aggregation operators with opposite 

diagonal section u> (see Example 4.6). 

A.,Jx,y) ^ Щ Ц ' 

(x + y - f ) V 0 if(. 

(x + y - l ) V 

x(l — x) 

y(i - y) 

y - ( l - x ) 2 

x - ( l - y ) 2 

k W(x,y) 

if(x,y)<=[0,\}2, 

if (x,y)e]\,l]2, 

if x 6 [0, \] and y € ] 1 - x, 1 - x 2 ] , 

if y 6 [0, ±] and x e ] 1 - y, 1 - y 2 ] , 

if x € ] ±, 1] and y G [(1 - x) 2 ,1 - x] , 

i f y e ] i , l ] a n d x G [(1 - y)2 ,1 - y], 

otherwise. 

Example 4.6. Consider the 1-Lipschitz function w : [0, l]_-> [0,1] defined by 
UJ(X) = x A (1 — x) A | . The greatest 1-Lipschitz operator Aw and the smallest 
1-Lipschitz operator A^ with opposite diagonal section u are given by 

(f.f.K')). 

A„(x,y) = x A i / A ^ x + y - l j V O ^ A K x + y - l J v i j . 

5. 1-LIPSCHITZ AGGREGATION OPERATORS DETERMINED 
IN A SINGLE POINT 

Now we look for smallest and greatest 1-Lipschitz aggregation operators whose 
graphs pass through a point (x0,y0,z0) e [0, l ] 3 , and we shall show that the set 
of all 1-Lipschitz aggregation operators with this property has a greatest and a 
smallest element. 

Because of (2.2) it is clear that 

x0 + 2/0 - 1 < z0 < x0 + y0 (5.17) 
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is a necessary condition for the existence of such 1-Lipschitz aggregation operators. 
If (x0,yo,zo) 6 [0, l ] 3 then the functions ZXo'yo'Zo,Lx°'yo'z° : [0, l ] 2 -> R given by 

T°'yo'Zo(x,y) = Zo + (x-Xo)yo + (y-yo)WO, 

LXo'yo'Zo(x,y) = zQ + (x-Xo)A0 + (y-yo)A0, 

obviously are the greatest and the smallest non-decreasing 1-Lipschitz functions, 
respectively, whose graphs pass through the point (a;o, yo, zo)- By definition we have 
Lxo'yo'z° < W* and W < LXO'VO'ZO. 

Proposition 5.1. Let (xo,yo,zo) G [0, l ] 3 such that (5.17) holds. Then the func­
tions Axo'yo'zo, AXo'yo'Zo : [0, l ] 2 -» [0,1] defined by 

-rzo,2/o,zo _ TT-* y z o , y o , z o 

1^o,Уo,zo W V LXO}Уo,Zo 

are the greatest and smallest 1-Lipschitz aggregation operators, respectively, whose 
graphs pass through the point (x0,y0,z0). 

P r o o f . This is an immediate consequence of Lemma 2.1 (i). • 

Proposition 5.2. Assume that (x0,y0,z0) G [0, l ] 3 satisfies (5.17). Then we have: 

(i) The 1-Lipschitz aggregation operator Ax°'yo'Zo has neutral element 1 if and 
only if z0 <x0 Ay0. 

(ii) The 1-Lipschitz aggregation operator Ax°'Vo'z° has neutral element 0 if and 
only if z0>x0Wy0. 

P r o o f . In order to show (i) assume first that 1 is the neutral element of AXOyy0}Zo. 
Then for all x £ [0,1] we have x = AX0}V0}Z°(x, 1) = (z0 + (x - x0) A 0) V x, which 
implies z0 + (x — x0) A 0 <x for all x G [0,1]. Putting x = x0 we obtain zo < x0. 
Similarly, from the equality AXo'yo'Zo(l,y) = y for all y G [0,1] we derive zo < yo, so 
zo < x0 A 2/0. 

Conversely, if zo < x0 A y0 holds then for each xG [0,1] 

A-~(-.i,-(.,+(x-*)A.,vx-{ i:vr*o)vx ;[:;:: }--• 
Similarly, we obtain AXo'y0yZo(l,y) = y for all y G [0,1], i.e., 1 is the neutral element 
of Ax°'yo'Zo 

The proof of (ii) is analogous. • 
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Example 5.3. If we are looking for 1-Lipschitz aggregation operators A whose 
graphs pass through a certain point (x0,x0,z0) on the diagonal section, i.e., satis­
fying A(x0,x0) = z0, we necessarily must have (2x0 - 1) V 0 < z0 < 2x0 A 1 because 
of (5.17). 

Then the greatest diagonal SXQtZo and the smallest diagonal <JXO|Zo of a 1-Lipschitz 
aggregation operator containing (x0,x0, z0) are given by 

Sxo,z0(x) = ( z 0 V ( z 0 + 2( : r -xo) ) )Л2: rЛl , 

õx0,z0(x) = (2 O Л(z 0 + 2 ( x - x o ) ) ) V ( 2 a ; - l ) V 0 , 

and A x°'z° and A x°,z° are the greatest and smallest 1-Lipschitz aggregation oper­
ators whose graphs pass through the point (x0,x0,z0), respectively. 

6. CONSEQUENCES FOR QUASI-COPULAS 

Most results of Sections 3-5 can be carried over to the case of quasi-copulas. In 
particular, each of the sets of quasi-copulas with given diagonal section, with given 
opposite diagonal section, and whose graphs pass through a single point of the unit 
cube, respectively, always has a greatest and a smallest element. 

Each quasi-copula Q is a 1-Lipschitz aggregation operator bounded from above 
by M. Therefore its diagonal section SQ : [0,1] —> [0,1] satisfies the conditions 
(D1)-(D3) and, additionally, 

(D4) SQ<id[0A]. 

For each diagonal S in this context, i.e., a function S : [0,1] —• [0,1] satisfying 
(D1)-(D4), the functions Qi,Q2 : [0,1] -+ [0,1] given by 

Ql(x,y) = M(x,y)ASM+M, 

Q2(x,y) = M(x,y)A8(^) 

are quasi-copulas with diagonal section S. 
Now we can use our results for 1-Lipschitz aggregation operators to obtain the 

greatest and the smallest quasi-copula with a given diagonal section (introduced in 
[15]). 

Proposition 6.1. For each function <5_ [̂0,1] -> [0^1] satisfying (D1)-(D4), the 
function Q : [0,1] —> [0,1] defined by Q = M A A is the greatest quasi-copula 
with diagonal section 5. 

P r o o f . This is an immediate consequence of Theorem 3.1 and Lemma 2.1 (ii).D 

Since the smallest 1-Lipschitz aggregation operator A6, as defined in (3.9), with 
diagonal section 5 (satisfying (D1)-(D4)) is always a quasi-copula, we obtain the 
following result. 
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Fig. 5. Greatest quasi-copulas with diagonal sections Sw (left), on (center), and S (see 
Examples 6.3 (ii) -(iii) and 6.4). 

Proposition 6.2. For each function 5 : [0,1] —> [0,1] satisfying (D1)-(D4), the 
function A defined by (3.9) is the smallest quasi-copula with diagonal section S. 

Example 6.3. 

(i) M is the only quasi-copula with diagonal section SM • 

^ (ii) The greatest quasi-copula Q with diagonal section Sw is given by 

Q5w(x,y) = < 

{ W(x,y) i f ( x ) 2 / ) € [ 0 , I ] 2 u ] i , l ] 2 , 

M{x,y) i f | x - y | > | , 

x V y — \ otherwise. 

Tфu 
(iii) The greatest quasi-copula Q with diagonal section on is given by 

x2 \Jy2 iíx2Vy2 < x Ay < x V y < \, 

if x Ay < \ <x\/y<xAy+\, Q5"fx \ = ) x y y ~ i 
[XlV) * \x-y\+x2 Ay2 if \ < x A y < x V y < 2(x A y) - x2 A y2, 

M(x,y) otherwise. 

Example 6.4. Let 5 : [0,1] —> [0,1] be again the diagonal defined by (3.10) which 
obviously satisfies also (D4). The greatest quasi-copula Q with diagonal section S 
is given by 

Q5(x,y) = { 

' W(x,y) i f ( x , y ) G [ 0 , i ] 2 U [ | , l ] 2 , 

M(x,y) i f | x - y | > i , 

x V y — 5 otherwise. 

(6.18) 
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Turning our attention to quasi-copulas with given opposite diagonal section, note 
first that the opposite diagonal section UQ of each quasi-copula Q must be a 1-
Lipschitz function satisfying u>w < ^Q < ^M because of (2.3). Note also that an 
arbitrary 1-Lipschitz function u> : [0,1] —> [0,1] satisfies 0 < LO(X) < x A (1 - x) for 
each x E [0,1] if and only if u>(0) = u(l) = 0. 

Proposition 6.5. Let u : [0,1] —• [0,1] be a 1-Lipschitz function such that u;(0) = 
w(l) = 0. Then we have: 

(i) The function Fu : [0, l ] 2 —> [0,1] defined by (4.14) is the greatest quasi-copula 
with opposite diagonal section u. 

(ii) The function A^ : [0, l ] 2 -> [0,1] defined by A^ = Gw VVV, with G„ : [0, l ] 2 -* 
[0,1] as in (4.16), is the smallest quasi-copula with opposite diagonal section u. 

P r o o f . Because of Corollary 4.3, the function Fu is the greatest 1-Lipschitz 
aggregation operator with opposite diagonal section oJ, and because of Fw(0,1) = 
FW(1,0) = 0 it is the greatest quasi-copula with this property. The proof of (ii) is 
analogous, using Corollary 4.4 (ii). • 

Example 6.6. As a consequence of Proposition 6.5, all the greatest and smallest 
1-Lipschitz aggregation operators with opposite diagonal sections u>w, <^M> ^n (con­
sidered in Example 4.5) and u> (considered in Example 4.6), respectively, are also the 
greatest and smallest quasi-copulas with the respective opposite diagonal section. 

As an immediate consequence of Propositions 5.1 and 5.2, we have the following 
results for quasi-copulas determined in a single point (compare [15]). 

Corollary 6.7. Let (x0,2/o, zo) e [0, l ] 3 . If x0 + y0 -1 < z0 < x0 Ay0 then Ax°^z» 
and M A A are the smallest and £ 
graphs pass through the point (XQ, 2/o, z0) 
and M A Ax°'yo,z° are the smallest and greatest quasi-copulas, respectively, whose 

Example 6.8. Any quasi-copula Q whose graph is passing through some point 
(x0yx0,z0) on the diagonal, i.e., satisfying Q(x0,x0) = z0 with (2xo — 1)V0 < z0 < x0 

because of W < Q < M, has a diagonal section SQ such that SXo^Zo < 5Q < SXOfZo, 
where 5Xo,Zo and 8XOiZo are given by 

<5*o,zo0*0 = (*o V (z0 + 2(x - x0))) A x, 
5xo,zo(x) = (z0A(zo + 2 ( x - x 0 ) ) ) V ( 2 x - l ) V O . 

Consequently, Q x°'z° and Q^x°'z° are the greatest and smallest quasi-copulas whose 
graphs pass through the point (xo,xo,zo), respectively. 
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Fig. 6. Two incomparable copulas with diagonal section 5: the maximal copula Cc (left) 
and the non-commutative copu\a C given in Example 7.L 

A closer look shows that each quasi-copula with diagonal section SXl)iZo has an 
ordinal sum structure ((zo,2xo — ZQ,Q)) (see [10, 13, 16]), where Q is some quasi-
copula with diagonal section S\y. In particular, we have 

Q 5 — = ( 0 o , 2 * 0 - г o , QSw)). (6.19) 

7. CONSEQUENCES FOR COPULAS 

There are several methods to construct copulas with given diagonal section. If 
5 : [0,1] -> [0,1] is a diagonal satisfying (D1)-(D4), then from [7, 13, 14] we know 
that the function Cc : [0, l ] 2 —• [0,1] given by 

-^s Cc(x,y) = M(x,y)Л 
ô(x) + 5(y) 

is a commutative copula with diagonal section 5. It is called a diagonal copula, and 
it is the greatest commutative copula with diagonal section S. 

Moreover, Cc is also a maximal copula with diagonal section S. To'see this, 
assume that C is a (necessarily, non-commutative) copula with diagonal section S 
such that C > Cc. But then Cc defined by Cc(x,y) = \ (C(x,y) + C(y,x)) is a 
commutative copula with diagonal section 5 and Cc> Cc, which is a contradiction. 

We also mention that in [6] it was shown that an Archimedean copula is uniquely 
determined by its diagonal section S whenever ^ ' ( l - ) = 2. 

However, in general there is no greatest element in the set of copulas with diagonal 
section 5. In [15, Theorem 3.4] it was shown that there is a greatest copula with 
diagonal section S if and only if Q = Cc. 

The following is a copula with diagonal section 5 which is incomparable with the 
maximal copula Cc: 
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Example 7.1. Let 5 : [0,1] —> \0,1] be again the diagonal defined by (3.10), and 
consider the function C : [0, l ] 2 —> [0,1] given by 

C(x y) = I ^ ( X ' y ) lf X - V' (7 20) 
1 A5(x,y) otherwise, 

S c 

where Q and A are defined by (6.18) and (3.12), respectively. Then C is a copula 
(in fact, it is a shuffle of M [13]) with diagonal section 5 which is non-commutative 
and incomparable with Cc since we have, on the one hand, C c ( | , JQ) > C(§, y^) 
and CC(JQ, ~ ) < C(j$, ±§), on the other hand. 

Note that, for general diagonal sections 5, functions C as constructed in (7.20) 
need not be copulas. 

It was shown in [2, 8] (compare also [13, 15]) that A5 (which is called a Bertino 
copula) is the smallest (commutative) copula with diagonal section 5. This result 
can easily be derived from Corollary 3.2 and Proposition 6.2: 

Corollary 7.2. For each function 5 : [0,1] -> [0,1] satisfying (D1)-(D4), the 
function A given by (3.9) is the smallest copula with diagonal section 5. 

If, for a diagonal section 5 : [0,1] —•» [0,1] there is some XQ G [0, ^] such that 
5(x) = 0 for all x G [0,£n] and (5 — id[0ii])|[XOfi] is non-decreasing, then it was shown 
in [4] that A5 has the following simple form: 

A5(x,y) = (5(x V y) - \x - y\) V 0. 

The greatest quasi-copula with given opposite diagonal section (given in Propo­
sition 6.5) even turns out to be a copula: 

Proposition 7.3. Let u : [0,1] —• [0,1] be a 1-Lipschitz function such that u(0) = 
u(l) = 0. Then the function F^ defined by (4.14) is the greatest copula with opposite 
diagonal section u. 

P r o o f . As a consequence of Proposition 6.5 it suffices to prove that Fu is 2-
increasing. 

Consider first a square R\ = \x\,x2} x [1 — X2,1 — x\}. Then from the continuity 
of a; it follows that f\{u(z) \ z G [xi-a^]} = U(ZQ) for some ZQ G [X1.X2], and by the 
1-Lipschitz property of u we get U(X2) — U(ZQ) < X2~ZQ and u(x\)— U(ZQ) < ZQ — X\, 
leading to 

VFU(RI) = X2-XI - v(xx) - u(x2) + 2 f\{u(z) | ze \xi,x2}} > 0. 

If R2 = [X1-X2] x \y\,y2] is a rectangle with 1 - y2 < 1 - y\ < x\ < x2, then 

VF„{R*) = /\Mz)\ze[l~y1,x1}}-/\{u(z)\ze[l-yi,x2}} 

+ /\{v(z) \ze[l- y2,x2}} - f\{u(z) I ze [1 - y2 ,*i]}-



346 E. P. KLEMENT AND A. KOLESAROVA 

Choose z0 € [1 — 2/2,^2] such that /\{u(z) \ z € [1 - y 2 , z 2 ] } = V(ZQ). As a con­
sequence of [1 - y2,x2] = [1 - y2 ,1 - yi] U [1 - yi,xi] U [^i,x2], we distinguish the 
following three cases: 

(i) If z0e[l- y2 ,1 - yi], then [1 - yi ,zi] C [1 - yux2] implies 

VFM) = /\{w{z) \ze[l- yi,*i]} - /\{u(z) \ze[l- yi,x2)} > 0. 

(ii) If z0e[l- y i ,xi] , then VF„(R2) = 0. 

(iii) If zo £ [X1.X2], then because of [1 — yi,£i] C [1 - y2,xi] we obtain 

VFM) = /\Mz) \ze[l- yi,xi]} - /\{u(z) \ze\l- y2 ,xi]} > 0. 

If I?3 = [xi,X2] x [2/1,2/2] 1s a rectangle such that x\ < x2 < 1 — y2 < 1 — yi, then 
VFU(RS) > 0 can be shown in complete analogy. 

Any other rectangle R C [0, l ] 2 is a union of finitely many rectangles of types 
I?i, R2 and #3, and the inequality VFUJ(R) > 0 follows from the additivity of the 
measure Vpw • • 

Example 7.4. 

(i) As a consequence of Propositions 6.5 and 7.3, each greatest 1-Lipschitz ag­
gregation operator with opposite diagonal section uw, ^M, ^n (considered 
in Example 4.5) and u (considered in Example 4.6), respectively, is also the 
greatest copula with the respective opposite diagonal section. 

(ii) The smallest 1-Lipschitz aggregation operators with opposite diagonal sections 
LJW and U>M (considered in Example 4.5), respectively, are also the smallest 
copulas with the respective opposite diagonal section. 

(iii) The smallest 1-Lipschitz aggregation operator AWu with opposite diagonal sec­
tion u;n (considered in Example 4.5) is the smallest quasi-copula with this 
property because of Proposition 6.5, but not a copula because of 

--»(§• is) - -- (!• i s ) + -» ( ! • is) - --»(i- is) - -01171875 < °-
(iv) Similarly, the smallest 1-Lipschitz aggregation operator A^ with opposite di­

agonal section u (considered in Example 4.6) is the smallest quasi-copula with 
this property, but not a copula because of 

Mil) -Mil)+Mll) -Mil) = ~l<0-
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R e m a r k 7 .5 . The greatest quasi-copula Q w with diagonal section 5\y (see Ex­
ample 6.3 (ii)) is a shuffle of M [13] and, therefore, also the greatest copula Q w 

with diagonal section 0V. As a consequence, the function Q x°'z° given in (6.19) is 
the greatest copula whose graph passes through the point (xo,xo, zn). 
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