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NON-LINEAR OBSERVER DESIGN METHOD 
BASED ON DISSIPATION NORMAL FORM 1 

VÁCLAV Č E R N Ý A N D J O S E F H R U Š Á K 

Observer design is one of large fields investigated in automatic control theory and a lot 
of articles have already been dedicated to it in technical literature. Non-linear observer 
design method based on dissipation normal form proposed in the paper represents a new 
approach to solving the observer design problem for a certain class of non-linear systems. 
As the theoretical basis of the approach the well known dissipative system theory has 
been chosen. The main achievement of the contribution consists in the fact that the error 
dynamics of the observer is priory chosen non-linear. It provides more flexibility in the 
sense of specifying error convergence properties to zero in comparison with other techniques. 
Lyapunov's stability theory is the other basic point of the approach. 
Keywords: invariance, structure, stability, structural condition, Lyapunov function 
AMS Subject Classification: 93C10 

1. I N T R O D U C T I O N 

At the beginning, known observer design methods for non-linear systems are shortly 
discussed. Bestle and Zeitz [3] were probably the first to introduce a non-linear 
canonical form needed for non-linear observer design. However, actual computation 
of a non-linear transformation into the form remains an unsolved problem. Krener 
and Isidori [16] explored the problem of transforming a non-linear system without 
inputs into a linear one by changing state variables and output injection. The ob­
server design problem for non-linear systems with inputs was discussed in the paper 
written by Krener and Respondek [17]. They separated the system to be observed 
into two parts, an unforced part and an input-dependent part. Then the unforced 
part is transformed into an unforced linear observer form. If the transformation can 
be determined then it has to be checked whether it changes the input-dependent 
part into a non-linear mapping that only depends on input and output variables. 
To avoid this restriction, Keller [15] proposed a non-linear observer design method 
which consists in transforming the whole (undivided) system into a generalized ob­
server canonical form. In comparison with previous forms, it depends on the first 
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n-time derivatives of input variables. The consequence is that the resulting observer 
has to be supplied not only with the input and output variables of the system but 
also with the first n-time derivatives of the input variables. Birk and Zeitz [4] devel­
oped a method for non-linear observer design of MIMO systems based on extending 
the Luenberger observer. The question of reducing the dependency of an observer on 
derivatives of the input was discussed by Proychev and Mishkov [21]. The method of 
Krener and Respondek [17] was practically implemented by Chiasson and Novotnak 
[5] for the pm stepper motor. One of recent approaches to non-linear observer de­
sign originally proposed by Glumineau, Moog and Plestan is based on input-output 
injection [12, 18, 20], In contrast to other methods, the transformation carrying a 
non-linear system into a proper canonical form is computed algorithmically via a 
GIOIA procedure. 

The characteristic feature of the methods mentioned above is the linear error 
dynamics of the appropriate observer. Guaranteeing error convergence to zero is 
then performed mostly by the pole assignment technique. 

The paper deals with a non-linear observer design problem without any prior 
assumption about the structure of the observer and/or linearity of its error dynamics. 
Instead of that two natural conditions are formulated. The first one determining the 
structure of the observer is an error invariance condition. This means that error 
time evolution has to be independent of the unknown internal state of a system, the 
state of the observer and external measured (input-output) signals. The second one 
determining the parametrization of the observer is an error convergence condition to 
zero corresponding to the asymptotical stability of the error dynamics. The approach 
presented in the paper consists in the prior choice of the error dynamics selected in 
order to fulfill the two conditions mentioned above. The error dynamics is chosen 
in the so called dissipation normal form. Its non-linear character provides more 
flexibility in specifying error convergence properties to zero in comparison with a 
linear one. By means of it we can specify not only required convergence rate but 
also other of its characteristics. It is possible to implement for example magnitude 
dependent damping by a non-linear function. Then the observer containing the 
function has a bigger and more robust damping ability than observers designed in 
other ways. 

2. PROBLEM FORMULATION 

Consider the representation R(S) of a system S in the form: 

R { s ) : ^ r = /[*(')'u<')] (i) 
y(t) = h[x(t)} (2) 

where x(t) G I C l n is a state, u(t) G U C W is an input, y(t) G E 1 is an output, 
n, p G N \ {0}, / G C n : X x U -> Rn is a vector function and h G C n : X -> K1 is a 
scalar function. Assume that the representation R(S) is observable for any input [9] 
in the sense that it holds: 

Vx(t) G X,u(t) G U : detH0[x(t),u(t)] ?- 0 (3) 
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where: 

H0[x(t),u(t)] = 
дx(t) 

h[x(t)} 
Df{h[x(t)}} 

/J"-Ҷ%(í)]} 

(4) 

is a generalized observability matrix (for the definition of D see the Appendix). 
The aim is to design an observer R(S): 

R(S):^p- = f[x(t),u(t),y(t)} (5) 

which will produce an asymptotic estimate x(t) of the state x(t) using the input u(t) 
and the output y(t) in such a way that the following two conditions will be fulfilled. 

The first one is the error invariance condition: 
dx(t) 

R(S): 
dt 

= f[x(t),x(t),x(t),u(t),y(t),t] = f[x(t)} 

where 5 is error dynamics and x(t) is an error defined as: 

x(t) =x(t) -x(t). 

The second one is the error convergence condition to zero: 

lim xlt) = 0 
t->oo v 

corresponding to the asymptotical stability of the error dynamics: 

V[x(t)] > 0 for x(t) 7- xe 

V[x{t)] = 0 for x{t) = xe 

Lf-{V[x(t)]} < 0 for x(t) 7- xe 

Lj{V[x(t)]} = 0 for x{t) = xe 

(6) 

(7) 

(8) 

(9) 
(10) 

(11) 

(12) 

where V^i^)] is a Lyapunov function related to the representation R(S) and xe = 0 
is its equilibrium state for which it holds that: 

dXę 

dt 
= 0. (13) 

3. DISSIPATION NORMAL FORM 

Definition 1. Consider the representation RD(S) of a system S in the form: 

RD(S):^- = /[*(«)] 

y(t) = h[x(t)} 

(14) 

(15) 

where x(t) G X C Rn is a state, X is a smooth manifold defined on Rn, n G N\ {0}, 
y{t) G E 1 is an output, / : X -r E n is a smooth vector field and h : X -J> E1 is a 
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smooth scalar function. Let xe be an equilibrium state of the representation RD(S). 

Assume that there exists a function W : Y -» E1 defined on a neighborhood Y C En 

of the equilibrium state xe. The representation RD(S) will be called the dissipation 
normal form if the function W fulfills the following conditions: 

W[x(t)\ = ||x(t)||2 (16) 

Lf{W[x(t)}} = (3[y(t)}<0. (17) 

Remark 1. There is an obvious connection between the function W[x(£)] ar-d the 
Lyapunov function. The function W[x(£)] is also related to the available storage [24] 
and a non-linear function (3[y(t)] corresponds to the Rayleigh function [22]. 

3.1. Asymptotical stability and observability 

The following theorem will be used later for guaranteing the asymptotical stability 
of the error dynamics. 

Theorem 1. Let k2> • •...- kn G E; &2, • • • > kn ^ 0 and a, ip\ : E1 —> E1 are contin­
uous functions satisfying the following conditions: \/x(t) G X : a[x\(t)] is strictly 
monotonous; Vx(t) G Z, Z C Y : cpi[x\(t)] < 0 <£• xi(t) ^ 0. If the representation 
RD(S) has the following structure [13]: 

R D ( S ) : ^ - = : ' . . •- . •-. : \ x(t) (18) 

' viÞi(f)] k2 0 . . . 0 

dx(t) 
-k2 0 líЗ 0 

dt 
0 ~kn—ì 0 &n 
0 0 ~k>n 0 

У(t) = c »þi(t)] (19) 

then it is observable in the sense of (3) and the equilibrium state xe — 0, xe G Z is 
asymptotically stable in Z. Additionally, the function M7[x(̂ )] fulfills the conditions 
(16), (17) for any a[a;i(£)], </?i[xi(£)] and k2,...1kn on Z satisfying the premises 
given at the beginning of the theorem. 

P r o o f . At first, the observability of the representation RD(S) will be proved 
and subsequently the proof of the asymptotical stability of its equilibrium state will 
follow using the second (direct) Lyapunov stability method. 

1. It holds that: 

det.ff0[a;(i)] = det 
дx(t) 

Фi(í)l 
Lf{a[Xl(t)}} 

• n - l {a[Xl(t)]} 

— bn~l .hn~2. 
— л,2 t^з 

n ' l dxl(t) j 

(20) 
It follows from the relation (20) that the representation RD(S) is observable in 
the sense of (3) under the assumptions stated at the beginning of the theorem. 
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2. Assume that the representation RD{S) has the form (18), (19) and consider 
the function W[x{t)) = \\x{t)\\2 defined on E n . 

The relation (18) implies that: 

dx{t) 
dř 

= 0 •£> x(ť) = xe = 0. (21) 

Hence, xe = 0, xe G Z is the equilibrium state of the representation RD{S). 

• It holds that: 

W[x{t)} > 0 for x{t) ^ 0 (22) 
W[x{t)] = 0 for x{t) = 0 (23) 

Lf{W[x{t)]} = 2 x ? ( ^ i [ x i W ] = 2{a-M2lW]}V1{«-1bW]} 
= P[v(t)] < 0 for x{t) i M C Z (24) 

Lf{W[x{t)]} = 2x?(^i[-riW] = 2{a-1[2/W]}V1{a-1[2/W]} 
= (3[y{t)] = 0 for x{t) G M (25) 

where M = {x{t) G Z,L/{TV[x(^)]} = 0} is the largest invariant subset 
of Z. The relations (22), (23), (24), (25) and invoking La Salle's invariance 
principle [11] imply that the function W{x(^)] is a Lyapunov function on 
Z. Thus, the equilibrium state xe = 0 is asymptotically stable in Z. It 
is also obvious that the function VV[z(£)] fulfills the conditions (16), (17) 
for any a[a;i(£)], </?i[xi(£)] and fc2,...,fcnonZ. Q 

Remark 2. The dissipation normal form is similar to the Schwarz matrix [23] and 
can be seen as the generalization of a corresponding linear system representation. 

Remark 3. In linear case, if the coefficients of the form are as follows: 

RD(S) 

" - 1 ì 0 ... o 
dx(t) 

dř 
= U)0 

- 1 

0 

0 1 

- 1 

... o 

0 1 
0 0 - 1 0 

y(t) = Жi(l 0 

x(t) (26) 

(27) 

where u0 G 1R, u;0 > 0 then it is optimal with respect to the output signal energy 
optimality criterion [13, 19]: 

/•OO 

= / lly(*)ll2dí. 
Jto 

(28) 
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4. NON-LINEAR OBSERVER DESIGN USING DISSIPATION NORMAL FORM 

Consider the representation R(S) of a system S in the form: 

ВД:-f = f[x(t)Mt)} 
dt 
У(t) h[x(t)}. 

(29) 

(30) 

In the sequel, the dissipation normal form will be used for non-linear observer design 
expressing the requirements mentioned in Section 2. 

4.1. Error dynamics representation 

Let us choose the representation of the error dynamics in the dissipation normal 
form: 

R*(Š) : 

' ÍJ [**(*)] <*2 0 0 
- Ö * 2 0 <*з 0 

dx*(t) 
dí = w0 

0 - й - i 0 š. 
0 0 -к 0 

x*(t) (31) 

where 5*[x*(t)], r5J,...,(S*, cOo are design parameters. It means that error conver­
gence properties to zero can be specified by their selecting. It holds that: 

Lf-.{V*[x*(t)}} = Lf-.{\\x*(t)\\2} = 2u0x?(t)6*lx*(t)} (32) 

where V"*[£*(£)] = ||a;*(£)||2 lS a Lyapunov function related to the representation 
R*(S). The relations (31), (32) imply that both the error invariance condition and 
the error convergence condition to zero are fulfilled in case of the design parameters 
are properly chosen. Assuming that cO0 > 0 and £*[£*(£)] < 0 for all x*(t) then 
the error dynamics is globally asymptotically stable. On condition that un > 0 
and o**[£*(£)] < 0 only for x*(t) G r, r C R then the error dynamics is locally 
asymptotically stable over a finite area of the state space induced by r. The constant 
u>o represents a time scale transformation and therefore it affects convergence rate. 
The non-linear function o^K W] describes in what way system energy dissipates 
and accordingly it specifies convergence mode. It is obvious from the relation (32) 
that the constants o\| , . . . ,6~* ^ 0 do not have any effect on rate and/or mode of 
convergence. From this point of view, they can in principle be chosen in an arbitrary 
way. It is even possible them to be non-linear functions in general. This implies 
that the error invariance condition is not necessary to hold. However, it is more 
comfortable for the problem solution when the condition is valid. Therefore, the 
non-linear observer design will be performed under the assumption of the condition 
relevance. Moreover, the complication is not mandatory. It has already been said 
that the elements do not have any effect on either rate or mode of convergence. 
From this point of view, they are selected without loss of generality as constants. 
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Remark 4. In fact, supposing that u0 -> oo ( ~ -» 0) then the observer is similar 
to the high-gain observer [1, 2, 8] in the sense of possible setting the error convergence 
to zero fast enough in order that the asymptotical stability of a closed-loop system 
is guaranteed [6]. 

4.2. Observer structure 

Consider a class of representations (29), (30) transformable into the following canon­
ical form induced by the error dynamics representation structure (31): 

where 

A* = 

ud(t) = 
du(t) 
~ďГ' 

R*(S) 

0 a*. 
-а*2 0 

0 ••• 
o ... 

лn—1 

dx*(t) 

dt 
A*x*(t)+ф*[xl(t),u(t),ud(t)] 

y(t) = h*[x*(t)] 

(33) 

(34) 

0 
o* 

—а 

... o 

... o 

0 а* n—1 v "'n 

0 -а*„ 0 

í а*2,...,а*neR; а*2,...,а*n ф 0; 

u(t) 
' Ałn-l dt 

and ф*[x{(t),u(t),ud(t)] 

PitöWMt)] 

MtäWMt),*^] 

ф*n[xl(t),u(t),ud(t)] J 

(35) 
Further, the inverse: 

x*_(t) = c[y(t)} 

where c[y(t)] = h*'1^^)] is supposed to exist. After derivating the relation (7) with 
respect to t and an elementary modification we have: 

dx*(t) _ dx*(t) dx*(t) 

dt ' dŕ dř 
(36) 

Substituting ^ ^ , ^ ^ from the relations (31), (33) into (36) we get the structure 
of the observer in the form: 

R*(Š) : 
dx*(ť) 

dř 
A*x*(t) + ф*{c[y(t)],u(t),ud(t)} 

Шt)]-x{(t)} (37) -U>Q 

Si{cto(t)]-xt(t)} 
o 

0 

where the equalities: 

hold. 

аl = UQ8* ,..., аn = UJ05П 
(38) 
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4.3. Observer parametrization 

The observer parametrization means here to determine the unknown functions c[y(t)] 
and il>*{c[y(t)],u(t),Ud(t)} in (37) and consequently in (33), (34). It will be per­
formed through the generalized observability canonical form [25]: 

Ä < S > : * 

ãîi(í) x2(t) 

(39) 
Xn-i(t) xn(t) 
xn(t) J L P>[x(t)Mt)>ud(t)] 

y(t) = sx(t). (40) 

The form can be generated from the representation (29), (30) by the diffeomorphism: 

xx(ť) 
x2(ť) 

_-Xn(t) . 

h[x(t)} 
Df{h[x(t)}} 

Dnf г{h[x(t)}} 

(41) 

and exists if the observability condition (3) holds. Assume that a diffeomorphism: 

x(t) = T[x*(t),u(t)yud(t)] (42) 

exists. The condition for its existence is: 

dT[x*(t),u(t),ud(t)} 

dx*(t) F 

Then it is determined by the following relation: 

(43) 

xx(t) 
x2(t) 

xn(t) 

h*[x*x(t)} 
Dr{h*[x*x(t)}} 

D^mxXt)]} 

(44) 

Lemma 1. The existence of (42) implies that the structural condition: 

fi[x(t),u(t),ud(t)] = D^{h*[xt(t)]} (45) 

is fulfilled for x*(t) = T-^xtyMt),^)]. 

Proof . If (42) exists then the equality: 

DJ[xx(t)] = D].{h*[x*(t)]} (46) 

holds. Substituting into the relation (46) from (39) we have: 

mt)Mt),ud(t)] = D].{h*[x*(t)]} for x*(t)=T~l[x(t)Mt),ud(t)]. • 

The unknown functions ip*[xl(t),u(t),ud(t)] and c[y(t)] in the observer (37) can 
be computed from a system of differential equations which is a consequence of validity 
of the structural condition (45). 
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4.3.1. Explicit solution for second-order system 

For a second-order system, the structural condition (45) has the form: 

du(t) 
x(t),u(t), 

dť 
= D).{h*[x\(t)]} = FifaMxKt) + F 2[2 1(t),u(t)]x 2(t) 

du(t) 
+ EЗ xi(í),u(ť), 

dť 
(47) 

for x*(t) = T~l[x(t),u(t)] where the functions F^[xi(t),u(t),^^], F2[xi(t),u(t)] 
and F\[x\(t)] are known. In case of the structural condition (47) is fulfilled then the 
unknown functions i/>i[xl(t),u(t)], il>*[xt(t),u(t), ^f-] and h*[x*(t)], x*(t) = c[y(t)], 
in the observer: 

R*(S) : 
dx*(ť) 

dt 
x*(ť) + 

-Ш0 

rAc[y(t)]Mt)} 
V.*{c[y(ť)],u(ť),^} J 

íiM«(ť)]-**(ť)} 

0 a*. 
-а*2 0 

0 
{c[y(t))-x\(t)} 

can be computed from the system of the three differential equations: 

F T * mil - d 2 / t * t o ( Q ] i 
Fi[xi(0]U.(o=ft-i-iW] - dxf(t) fdh.fx,my 

I dx;(t) / 

F 2 [ x i ( ť ) , u ( ť ) ] | 2 l ( t ) = / l . [ x ; ( í ) ] 

du(ť)" 
xi(ť),u(ť), 

dt xi(t)=h*[xí(t)] 

čty*[x*(t),u(ť)] 
dx\(t) 

dh*[x\(t)) 
^-ďxiř j )-^ 

(48) 

(49) 

(50) 

x\(t),u(t), 
du(ť) 

dť 

d/i*[x*(t)] дгþ\[x\(t),u(t)] du(ť) 
dx*(ť) ðu(ť) dť 

q*2x*(t)dh*[xm 

°2 X l W dx*(t) • 

4.4. Determination of observer in original coordinates 

A diffeomorphism x(t) = T[a;*(£),iA(£),i4d(£)] exists if the condition: 

dT[x*(t),u(t),ud(t)] 

(51) 

det # 0 
dx*(t) 

is fulfilled. Then it is determined by the following relation: 

(52) 

h[x(t)] 
Df{h[x(t))} 

Dy-ҶЛþ(ť)]} 

h*[x\(t)] 
Df.{h*[x\(t)]} 

D?ГҶЛ*þî(ť)]} 

(53) 
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It obviously holds that: 
x(t)=T[x*(t),u(t),ud(t)]. (54) 

Subsequently, derivating (54) with respect to t we get the observer in the original 
coordinates: 

R(S) : - ^ - = Df.{T[x*(t),u(t),ud(t)}} (55) 

for x*(t) = T-^xtyyuiQjUdit)]. 

5. ILLUSTRATIVE EXAMPLE 

The non-linear observer design method described above will be illustrated on the 
following prey-predator model [15]: 

R(S):ЩQ = axi(t) - bxi(t)x2(t) 
dt 

dx2(t) 
= cxi(t)x2(t) - dx2(t) - fx2(t)u(t) 

dť-
У(t) = x2(t) 

(56) 

(57) 

(58) 

where xi(t) and X2(t) represent prey and predator populations. The predator popu­
lation is decimated by humans via the input variable u(t). The coefficients a = 1.5, 
6 = 1, c = 0.3, d = 1 are constant birth and death rates and / = 0.5 is an exter­
mination rate. At first, the representation R(S) is transformed into the generalized 
observability canonical form: 

ҖS):=Џ = x2(t) 
dt 

dx2(t) 
= џ[x(t),u(t), 

dt 
y(t) = Xi(t) 

du(t) 

dt J 

(59) 

(60) 

(61) 

by the transformation: 

x(t) =T[x(t),u(t)] = 

It holds that: 

x2(ť) 
Df[x2(t)] 

x2(t) 
cxi(t)x2(t) — dx2(t) - fx2(t)u(t) 

(62) 

Vx(t),u(t) : det 9 r [ ^ j ; " ( 0 ] = ~cx2(t) ± 0 ^ x2(t) / 0. (63) 

This means that the predator population should not die out. Using the transforma­
tion (62) we get: 

x(ť),u(ť), 
du(ť) 

dí 

1 , i 
Xl(ť) 

x\ (ť) + [a - bxi (t)]x2 (t) + [a-bxi (t)] [d+ fu(t)]xi (t) 

-fxi(t) 
du(t) 

dt ' 
(64) 
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Obviously, the function /_[_•(.),u(t), - ^ - ] fulfills the structural condition (47) with: 

1 
Xi(ť) 

E2[xi(t),_(ť)] = a-Ьæi( t ) 

xi(ť),u(ť), 
du(ť) 

dť 

(65) 

(66) 

= [a-6_i(ť)][_ + / _ ( ť ) ] _ i ( ť ) - / x i ( ť ) ^ . (67) 

The unknown functions ^{[x\(t),u(t)}, ip*[x\(t),u(t),*$-} and c[y(t)} in the ob­
server (48) are computed from the system of the three differential equations (49), 
(50), (51). The solution of the differential equation (49) is: 

h*[x*(t)} = _*;<«> => x_(t) = \n[y(t)} = c[y(t)}. (68) 

The solution of the differential equation (50) leads to: 

V>_[x_(t), u(t)] = J [a - bexW]dx\(t) = ox_(t) - be'™ = a\n[y(t)] - by(t) 

= Vi{c[y(t)],u(t)}. (69) 

Substituting into the differential equation (51) from (68), (69) we have: 

V. x_(ť),_(ť), 
dtí(ť) 

dť = l [ a _ fte-IW][_ + fu(t)} + a_x_(ť) - l / ^ _ _ 

= ~^[a - by(t)][d + /«(«)] + a_ ln[y(t)} - ^ / ^ T 

= rø{cfo(.)]._(.),--^}. 
The appropriate transformation x(t) = T[x*(t)] has the form: 

c-î(.) 
x( t)=T[x*(t)] = 

It holds that: 

_5x5(t)c*-W + ox_(t)e*»<') - be2xM J 

V x * ( t ) : d e t ^ | l = a ^ ( ^ 0 . 

Subsequently, the design parameters in the error dynamics representation: 

ñ . ( š ) ; _ Ш _ _ 0 dť 
_î[x_(ť)] ô*2 

-6* 0 xҶt) 

(70) 

(71) 

(72) 

(73) 

are chosen as follows: 

1. 5i[ii(.)] = 5* = - 1 , uj0 = 4 and -55 = 1. Let us define the output of the 
error dynamics as y(t) = x*(t). Then the representation R*(S) is optimal 
with respect to the output signal energy optimality criterion (see Section 3): 

/•OO 

= / Шlľ 
Jto 

dť. (74) 
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4 

2. ^i [£*(£)] = — 0.3x1 (t) — 2, cOo = 4 and J* = 1. The constant 5* was replaced 
by the non-linear function £*[a;i(£)]- The other design parameters stayed the 
same. 

Substituting (68), (69), (70) and the selected design parameters into (48) we get the 
observers in the forms: 

ì. 

ЯҶŠ) : 
dx*(t) 

dť 
0 a*. 

-a_ 0 
x*(t) 

+ 
a\n[y(t)]-by(t) 

Ma-Ъy(t)][d + Mt)] + aZЪ\y(t)]-àf 
L / d"(f) 

dt 

-u>0 

2. 

R*(Š) 
dx*(t) 

dt 
0 al 

-a*2 0 

{ln[y(í)]-**(*)} 

á-Ҷí) 

(75) 

+ 
a\n[y(t)] - by(t) 

Ma- by(t)][d + /«(*)] + oj lnforø] - £ / - # -

-wo 
-0 .3{ ln[2 / ( í ) ] -ž î ( í )} 4 -2 

0 { 1 П [ Î / ( Í ) ] - X Ҷ Ѓ ) } 

(76) 

where a^ = cOnô . Finally, the observers are transformed into the original coordinates 
using the relation (55) where: 

x(t) = T[x*(t),u(t)] = 

It holds that: 

±x*(t) - | e * I W + -£**(*) + i + Lu(t) 
ex*(t) 

ax*{t) c 

(77) 

(78) 

The resulting observers for the given original representation R(S) are the following: 

1. 

R(Š):ЩЏ = ax1(t)-bxl(t)x2(t)+ 
dř 

x2(t) 
c c 

{-a\n[x2(t)]+bx2(t) 

+a\n[y(t)]-Ьy(t) + -[d+fu(t)][x2(t)-y(t)} 

dx2(t) 

dt 

+ -^-{\n[y(t)}-\n[x2(t)]}+u0{\n[y(t)]-\n[x2(t)}}} 

cxi(t)x2(t) — dx2(t) — fx2(t)u(t)+x2(t){-a\n[x2(t)] 

+bx2(t)+a\n[y(t)]-by(t)+u;0{\n[y(t)]-\n[x2(t)}}} (79) 
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R(Š):^^- = аx1(t)-Ьx1(t)x2(t) + ж2(t) 
c c 

{-aln[x2(ť)] + Ьx2(t) 

+aln[y(t)]-by(t)-f^[ci+/ix(t)][i2(t)-y(t)] 

a*2 

+ ^{ln[y(t)]-ln[i 2(t)]}4-0.3^ 0{ln[y(t)]-ln[x 2(t)]} 5 

+2a;0{ln[y(t)]-ln[f2(t)]}} 

" ^ p = c £ i ( t ) g 2 ( t ) - d £ 2 ( t ) - ^ 

+bx2(t) + aln[y(t)]-by(t) + 0.3a;o{ln[y(t)]-ln[x2(t)]}5 

+2cj0{ln[y(t)]-ln[x2(t)]}}. (80) 

The behaviour of the designed observers is shown in Figures 1,2. The effect of the 
non-linear function 5*[xJ(t)] on the error trajectory can be seen as implementing 
magnitude dependent damping and a consequent bigger damping ability in com­
parison with the other one. Particularly, it is obvious from the right picture of 
Figure 2. 

Remark 5. An observer for the given system representation R(S) may also be 
designed by the method presented in [10] (see Figure 3). The method is based 
on transforming a given system representation into phase variables where the error 
dynamics of the observer is made asymptotically stable with optional error conver­
gence rate to zero by a parameter 6. The parametrization of the observer is given 
by solution of an algebraic equation obtained on behalf of using standard Lyapunov 
arguments. The equation can also be derived from a modified form for a Grammian 
observability matrix that connects asymptotic stability and observability properties 
of a system and its representation [26]. The solution of the equation Sco(0) is then 
equivalent to the matrix. The advantage of the method is simplicity of the observer. 
On the other hand, it only works for affine system representations. 

6. CONCLUSION 

The non-linear observer design method based on the dissipation normal form has 
successfully been solved. The approach consists in transforming a given system 
representation into proper new coordinates where the error dynamics of the observer 
can easily be made homogeneous and asymptotically stable, which is equivalent to 
the methods presented for example in [3, 12, 15, 16, 17, 18, 20, 21]. Nevertheless, the 
difference from those methods is that the error dynamics of the observer is chosen 
priory here. The appropriate canonical form of the system representation and the 
observer is then a consequence of the choice. Further, the method is exact and does 
not require any linearization in the sense that the non-linear system to be observed 
is replaced by a linear one. In contrast to linear case the resulting observer has to be 
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Fig. 1. Observing the state: the dashed and dotted line for the observer No. 1, 
the dashed line for the observer No. 2. 

Fig. 2. Course of the error: the dashed line for the observer No. 1, 
the solid line for the observer No. 2. 

time tmie 

Fig. 3 . Course of the error: the dashed line for the observer No. 1, the 
solid line for the observer No. 2, the dashed and dotted line for the observer 

designed along the method presented in [10] for the design parameter 6 = 4. 
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supplied not only with input and output variables of a given system but also with 
derivatives of the input variables as for example in [15]. 

The main achievement of the contribution is the non-linear error dynamics of 
the observer with a properly placed non-linear function. Prom this point of view, 
the approach can be seen as a straightforward extension of the methods cited above 
where the error dynamics is linear. The non-linear function provides more flexibility 
in the choice of error convergence properties to zero than a linear one. By means of 
it we can specify not only convergence rate but also other of its characteristics. It is 
possible to implement for example magnitude dependent damping by the function. 
The observer containing the function has then a bigger (and more robust) damping 
ability in comparison with observers designed in other ways (see Figure 2). It is also 
feasible to guarantee not only the global asymptotical stability of the error dynamics 
but also only a local asymptotical stability over a finite area of the state space by 
the non-linear function again. Finally, the approach to non-linear observer design 
presented in the paper has effectively been used in signal filtering, too [7, 14]. 

APPENDIX 

Let x(t) G l C f , u(t) e U C W, f <E Ck : X x U -> Rn, n, p, k € N \ {0} be 
a vector function and h € <Ck : X x U -> E1 be a scalar function. Then Df(h) is a 
differential operator for which it holds that: 

D°f{h[x(t),u(t)}} = h[x(t)Mt)} (81) 

D){h[x(t)Mt)}} = Df{h[x(t)Mt)}} = J2 aM^ffl 

+£ (82) 
p дh[x(t),u(ťj\ÅUj(ť) 

дu(t) dř 

Dk
f{h[x(t),u(t)}} = Df{D)-l{h[x(t),u(t)m. (83) tkfU^ÍЛ ../*\П — П ґn fc- l j 

(Received May 27, 2003.) 
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