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MODULAR A T O M I C E F F E C T ALGEBRAS 
AND T H E E X I S T E N C E OF SUBADDITIVE STATES1 

ZDENKA RlECANOVA 

Lattice effect algebras generalize orthomodular lattices and MV-algebras. We describe 
all complete modular atomic effect algebras. This allows us to prove the existence of order-
continuous subadditive states (probabilities) on them. For the separable noncomplete ones 
we show that the existence of a faithful probability is equivalent to the condition that their 
MacNeille completion ;s a complete modular effect algebra. 

Keywords: Effect algebra, modular atomic effect algebra, subadditive state, MacNeille com­
pletion of an effect algebra 

AMS Subject Classification: 03G12, 06F99, 81P10 

1. INTRODUCTION 

In recent years quantum effects and fuzzy events have been studied within a gen­
eral algebraic framework called an effect algebra or, equivalently in some sense, a 
D-poset. Thus, the elements of these structures represent events that may be un-
sharp or imprecise ([4, 10, 11]). Moreover, lattice ordered effect algebras generalize 
orthomodular lattices [9] and MV-algebras ([1, 2]) - the algebraic structures which 
have proved their importance in the investigation of the phenomenon of uncertainty 
(sec [3]). 

It is known that there are (finite) effect algebras admitting no states and, hence, 
no probabilities ([16]). Greechie's example of an orthomodular lattice L admitting no 
states [6] is simultaneously an example of a lattice effect algebra admitting no states. 
This is because every orthomodular lattice L can be organized into a lattice effect 
algebra by putting (for a, b G L) a 0 b — aVb iff a < b'. Clearly, in this case the notions 
of a state on orthomodular lattice L and a state on the derived lattice effect algebra 
coincide. If there is a state on a lattice effect algebra it need not be subadditive. 
We have shown in [17] that if a faithful subadditive state on a lattice effect algebra 
E exists then E is separable and modular. Nevertheless, it remained unanswered 
whether subadditive states on all such effect algebras exist. In the present paper 
we give a positive answer to this question. The proof is based on the fact that, 

^ h i s work was supported by grant C-l/0266/03 of Ministry of Education of the Slovak Republic 
and by Science and Technology Assistance Agency under the contract No. APVT-51-032002. 
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as we show, every irreducible complete atomic modular effect algebra is of finite 
length and every complete atomic modular effect algebra is isomorphic to a direct 
product of irreducible ones. Moreover, we show that the only irreducible complete 
atomic effect algebras are either irreducible complete atomic modular ortholattices, 
or finite chains, or effect algebras of length 2. These facts give a full description 
of all complete atomic modular effect algebras and, as a consequence, a description 
of all atomic lattice effect algebras admitting order-continuous subadditive states 
(probabilities). 

2. EFFECT ALGEBRAS, BASIC NOTIONS AND FACTS 

Definition 2.1. (See [4].) A partial algebra (F;©,0,1) is called an effect-algebra 
if 0, 1 are two distinct elements and © is a partially defined binary operation on E 
which satisfies the following conditions for any a,b,c G E: 

(Ei) 6 © a - - - a © b i f a © b i s defined, 

(Eii) (a 0 b) © c = a © (b © c) if one side is defined, 

(Eiii) for every a G P there exists a unique b G P such that a©b = 1 (we put a' = b), 

(Eiv) if 1 0 a is defined then a = 0. 

We often denote the effect algebra (E; ©, 0,1) briefly by E. Moreover, if we write 
a 0 b = c for a, b, c G E, then we mean both that a 0 b is defined and a®b = c. In 
every effect algebra E we can define the partial operation 0 and the partial order 
< by putting 

a < b and bQ a = c iff a (Be is defined and a 0 c = b. 

Since a 0 c = a 0 d implies c = d, the operation 0 and the relation < are well 
defined. If E with the defined partial order is a lattice (a complete lattice) then 
(E; 0,0,1) is called a lattice effect algebra (a complete effect algebra). If, moreover, 
E is a modular or distributive lattice then E is called modular or distributive effect 
algebra. 

Recall that a set Q C E is called a sub-effect algebra of the effect algebra E if 

(i) 1 € Q, 

(ii) if out of elements a, 6, c G E with a®b = c two are in Q, then a,b,c G Q. 

Assume that (Ei; 0 i ,Oi , l i ) and (F2.®2,02,12) are effect algebras. An injection 
<p : Ei —> E2 is called an embedding if ip(l\) = I2 and for a,b G E\ we have a < b' iff 
ip(a) < (ip(b))' in which case ip(a ©1 b) = <p(a) ©2 (p(b). We can easily see that then 
(p(Ei) is a sub-effect algebra of E2 and we say that E\ and <p>(E\) are isomorphic, 
or that E\ is up to isomorphism a sub-effect algebra of E2. We usually identify E\ 
with ip(Ei). 

We say that a finite system F = (ak)fc=i of not necessarily different elements of 
an effect algebra (E; ©, 0,1) is ^-orthogonal if ax © a2 © • • • © an (written 0 £ = 1 a* 
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or 0 F) exists in E. Here we define a\ © a2 © • • • 0 an = (a\ © a2 © • • • © a n_i) © an 

supposing that (&2=i ak exists a n d 0^=1 ak < a^. An arbitrary system (7 -= 
(aK)K6H of not necessarily distinct elements of E is called ©-orthogonal if 0 K 
exists for every finite K C G. We say that for a ©-orthogonal system G = (aK)Ken 
the element 0 G exists iff V { 0 K\K C G, If is finite} exists in E and then we put 
0 G = V { © ^ = G> # i s finite) (w e w r i t e Gi C G iff there is Hx C # such 
that Gi = (a /c)KG//1). We refer the reader to [18]. 

An effect algebra (E\ ©, 0,1) is called Archimedean if for no nonzero element e £ E 
the elements ne = e © e • • • © e exist for all n G IV. An Archimedean effect algebra is 

n times 

called separable if every ©-orthogonal system of elements of E is at most countable. 
We can show that every complete effect algebra is Archimedean [19]. 

For an element x of an effect algebra E we write ord (x) = co if nx exists for 
every n £ N. We write ord (x) = nx G N if nx is the greatest positive integer such 
that nxx exists in E. Clearly, in an Archimedean effect algebra nx < co for every 
i eE. 

Recall that elements x and y of a lattice effect algebra are called compatible 
(written a «-» b) if x V y = x © (y © (x A y)). For x e E and Y C E we write x <-> y 
iff x f-r y for all y G y . If every two elements of E are compatible then J5 is called 
an MV-effect algebra. 

Every finite chain 0 < a < 2a < • • • < 1 = n a a is a distributive effect algebra in 
which every pair of elements is compatible, hence it is an IMV-effect algebra. 

An element a of an effect algebra E is called an atom if 0 < b < a implies b = 0 
and E is called atomic if for every x G £", x ^ 0 there is an atom a £ E with a < x. 
Clearly every finite effect algebra is atomic. 

For more details we refer the reader to (Dvurecenskij and Pulmannova [3]) and 
the references given therein. We review only a few properties. 

Lemma 2 .1 . The elements of an effect algebra (I£;©,0,1) satisfy the following 
properties: 

(i) a © b is defined iff a < 6', 

(ii) if a © b and oV6 exist then a A b exists and a © b = (a A b) © (a V 6), 

(iii) if u < a, v < 6 and a © 6 is defined then u®v is defined, 

(iv) [8] If E is a lattice and Y C E with V ^ existing in E then x <-» y => 
x A (V y ) = V{* A j/|y G y } and x <-> V Y. 

3. IRREDUCIBLE COMPLETE ATOMIC MODULAR EFFECT ALGEBRAS 

Recall that a direct product [ 1 ( ^ 1 ^ € H} °f effect algebras £JK is a Cartesian 
product with ©, 0 and 1 defined "coordinatewise". An element z G E is called central 
if the intervals [0, z] and [0, z'] with the inherited ©-operation are effect algebras in 
their own right and E S [0, z] x [0, * ' ] , (see [7]). The set C(E) = {z G .E|z is central} 
is called a center of .E. If C(£) = {0,1} then E is called irreducible. 
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In every lattice effect algebra E the set S(E) = {x G E\x A x' = 0} is an 
orthomodular lattice [8] and B(E) = {x e E\x f* E} is an MV-effect algebra such 
that S(E) and £(£") are sub-lattices and sub-effect algebras of E [14]. Moreover, we 
have shown in [12] that z G C(E) iff x = (x A z) V (x A 2') for all x G £ which gives 
C(£?) = £ ( £ ) n S(E) for every lattice effect algebra E. Further, S(E), B(E) and 
C(E) are closed with respect to all existing infima and suprema [18]. In general, 
C(E) = {0,1} does not imply C(S(E)) = {0,1}. 

Recall that the length of a finite chain is the number of its elements minus 1. The 
length (height) of a lattice L is finite if the supremum over the number of elements 
of chains in L equals to some natural number n and then n — 1 is called length of 
the lattice L. 

Theorem 3.1. For every irreducible complete atomic modular effect algebra E at 
least one of the following conditions is satisfied. 

(i) E is an irreducible complete atomic modular ortholattice. 

(ii) E is a finite chain, 

(iii) E is a horizontal sum of a family of Boolean algebras and chains, all of length 2. 

P roo f , (i) This is the case when a A a' = 0 for every atom a G E, because then 
E = S(E) = {x G E\x A x' = 0}. Indeed, if there is x e E with x A x ' / O then 
there exists an atom a G E with a < x A x' which gives a < x < (x')' < a'; a 
contradiction. Since S(E) is an orthomodular lattice in every lattice effect algebra 
and E is modular, the equality E = S(E) implies that E is a modular ortholattice. 
Moreover, C(S(E)) = B(S(E)) = B(E) n S(E) = C(E) = {0,1}, because the 
compatibility in S(E) coincides with the compatibility in derived effect algebra. 

(ii) Assume now that there is an atom a G E such that a < a' and let a G B(E). 
Then also naa G B(E) (by [14]) and, by [19, Theorem 2.4], naa G S(E). Thus 
naa G B(E) n S(E) = C(E) = {0,1}, which gives naa = 1. It follows that for 
every atom b G E we have n^b < 1 = naa. Assume that there is an atom b G E, 
b 7-- a. Then either n&b = naa, and hence by [19, Theorem 3.1] we have 2a = 2b = 1 
which gives a <fr b. Or n& = 1 and na = 2 which gives 1 = 2a = b 0 b' = b V b', 
hence again b <fr a, a contradiction. We conclude that £ has a unique atom, hence 
E = {0, a, 2a , . . . , 1 = naa). 

(iii) Finally, assume that there is an atom a G E such that a < a' and a 0 B(E). 
Then there exists an atom b e E with b yr a. As E is modular we have [a A b, b] = 
[a, a V b] which yields that a V b covers a and hence there exists an atom c e E 
such that a(B c = a\/ b, which gives c < a'. Evidently, c 7- fc as 6 ^ o'. If c ^ a 
then a® c = aV b, which implies b<aVc<a',a contradiction. Thus c — a and 
a V b = 2a. 

Let p G E be an atom. Then either p <fr a which, as we have just shown, implies 
that p < p V a = 2 a < naa, or p <-» a and hence p «-» n a a for every atom p e E. By 
[18], for every x € E we have x = \J{u G .E|u < x, n is a sum of finite sequence of 
atoms}. Since naa <-> p for every atom p and hence naa <-r u for every finite sum 
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u of atoms, we conclude by Lemma 2.1, (iv), that naa f-> x for every x G E. Thus 
naa e B(E) n S(E) = C(E) = {0,1}, which implies that naa = 1. It follows that 
for every atom p G E, the inequality npp < naa = 1 implies by [19, Theorem 3.1] 
that np = 1 or np = 2. If np = 2 then [0, npp] is a chain {0,;;, 1 = 2p) and if np = 1 
then [0,npp] is a Boolean algebra {0,p,p' , l = p © 1 / } . • 

Corollary 3 .1 . The unique example of a complete atomic modular effect algebra 
E with C(E) = {0,1} and C(S(E)) ^ {0,1} is a horizontal sum of the Boolean 
algebra {0, a, a', 1 = a © a'} and chain {0, b, 1 = 2b}. 

In a lattice of finite length with 0 we define a height function as follows: 
For a€L let h(a) denotes the length of a longest maximal chain in [0,a]. Here a 

chain P C [0, a] is called maximal if for any chain Q C [0, a] we have P C Q => P = Q. 

For a lattice of finite length the following conditions are equivalent: 

(i) L is modular, 

(ii) h(a) + h(b) = h(a V b) + h(a A b) for all a, b e L (see [5, pp. 227-228]). 

In [14] it has been shown that every maximal subset M of pairwise compatible 
elements of a lattice effect algebra E is a sub-effect algebra and a sublattice of E 
called a block of E. Moreover, E is a union of its blocks. Clearly, the blocks of E 
are MV-effect algebras. 

Corollary 3.2. Every irreducible complete atomic modular effect algebra E is of 
finite length n which equals to the length of any block of E 

Proof . For the case (i) of Theorem 3.1, see [9, p. 209]. For cases (ii) and (iii) 
the statement is evident. • 

4. COMPLETE ATOMIC MODULAR EFFECT ALGEBRAS 
AND THE EXISTENCE OF SUBADDITIVE STATES 

Recall that a map u : E —> [0,1] is called a (finitely additive) state on an effect 
algebra E if cO(l) = 1 and x < y' =l> u(x 0 y) = u(x) + u(y)\ u is called (o)-

continuous if xa —> x =-> u(xa) —> u(x). Here for a net (xa)a^s of elements of E 

we write xa —> x if there exist a nondecreasing net (ua)a^s and a nonincreasing 
net (va)a££ such that ua < xa < va for all a G £ and ua t x and va I x. A state u 

is called a-additive if u(0^LX xn) = ^2n°=1 w(xn) for every 0-orthogonal sequence 

(xn)n°=l for which 0 ^ ! xn exists in E. A state u on E is called faithful if u(x) = 0 
implies x = 0. 

If E is a lattice effect algebra then a state u is called subadditive iff u(x V y) < 
u(x) + u(y) for all x,y G E. We have shown in [17] that a state u is subadditive 
iff u(a) + u(b) = u(a V b) + u(a A b) for all a,b G E (u is called a valuation) and 
this occurs iff a A b = 0 => cj(a V b) = 0. Moreover, if a faithful subadditive state 
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on a lattice effect algebra exists then E is separable and modular, see [17]. It is a 
matter of a routine verification that for every complete separable effect algebra E 
and a faithful state u on E the following conditions are equivalent: 

(i) u is cr-additive, 

(ii) xn I 0 =--> UJ(XU) I 0, 

(hi) xn t x =t> u(xn) t w(x), 

(iv) CJ is (o)-continuous, 

(v) cO(0G) = V i z C x G F ^ ^ ) ! ^ - ^ i s finite) f° r every ©-orthogonal system G 
for which 0 G exists in £\ 

A cr-additive subadditive state on a lattice effect algebra will be called a proba­
bility. 

Finally, recall that a lattice effect algebra E is called (o)-continuous if xa t x -=-> 
£Q A T/ t x A 2/ f° r all Xa,x,y 6 P?, and it is iff the lattice operations V and A are 
(o)-continuous. 

Theo rem 4 .1 . Every irreducible complete atomic modular effect algebra E pos­
sesses an (o)-continuous subadditive state. In fact, u = £, where n is the length of 
E and h is the height function on E. 

P r o o f . Let x G E. Then [0,x] is a modular lattice of finite length and hence 
any two maximal chains of [0, x] are of the same length h(x) [5, p. 223, Theorem 1]. 
Moreover, every maximal chain of [0,x] is of the form 0 < a\ < a\ © a2 < • • • < 
a\ © a2 0 • • • © a*; = x, where a i , a 2 , . . . , a^ is a finite sequence of not necessarily 
different atoms of E and k = h(x). Thus, if y < x' and y = bi © b2 © • • • © be for 
some sequence of atoms bi, 62? • • • &*? of £?, then x © 7/ = a\ © • • • © a& © bi © • • • © bi 
and hence h(x (By) = h(x) + h(y). This proves that u = £ is a state on £*. Since 
for all x;y € E we have /i(x V y) = /i(x) + /i(y) — /i(x A ?/), we conclude that CJ = ^ 
is subadditive. The (o)-continuity of CJ is trivial as £7 is of finite length. O 

Theo rem 4.2. Let .E be a complete atomic modular effect algebra. Then 

(i) E = L x M x E0, where L is a modular ortholattice, M is an MV-effect algebra 
and EQ is a direct product of lattice effect algebras of length 2. The factors 
M, L and i?o are complete and atomic, or trivial factors {0}. 

(ii) E is (o)-continuous. 

(iii) There is an (o)-continuous subadditive state on E. 

(iv) There is a faithful (o)-continuous subadditive state on E iff C(E) is separable. 

P r oof. (i) By [19, Theorem 3.2], C(E) is a complete atomic Boolean algebra and 
by [19, Lemma 4.3] we obtain that E £ n{[°>.P]IP i s a n a t o m o f C(E)}. Since for 
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every atom p of C(E) the effect algebra [0,p] is irreducible and any direct product 
of finite chains is an MV-effect algebra, the statement follows by Theorem 3.1. 

(ii) For every atom p of C(E) the effect algebra [0,p] is of finite length and hence 
it is (o)-continuous. Thus, the direct product n{[05P]|P ls a n a t o m °f C(E)} is 
(o)-continuous as well. By part (i) we conclude that E is (o)-continuous. 

(hi) If C(E) = {0,1} the statement follows by Theorem 4.1. Let C(E) ^ {0,1} 
and p is an atom of C(E). Then by Theorem 4.1 there is a faithful subadditive state 
LOp on [0,p]. Since p G C(E) for x,y G E we have (x V y) Ap = (x A p) V (y Ap) by 
Lemma 2.1, (iv). If x < y' then (x(By)Ap = (xAp)(B(yAp) by [19, Lemma 4.1]. Thus 
u defined by LO(X) = Lop(xAp) for all x G E is a faithful subadditive state on E. Since 
by (ii) E is (o)-continuous, xa *\ x => xa Ap*\ x Ap and hence up(xa Ap) t LJp(xAp), 
as [0,p] has a finite length. It follows that co(xa) | w(x), which proves that LO is 
(o)-continuous. 

(iv) By [17, Theorem 2.8] the existence of a faithful state on E implies that E is 
separable and hence C(E) is separable. Conversely, assume that C(E) is separable. 
Let K C N = {1 ,2 , . . .} and AC{E) = {pk\k G K) be the set of all atoms of C(E). 
Let uk be faithful subadditive states on [0,p*], k G K. Further, take ck G (0,1) C R 
w i t h YjkeKck = 1- F o r every x e E, let us put u(x) = J2keK ckUk(x A pk). By 
similar reasonings as in part (iii), LO is a faithful subadditive state on E. Let us show 
that u is (o)-continuous. Let xa,x G E, a G £, and xa "f x. By Lemma 2.1, (iv), we 
havex = xAl = :rA\/{PA;|fc G i f} = Vi^Ap^^ G K} = \J{(xApi)®(xAp2)<5>' • -0(xA 
pn)|n G I.T} because (xApi)®(xAp2)®' • -©(.rAp™) = (xApi)V(xAp2)V- • -\/(xApn), 
since for k ^ £ we have p^ < p^ and pk Apt = 0 which gives pjfc V p^ = Pk ® Pe 
by Lemma 2.1, (ii). Since .E is (o)-continuous, it is compactly generated by finite 
elements (i.e, by finite sums of atoms, see [19, Theorem 4.5]). It follows that for every 
n G K there is an G £ such that (xApi)0(xAp2)©- • -0(xApn) < xan and therefore 
we may assume a\ < a2 < Obviously xQn | x. Further, u(x) > to(xan) > 
u){(xAp\)@- • - 0 ( x A p n ) ) = C\LOi(x Api) + C2LO2(X Ap2) H VcnLOn(x Apn) \ LO(X) 
and hence to(xan) t u(x) which gives u(xa) t w(x). • 

Corollary 4 .1 . For a complete atomic effect algebra E the following conditions are 
equivalent: 

(i) There exists a faithful probability on E. 

(ii) E is separable and modular. 

Note that (i) =-> (ii) has been proved in [17]. 
Finally, note that a lattice effect algebra admitting a subadditive state (not nec­

essarily faithful) need not be modular. Nevertheless, every complete effect algebra 
admitting an (o)-continuous subadditive state can be decomposed into a direct prod­
uct of two effect algebras at least one of which is modular, or it is modular. 

Theorem 4.3. If for a complete effect algebra E the set M = {to : E -» [0,1] C R\u> 
is a subadditive (o)-continuous state} is nonempty then either E is modular, or there 
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is d0 G C(E) such that d0 ^ 0, [0,d0] admits no (o)-continuous subadditive state 
and [0, d0] is modular. 

P r o o f . For every u G M, we put d^ = {\J{x G E\LJ(X) = 0}. Then, as we 
have shown in [16, Theorem 5.1], (^(d^) = 0, E = [0, du] x [0, d'J\ and the restriction 
cOljo,̂ ] is a faithful probability on [0,dJJ. This gives that [0,c£,] is a separable 
modular effect algebra. 

Put d0 = /\{du\u G M}. Then d0 G C(E), as C(E) is a complete sublattice of 
E. Since d'0 = \J{d'Ju> G M} we see that [0,d'J C [0 ,^ ] , for all u G M. Let us 
show that [0, d0] is a modular lattice. 

By [8], for every x G [0,d0] we have x = x A d0 = x A (\J{df
u}\u G -M}) = 

\J{x A d'u\u> G A T } . Further, for every u € M and x ,y ,z G [0,do] with x < z 
we have x A d^ < z A d^ and because [0,6^,] is modular and fî  fy £ we obtain 
(x V (y A z)) Ad^ = (xA d'J V ((y A z) A d'u) = ((x A d'„) V (y A <,)) A (z A <.) = 
((x V y) A z) A <, . This yields x V (y A z) = \J {(x V (y A z)) A d'Ju G M} = 
V { ((x V y) A z) A d'Joj G M } = (x V y) A z. Thus [0, d0] is modular and evidently 
it is a complete sub-lattice of E. It follows that if E is not modular then d0 ^ 1 and 
hence d0 ^ 0. 

Finally, let us show that [0, d0] admits no (o)-continuous subadditive state. As­
sume on the contrary that d0 ^ 0 and there is an (o)-continuous subadditive state 
m on [0,c/o]- Then u : E -> [0,1] defined by LJ(X) = m(x A d0)y x G E is an (o)-
continuous subadditive state on E. This follows from the facts that for all x,y G E 
we have (x\/y)Ad0 = (xAd0)W(yAd0) and if x < y' then (x(&y)Ad0 = (xAd0)(B(yAd0) 
by [19, Lemma 4.1]. Further, for xa I x, xQ ,x G E we have xaAd0 I xAd0 and hence 
^(^a) = rn(xa A d0) I m(x A d0) = u>(x)y which implies that u is (o)-continuous by 
[19, Theorem 6.2]. Let du = \J{x G E\u(x) = 0}. Then d^ G C(E), ^(d^) = 0 and 
do < du which gives u(d0) = m(d0) = 0, a contradiction. This yields that [0, do] 
admits no (o)-continuous probability. 

It is well known that every poset (P; <) has the MacNeille completion (completion 
by cuts). By J. Schmidt [20] the MacNeille completion of a poset P is any complete 
lattice P into which the poset P can be supremum and infimum densely embedded, 
i.e., for each x G P there are Q , M C P such that x = \Jtp(M) = /\(p(Q), where 
(p : P -> P is the embedding. We usually identify P with <p(P). 

A complete effect algebra (E, ©, 0,1) is called a MacNeille completion of an effect 
algebra (E\ ©, 0,1) if, up to isomorphism, E is a sub-effect algebra of E and, as posets, 
E is a MacNeille completion of E. It is known that there are (finite) effect algebras 
the MacNeille completion of which are not again effect algebras [13]. D 

Corollary 4 .2. If E is a complete effect algebra with C(E) = {0,1} then every 
(o)-continuous subadditive state on E is faithful. 

Theo rem 4.4. For an atomic lattice effect algebra E the following conditions are 
equivalent: 

(i) There is a faithful probability u on E. 
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(ii) The MacNeille completion of E is a separable complete atomic modular effect 
algebra 

P r o o f , (i) --> (ii) If u is a faithful probability on E then E is separable and hence 

jj is (o)-continuous. It follows by [17, Theorem 5.4] tha t the MacNeille completion 

E of E is a separable complete atomic and modular effect algebra. 

(ii) => (J) In this case, by Theorem 4.1, there is a faithful probability u on the 

MacNeille completion E of E. Hence the restriction Q\E is a faithful probability on 

E. • 

(Received November 24, 2003.) 
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