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/ ^SYMMETRIC BI-CAPACITIES 1 

PEDRO MIRANDA AND MlCHEL GRABISCH 

Bi-capacities have been recently introduced as a natural generalization of capacities (or 
fuzzy measures) when the underlying scale is bipolar. They allow to build more flexible 
models in decision making, although their complexity is of order 3 n , instead of 2n for fuzzy 
measures. In order to reduce the complexity, the paper proposes the notion of p-symmetric 
bi-capacities, in the same spirit as for p-symmetric fuzzy measures. The main idea is 
to partition the set of criteria (or states of nature, individuals, . . . ) into subsets whose 
elements are all indifferent for the decision maker. 
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AMS Subject Classification: 28E05, 03H05, 28C05 

1. INTRODUCTION 

Recently, Grabisch and Labreuche [9, 10] have defined the concept of bi-capacity. 
Bi-capacities have their origin in situations in decision making where a bipolar scale 
is used. 

In many problems dealing with bipolar scales, models based on classical fuzzy 
measures (as for example those based on Choquet integral, Sipos integral or even 
on C P T (Cumulative Prospect Theory)) may fail to represent the preferences of 
the decision maker [10]. However, some of these situations could be solved through 
bi-capacities [10]. In this sense, Choquet integral with respect to a bi-capacity 
generalizes these three models. 

On the other hand, fuzzy measures need 2 n — 2 coefficients to be completely 
determined; in order to reduce this complexity, we have defined the concept of p-
symmetric fuzzy measures. These measures reflect the fact tha t some criteria may be 
indistinguishable for the decision maker and they constitute a middle term between 
symmetric fuzzy measures and general fuzzy measures. In a previous paper [15], we 
have shown some of their properties, paying special at tention to the representation 
of p-symmetric fuzzy measures and the decomposition of Choquet integral. 

^ h i s is a revised and extended version of the paper [17], presented at AGOP conference. The 
research has been supported in part by FEDER-MCYT grant number BFM2001-3515. 
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The aim of the paper is to define p-symmetric bi-capacities in a similar way as 
p-symmetric fuzzy measures have been defined for fuzzy measures. The definition 
is based on the extension of the concepts of indifferent elements and subsets of 
indifference, thus keeping as far as possible the construction of p-symmetric fuzzy 
measures. 

The rest of the paper is organized as follows: We introduce the basic concepts on 
fuzzy measures that are needed throughout the paper in the next section. In Sections 
3 and 4 we give a brief survey about p-symmetric fuzzy measures and bi-capacities, 
respectively. In Section 5 we define p-symmetric bi-capacities and study some of 
their properties, in particular looking for a simple representation. In Section 6 we 
deal with Choquet integral with respect to a p-symmetric bi-capacity. Finally, in 
Section 7 we briefly study the definition of p-symmetry for k-ary capacities. We 
finish with some conclusions. 

2. BASIC BACKGROUND ON FUZZY MEASURES 

We consider a finite set of n elements (states of nature, criteria, etc) X — {x\,... , x n } , 
and denote V(X) the set of subsets of X. Subsets of X will be denoted by A, B,... 
and also by A\,A2, 

Definition 1. (See [2, 3, 19].) A (discrete) fuzzy measure or capacity over (X, V(X)) 
is a mapping \x : V(X) —> [0,1] such that 

— /i(0) = 0, n(X) — 1 (boundary conditions). 

— ^ A,B e V(X) such that AC B, then fi(A) < n(B) (monotonicity). 

From a mathematical point of view, fuzzy measures are a generalization of prob­
abilities, exchanging additivity by monotonicity. 

Fuzzy measures have proved to be a very valuable tool in multicriteria decision 
making (see e.g. [6]). 

Symmetric fuzzy measures are a special case of fuzzy measures that are the basis 
for p-symmetric fuzzy measures. 

Definition 2. A fuzzy measure \x is said to be symmetric if it satisfies for any 

A,BeV(X), 
\A\ = |B | =» fi(A) = MB ) . | 

An equivalent representation of fuzzy measures is given by the Mobius inverse. 
This transformation is an invertible linear transform of set functions, and is a fun­
damental notion in fuzzy measure theory [1]. 
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Definition 3. (See [18].) Let /x be a set function (not necessarily a fuzzy measure) 
on X. The Mobius transform (or inverse) of \i is another set function raM on X 
defined by 

mM) •= £ (-l)^mfi(B), VA C X. (1) 
BcA 

Identifying V(X) with {0,1}'XI, a subset A C X can be denoted by a vector 
(Hi,... ,yn) with yi = 1 whenever Xi G -4 and Hi -= 0 otherwise. Then, /i(-4) can be 
rewritten as /x(j/i, • •. , y7i) and /i becomes a pseudo-boolean function [12]. We will 
call this notation of /x as the vectorial notation. 

Consider now a mapping / : X -» 1R+; this mapping may represent the scores of 
an object on each criterium. In order to aggregate the different values, the so-called 
fuzzy integrals are used. One of the most important is the Choquet integral: 

Definition 4. (See [2].) The Choquet integral of a, function 

/ : X -> 1R+ 

with respect to a fuzzy measure /i on X is defined by 

n 

CM) ••= £(/(-•<.)) - /(~-(.-i)))/-(B.), (2) 
i=\ 

where {x(i) , . . . , £(n)} is a permutation of the set {.21,... , x n } satisfying 

0 =: /(z(o)) < /(z(i)) < < /(*(n)), 

and B{ := {x ( i ) , . . . , x ( n ) } . 

The Choquet integral is a generalization of the concept of expected value. 
It must be noted that the Choquet integral is properly defined for any set function 

vanishing on the empty set: monotonicity is not mandatory in (2). 
Remark also that, as we need to rank the values of / and look for the different 

Z?;, the Choquet integral has a high computational cost, except for some particular 
situations, e.g. probabilities or symmetric fuzzy measures. 

Assume now that / is a real-valued function, not restricted to R+. Then, the 
Choquet integral can be defined through two different ways. 

Definition 5. (See [23].) Let /x be a fuzzy measure over X and / : X -> E a real 
mapping. The symmetric Choquet integral or Sipos integral is defined by 

CM)-=cM+)-cM~l (3) 

with j + : = / V 0 , / " : = ( - / ) + . 
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Definition 6. Let // be a fuzzy measure over X and / : X —•> M a real mapping. 
The asymmetric Choquet integral is defined by 

CM)'-=cM+)-c-»(n, (4) 
with ft(A) := l-fi(A

c). 

The Cumulative Prospect Theory (CPT) model is a generalization of these two 
definitions: 

Definition 7. (See [22].) Let /ii,/i2 be two fuzzy measures over X and f : X -> R 
a real mapping. The Cumulative Prospect Theory model with respect to /ii, /i2 is 
defined by 

CPT(f):=C^(n-C»2(f-). (5) 

3. p-SYMMETRIC FUZZY MEASURES 

The main drawback of fuzzy measures is their complexity. We need 2n — 2 coeffi­
cients to properly define a fuzzy measure. Then, some subfamilies of fuzzy measures 
have been defined in an attempt to reduce complexity, e.g. fc-additive measures [7], 
A-measures [21], or more generally decomposable measures [4, 24]. Specially appeal­
ing are fc-additive measures, as they fill the gap between probability measures and 
general fuzzy measures (see [8, 14] for details). 

In the same spirit of A>additive measures, p-symmetric measures appear as a 
middle term between symmetric fuzzy measures and general fuzzy measures. They 
reduce the complexity of fuzzy measures and provide a generalization of the idea of 
symmetry. 

Let us now turn to the complexity of the Choquet integral. It can be proved [5, 6] 
that the Choquet integral w.r.t. a symmetric fuzzy measure is an OWA operator 
[25]; then, the Choquet integral w.r.t. a symmetric fuzzy measure has a low com­
plexity. Therefore, we define p-symmetric fuzzy measures in a way such that the 
corresponding Choquet integral has a reduced complexity. 

The definition of p-symmetric fuzzy measure is based on the concept of indifferent 
elements and subsets of indifference. 

Definition 8. (See [15].) Given two elements Xi,Xj of the universal set X and a 
fuzzy measure /i over X, we say that X{ and Xj are indifferent elements for /x if and 
only if 

\/ACX\{xi,Xj}, ii(AUxi) = LI(AUXJ). (6) 

If we consider the vectorial notation, two elements Xi,Xj G X are indifferent if 

/x(i/i,... , 1 , . . . , 0 , . . . ,yn) = fi(yi,... , 0 , . . . , 1 , . . . ,yn), i 
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V y i , . . . , j / i _ i ,y i + i , . . . , J / J _ I , 2 / J + I , . . . ,?/„. (7) 

Indeed, in Eq. (7) we are permuting values 0 and 1 (the possible values for any 
coordinate) in positions i and j . 

In decision making, the definition of indifferent elements reflects the fact that 
criteria Xi and Xj arc equivalent, so that wre do not care about which one is fulfilled. 

This can be extended to more than two elements through subsets of indifference. 

Definition 9. (See [15].) Given a subset A of X, we say that A is a subset of 
indifference for a fuzzy measure /x over X if and only if V_?i, B2 C A, \B\\ = |F?2| 
and V C C X\A, we have 

fi(BlUC) = fi(B2UC). (8) 

From this definition, any two elements of the same subset of indifference are 
indifferent elements in the sense of Definition 8. 

Remark that, for a given subset A C X, any arbitrary vector (y\,... ,yn) repre­
senting some subset B C X, can be written as a pair of vectors (ijA,y-A) where yA 
denotes the coordinates yi such that Xi G A and y-A the coordinates of all X{ G Ac. 
Therefore, we can also identify any permutation TT on A with the corresponding 
permutation on yA\ then, with some abuse of notation, the effect of permutation n 
on yA will be denoted by yn(A)i a n ( i if n(xi) = xj, then yn(i) will denote the value 
jjj. Then, if we use the vectorial notation, Definition 9 translates into 

Definition 10. Let /i be a fuzzy measure over X and consider A C X. We say 
that A is a subset of indifference if Vy^ 

fj.(yA,y-A) = v(yn(A),y-A), Vy-A, (9) 

for any permutation n on A. 

Definition 11. Let III, II2 be two partitions of X. We say that II2 is coarser than 
III, denoted n i =U2 if 

VAi G III, 3-42 GlI2 ,Ai CA2. 

Remark that given two partitions of X, U\ = {A\,... ,AP} andl l 2 = {B\,... ,Bq} 
such that 111 7̂  n 2 , it is always possible to find i, j , k satisfying 

Ai H Bk ^ ®,Aj n Bk / 0 or B{ n Ak ± H\,Bj n A f c / 0 . (10) 

Now, we define p-symmetric fuzzy measures as follows: 
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Definition 12. (See [15].) Given a fuzzy measure /i over X, we say that \i is a 
p-symmetric fuzzy measure if and only if the coarsest partition of the universal set in 
subsets of indifference is formed of p non-empty subsets A\,... ,AP. The partition 
{A\,... ,Ap} is called the indifference partition or basis of the p-symmetric fuzzy 
measure. 

We will prove below (Corollary 1) that we have a unique coarsest partition, so 
that the concepts of p-symmetry and indifference partition are well-defined. 

A symmetric fuzzy measure is just a 1-symmetric fuzzy measure. Remark that 
we are dealing with the coarsest partition. Otherwise, a symmetric measure could 
be also considered as a fc-symmetric fuzzy measure VA: £ { 1 , . . . , n}. 

For a p-symmetric fuzzy measure w.r.t. the indifference partition {A\,... ,AP}, 
we can identify B C X with a p-dimensional vector (b i , . . . , bp) whose coordinates 
are given by bi = \Ai f] B\, Vi = 1 , . . . ,p. 

This property allows a reduction in the complexity of the measure: 

Lemma 1. (See [16].) Let /z be a p-symmetric fuzzy measure on X w.r.t. the 
indifference partition { i j , . . . ,Ap}. Then, it can be represented in a (\A\\ + 1) x 
• • • x (\AP\ + 1) matrix whose coefficients are defined by 

M ( i i , . . . ,ip) := /x( i i , . . . ,ip),ij E {0, . . . , |-4j|}. 

This representation also allows a simple way to compute the coefficients p(I3j) of 
the Choquet integral: 

Theorem 1. (See [16].) Let /x be a p-symmetric fuzzy measure w.r.t. the indif­
ference partition {Ai,... , Ap} and consider the matrix representation of Lemma 1. 
Then, the corresponding values of fi(Bi) in Definition 4 can be computed by finding 
a path between the "points" (0 , . . . ,0) and ( | i4i | , . . . ,\AP\) applying the following 
rule: Assume -Bj-i corresponds to point ( i i , . . . ,ip) and x^ G -4jt, then fi(Bj) is in 
the point ( i i , . . . ,ik + 1, •. • ,iP) (see Figure 1 for an example with a 2-symmetric 
fuzzy measure). 

The number of possible paths is given in next lemma. 

Lemma 2. (See [16].) Let / i b e a p-symmetric fuzzy measure on X with respect to 
the indifferent partition {A\,... ,AP}. Then, the number of paths from (0 , . . . ,0) 
to (|-4i|,. . . , \AP\) is the multinomial number 

n 
1 .4x1, . . . . | .4P |I 1.4.1! ...1-4,1! 

(П) 

The concept of p-symmetry permits also a decomposition of Choquet integral, as 
the next proposition shows. This relates to the IEC (inclusion-exclusion coverings) 
[20] and belongs to the field of Choquet decomposition. 
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(0Д) 

(0,2) •(1,2) - ( 2 , 2 ) 

(2,3) * ( 3 , 3 ) 

Fig. 1. Possible path from (0,0) to (3,3) when \Ai\ = 3 and \A2\ = 3. 

Proposi t ion 1. (See [16].) Let /i be a p-symmetric fuzzy measure on X with respect 
to the partition {.Ai,... ,^4P}, and suppose (i(Ai) > 0,Vi G {1,.. . ,p}. Then, the 
Choquet integral is given by 

£,,(/) = £M*)C,., ,(/)+ E rn(B) f\ f(xi) 
BgAj^j XÍ£B i=l 

where \iAi is defined by 

„ A ( C ) :=**?£>, VCCX, 
n(Ai) 

and m denotes the Mobius transform of fi. 

(12) 

(13) 

4. BI-CAPACITIES 

Despite the good properties of fuzzy measures, in some practical situations dealing 
with bipolar scales, Choquet and Sipos integral, or more generally a CPT model, are 
not sufficiently appropriate to model and solve the practical problem [9]. Therefore, 
a generalization is needed. It is in this context where bi-capacities appear. 

Definition 13. (See [9, 10].) Let us denote 

Q(X) := {(A, B) G V(X) x V(X) s.t. A n B = 0}. 

A bi-capacity is a mapping i/ : Q ( I ) -> M satisfying 

- */(0,0) = 0, i/(X, 0) = 1, l/(0, X) = - 1 . 
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v(-, •) is increasing w.r.t. set inclusion in the first coordinate and decreasing in 
the second. 

Prom this definition, we have <v(0, C) < 0, v(C, 0) > 0, VC C X. 
Remark that Q(X) can be identified with {-1 ,0 ,1} | X | and (A,B) G Q can be 

denoted by (y i , . . . ,yn) with yi = 1 if Xi G A,yi = —1 if Xi G B, and yt = 0 
otherwise. Consequently, l/(.A,2?) can be rewritten as v(y\,... ,yn) in vectorial 
notation, and thus, the number of different coefficients that we need to completely 
determine a bi-capacity is 3 n . Three of these coefficients are fixed by the conditions 
of Definition 13. 

Choquet integral w.r.t. a bi-capacity is given in next definition. 

Definition 14. (See [10].) Given a mapping / : X -> R and a bi-capacity v, the 
Choquet integral of / w.r.t. v is defined by 

W ) : = C / i Y + ( | / | ) , (14) 

where | / | is the absolute value of / , X+ = {x e X \ f(x) > 0}, X~ = X\X+, and 

fix+(A) :=v(AnX+,AnX~), V .4CI (15) 

This definition generalizes the definitions of Choquet integral and Sipos integral 
w.r.t a fuzzy measure, and also the CPT model, as desired. 

It must be remarked that /.ix+ is a set function, but it is not a fuzzy measure in 
general. 

5. p-SYMMETRIC BI-CAPACITIES 

Let us now turn to the definition of p-symmetric bi-capacities. This definition should 
maintain the essence of p-symmetric measures; therefore, it should represent the fact 
that some elements may be indistinguishable for the decision maker. 

The first step is to translate the concepts of indifferent elements and subset of 
indifference for bi-capacities. 

Definition 15. Let v be a bi-capacity and consider Xi,Xj G X. We say that Xi 
and Xj are indifferent elements if for any (A,B) G Q(X), A,B C X\{xi,Xj} the 
following holds: 

v(xi L\A,B) = V(XJ U A, B), (16) 

v(A, XiUB) = v(A, Xj U B), (17) 

v(AUxj,XiUB) = v(A\Jxi,XjUB). (18) 
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With this definition, if the decision maker considers Xi and Xj indifferent, he 
does not care about which one of them is in the coalition (in both arguments of 
the bi-capacity). Moreover, if both elements appear, one in the first argument and 
the other in the second one, he does not care about which one of them is in each 
argument. This means that the decision maker is indifferent about these criteria, in 
the sense that any coalition has exactly the same importance with any of them. At 
this point, (16) and (17) are natural extensions of (6). Let us turn to Eq. (18); it 
must be remarked that this condition cannot be derived from the two first, as next 
example shows: 

Example 1. Let us consider X = {xi,X2,x%} and the bi-capacity v defined by 

A\B 0 Xl x2 Xl ,x2 xз xux3 x2,x:i 
X 

0 0 -0.1 -0.3 •0.5 -0.3 -0.5 -0.6 - 1 
Xl 0.1 0 0 -0.2 

X2 0.3 0 0 -0.1 
Xl,X2 0.5 0.2 

xз 0.3 0 -0.4 
X i , X 3 

0.5 0.1 
X2,Xз 0.6 0.4 
X 1 

Then, this bi-capacity satisfies the two first conditions for #2,£3. However, it 
fails for the third condition, as ^ ( { . X ' I , - ^ } , {^3}) — 0.2,.t/({xi,a;3}, {£2}) — 0-1. 

Of course, the bi-capacity in this example does not fulfill our intuition about in­
different elements; therefore, in order to translate the concept of indifferent elements, 
the three conditions are needed. 

If we consider the vectorial notation, Definition 15 can be written in the following 
form: 

Definition 16. Let v be a bi-capacity and consider Xi,Xj G A". We say that X{ 
and Xj are indifferent elements if V 2/i, 2/J 

1 / ( 3 / 1 , . . . , 2 / i , . . . , 2 / j , . . . , 2 / n ) = * % ! > • • • , 2 / T T ( Z ) , - - - . 2 / 7 r ( j ) , " . , 2 / 7 i ) , 

V j / i , . . . , y i _ i , y i + i , . 

with 7r : {i, j} -> {i,j} a permutation. 

, 2 /7 -1 ,2 /7+1 > ? 2/n, (19) 

It is easy to see that (19) recovers (16), (17) and (18) of Definition 15 for the two 
possible permutations n and different values of 2/i,2/j, so that both definitions are 
equivalent. 
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Let us now turn to the extension of subset of indifference for bi-capacities. This 
concept must reflect the fact that all elements in it are indifferent. Therefore, this 
definition should extend Definition 16 in the same way Definition 9 extends Defini­
tion 8. Considering the vectorial notation, we can extend the concept of subset of 
indifference (Definitions 9 and 10) as follows: 

Definition 17. Let v be a bi-capacity and consider A C X. We say that A is a 
subset of indifference if V'yA 

v(yAly-A) = v(yv{A),y-A), Vy-A, (20) 

for any permutation n on A. 

For a subset of indifference A, the following can be proved: 

Lemma 3. A subset A C X is a subset of indifference if and only if for any 
B i , B 2 , B 3 , B 4 C A such that |Bi | = |B 3 | , |B 2 | = | B 4 | , B i n B 2 = 0 , B 3 n B 4 = 0 the 
following condition holds: 

i / (CUBi, .DUB 2 ) = I / ( L 7 U B 3 , B U B 4 ) , \/{C,D) e Q, C,DCX\A. 
(21) 

P r o o f . =>) It suffices to show that there exists a permutation n on A leading to 
(21). But for this it suffices to consider a permutation IT mapping Bi on B 3 and B2 

on B4 . As |Bi| = |B3 | , |B 2 | = |B4 | , Bx n B 2 = 0,B3 n B4 = 0, it is clear that we 
can find such a permutation, whence the result. 

<=) Consider yA. Then, we can define 

Bx ={xi eA\Vi = 1}, B2 = {xi eA\yi = -l}. 

Given a permutation n on A, we define 

B 3 = {xi e A | yn(i) = 1}, B4 = {xi e A | yv(i) = - 1 } . 

We have Bx fl B 2 = 0, B 3 n B 4 = 0; on the other hand |Bi| = |B3 | , |B 2 | = |B 4 | , as 
7r is a permutation. Then, by (21) 

i / (CUBi, .DUB 2 ) = i / (CuB 3 , .DUB 4 ) , V{C,D) eQ,C,DCX\A, 

or, in other words, V'yA 

V{VA,V-A) = v(yn(A),y-A), Vy-A-

This completes the proof. D 

This means that all elements in A are indistinguishable for the decision maker. 
Indeed, we do not care about which subset of the subset of indifference is in the 
coalition; we only care about the number of elements of the subset of indifference 
that are contained. 

We can then define p-symmetric bi-capacities from subsets of indifference, as it 
has been done for the case of fuzzy measures. 
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Definition 18. Given a bi-capacity v, we say that v is a p-symmetric bi-capacity 

if and only if the coarsest partition of the universal set X in subsets of indifference 
is {Au... ,Ap},Ai^Q,Vie {1,... -pi-

Let us first show that Definition 18 makes sense, i.e. there is always a unique 
coarsest partition of subsets of indifference. For this, we need a preliminary lemma. 

Definition 19. Given S C K and fj, : Sn -> E, we say that a subset .AC{1,... ,n} 
satisfies the exchange property (£V) if Vy^ 

n(yA,y-A) = v(yn(A),y-A), VTT permutation on A, Vy-A-

Lemma 4. Let S C R and /i : Sn -> R be a mapping. We consider the family 

V := {{A\,... ,AP} partition of { 1 , . . . ,n}\ A{ satisfies £V, Vi}. 

Then, there exists a top element in V. 

Proof . Assume that there exist two different partitions, denoted {A\,... ,AP} 
and {Bi,... , Bq}, in V which are maximal. 

As they are different, we know from (10) that it is always possible to find i,j,k 
satisfying 

AiHBk^ 0, Aj n Bk± 0 or B{ n Ak ^ 0 ,^- n Ak ^ 0. 

Assume that there exist i,j,k such that Ai fl Bk ^ 0, Aj D Bk / 0, and let us 
show that in this case Ai U Bk satisfies £V. 

Let us consider n a permutation on Ai U Bk and show that VyA{uBk 

V(yAiUBk,y-(AiUBk)) = Kyn(AiUBk),y-(AiUBk)), Vy-(AtUBk) 

holds. Any permutation can be decomposed in a composition of transpositions, i.e. 
permutations interchanging only two elements [13]. Consequently, it suffices to show 
the result for any transposition ars interchanging r and 5. We have three different 
cases: 

— If r, 5 G Ai, then ars is indeed a transposition on Ai and consequently, since 
Ai satisfies the exchange property, the result holds. 

— Similarly, if r, s G Bk, the result holds. 

— The final case arises when r G Ai \ Bk, s G Bk \ Ai. As Ai fl Bk ^ 0, consider 
t G Ai fl Bk. Then, ars = otrots(Jrt, and we have 

V>(yAiUBk,y-(AiUBk)) = V(y<rrt(AiUBk),y-(AiUBk)) 

= V(y<Tt3<Trt(AiUBk),y-(AiUBk)) = V>(yatr<Tt3<Trt(AiUBk),y-{AiUBk)), 

whence the result. 

Thus, Ai U Bk satisfies £V, but then so does Ai U Bk U Aj, whence Ai U Aj 
satisfies £V\ this is a contradiction with the fact that {-4i,... ,AP} is maximal. 
This concludes the proof. • 

Taking successively S = {0,1} and S = {-1,0,1} we get: 
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Corollary 1. Given a fuzzy measure /i, there exists a unique coarsest partition of 
X in subsets of indifference. 

Corollary 2. Given a bi-capacity v, there exists a unique coarsest partition of X 
in subsets of indifference. 

Remark 1. In the following, we will call the coarsest partition of X in subsets of 
indifference the indifference partition or basis of the bi-capacity v. 

In the case of a p-symmetric bi-capacity w.r.t the partition {A\,... , Ap}, in order 
to define v(B,C) it suffices to consider two p-dimensional vectors (b\,... ,bp) and 
(c i , . . . ,cp) with bi = \Ai D B\, Ci = \Ai D C\, Vz = 1 , . . . ,p by Lemma 3. In the 
following, when dealing with a p-symmetric bi-capacity, we will identify (B, C) G 
Q(A')wi th((6 i , . . . , 6 p ) , ( C l , . . . , C P ) ) € N 2 P . 

Let us now turn to the representation of p-symmetric bi-capacities. Let us first 
consider a 1-symmetric bi-capacity on X, with \X\ = n; then, in order to know 
v(A,B), it suffices to consider |>1|, \B\. For fixed \A\, the possible values for \B\ are 
0 , . . . , n — |.A|. This allows us to represent this bi-capacity as in Table 1. 

Table 1. Representation of symmetric bi-capacities. 

0 1 n - 1 n 
0 
1 

7/(0,0) 
1/(0,1) 

ľ (L0) . 
1/(1,1) . 

.. i / ( n - l , 0 ) 

.. i / ( n - l , l ) 
í/(n,0) 

n ľ(0,n) 

However, in order to keep the structure of p-symmetric fuzzy measures, it should 
be desirable to obtain a matrix representation of p dimensions. Hence, Table 1 
should be rewritten as a vector containing 

^ . (n + l)(n + 2) 
^ l = 2 
2 = 1 

elements. In general, the following can be proved: 

Proposition 2. A p-symmetric bi-capacity v with respect to the indifference par­
tition {.Ai,... ,-4p} can be represented in a p-dimensional matrix, denoted by M, 
of dimensions 

(1^1 + 1X1.4x1 + 2) (|Ap| + l)(|Ap| + 2) 
2 2 
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Consequently, the number of coefficients needed to define the bi-capacity is 

J-V (1.4.1 + 1X1.4.1 + 2 ^ 

1 = 1 

(Three of these coefficients are known by the conditions of Definition 13.) 

P roof . In order to define v(B,C) it suffices to consider ((6i , . . . ,6P), ( c i , . . . ,cp)), 
with bi — \Aj fl B\, ci — \Ai C\C\, as explained before. Let us start with (6i , . . . , 6P). 
Remark that b{ varies between 0 and \Ai\. Therefore, the different possibilities for 
(6i, . . . , 6P) can be written in a (|..4i | + 1) x • • • x (|^4p| + 1) matrix. Let us denote 
this matrix by N. 

Let us fix bf, then, c; varies between 0 and |.<4i| — 6;. Consequently, for fixed 
(6i, . . . , 6P), the possible values that (c i , . . . , cp) can attain determine another matrix 
M(bl,...,bp) of dimensions (\Ai\ — 6i + 1) x • • • x (\AP\ — 6P + 1). Next matrix is an 
example for M^lyb2) for fixed 61,62. 

v((bub2),(0,0)) ... v((bub2),(0,\Ac\-b2)) \ 

i / ((61 ,62) , ( |A | -61 >0)) . . . v((bub2)A\A\-bu\Ae\-b2)) J 

Therefore, in position (61 , . . . ,6P) of matrix IV, we have not a number but a p-
dimensional matrix of dimensions (|̂ 4i | — 61 + 1) x • • • x (|,4p| — 6P + 1). Now, it must 
be noted that for fixed bi the number of rows of matrix M ^ , . . . ^ , .,6 ) on the ith 
dimension is always I.Ai| — 6i + l for any other values of 6 1 , . . . , 6i_i ,6;+i , . . . ,6P. This 
implies that a p-symmetric bi-capacity can be represented in a "big" p-dimensional 
matrix. The number of rows of such a matrix for the ith coordinate is given by 

E ( W - ^ D = ( W + T ' I + 2 ) -
bi=0 

This concludes the proof. • 

This representation will allow us to compute Choquet integral in a simple way, 
as we will see in the following section. 

6. CHOQUET INTEGRAL W.R.T. A p-SYMMETRIC BI-CAPACITY 

Let us now turn to the problem of obtaining the Choquet integral w.r.t. a p-
symmetric bi-capacity with basis {.Ai,... ,.AP}. 

First, let us show for the p-symmetric case that we can use the matrix repre­
sentation to compute Choquet integral in a similar way as in Theorem 1. For a 
mapping / : X -» R, the Choquet integral is defined in terms of a set function p>x+, 
depending on X+ = {x € X\f(x) > 0} (Eq. (14)), and defined from v (Eq.(15)). 
Once /ix+ is defined, it is necessary to find the coefficients of the corresponding 
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fix+(Bi), i = 1 , . . . , n. It follows from Definition 4 that Bi = {x ( i ) , . . . , z ( n )} , where 
{x ( 1 ) , . . . ,X(n)} is a permutation of the set {x\,... ,xn} satisfying 

0 = : | / | ( x ( 0 ) ) < | / | ( x ( 1 ) ) < . . . < | / | ( x ( n ) ) . 

Let us consider Bt. Then, Bi, = F?i+1 U {x( i)}. Let us define 

dj := | ^ n I ? i + 1 nX+\,ej := \Aj n Bi+l Ci X~\, j = 1 , . . . ,p. 

Remark that in this case, 

txx+ (£ i + 1 ) = v(Bi+1 n X+, B i + 1 n X~) = i/((d!,... , dp), (eu ... , ep)), 

as v is a p-symmetric bi-capacity. On the other hand, by Proposition 2, we know 
that v can be represented in a p-dimensional matrix M and consequently, for suitable 
values of i\,... ,ip, it is v((d\,... ,dp), ( e 1 ? . . . ,ep)) = M[ii,... ,ip]. We conclude 
that 

Vx+(Bi+i) = M[iu... ,ip]. 

Let us now turn to fix+(Bi). Then, we have two different situations: 

— Suppose f(x(t)) < 0 and x(i) G Aj. Then, x(i) E Aj C\X~. Then, 

Vx+(Bi) = v((dx,... ,dp),(el,... ,ej •+!,... ,ep)). 

As (d\,... , dp) remains the same, we have to consider again the p-dimensional 
matrix M ( d l .. >rfp) and look for the position of vector (e 1 ? . . . , ej + 1 , . . . , ep); 
this position can be obtained from (i\,... ,ip) just adding one to the j th 
coordinate. Therefore, 

fJ>x+(B{i)) = M [ i i , . . . ,ij + 1 , . . . ,ip]. 

— On the other hand, if / (x ( i)) > 0 and x(i) G Aj, then 

^x+(B(i)) = v((du... ,dj + 1 , . . . ,dp) , (e 1 , . . . ,ep)). 

In this case, we have to look for vector ( e i , . . . ,ep) in M(rfl>...,di+1,... ,rfp). This 
can be obtained from (i\,... , ip) just taking into account that M(^1 . >(/p) has 
I A? I ~ ^j + 1 r o w s o n t r ie jth direction. Therefore, ij should be increased by 
\Aj\ -dj + l - ej + ej = \Aj\ - dj + 1. 

Then, we have shown that it is possible to obtain the coefficients for computing 
the Choquet integral from the matrix representation of Proposition 2, starting from 
position (0 , . . . ,0). We conclude that for a p-symmetric bi-capacity v with respect to 
the indifference partition {A\,... ,AP}, the coefficients for computing the Choquet 
integral can be obtained by finding a path from v((Q,... , 0), (0 , . . . ,0)) to v((X+ n 

Ax,..., x+ n Ap), ( r n . 4 l r . . , x - n Ap)). 
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X; 

I т 

Fig. 2. T = Part of matrix representation used for fixed X+ 

(Xi =K+n . .4i,K2 = K+nA2). 

Remark 2. It is important to remark that the end point of the paths varies with 
Ar+. Indeed X + determines the part of M that is used for computing the Choquet 
integral, as it defines the values of (_Y+ f)Au . . . ,X + n_4 p ) , (_Y~n_4i,... ,X~nAp). 
(see Figure 2 for an example for the 2-symmetric case). 

It must be also noted that for a given / : X —> R, even if v is a p-symmetric 
bi-capacity, /ix+ is not a p-symmetric set function in general. This is because, for 
BCX, the value fix+(B) depends not only on \B n -4;|, i = 1,.. . ,p but also on 
K+ (and X~). However, the following can be proved: 

Lemma 5. Let v be a p-symmetric bi-capacity with respect to the indifference 
partition {_4X,... ,_4P}. Then, for any X+ C X, X~ = X\X+, the set function JJ,X+ 
defined by 

fix+(C) :=i/(Cnx+,cn_K-), vecx, 
is a 2p-symmetric set function w.r.t. the indifference partition {Z?i,... , Bp, C\,... , Cp} 
(at most) with B{ := A{ n X+, d := At n _Y~, i = 1,.. . ,p. 

P r o o f . It is straightforward to check that {Bu . . . , _3P, Cu . . . , Cp] is indeed a 
partition of _Y. 

Let D,E C X such that for any i = 1,. . . ,p, it is 

di := \Bi HD\ = \Bi n E\ =: eu d!{ := |Ci n D\ = \d n _E7| =: ej. 

Then, we have 

nx+(D) = HDnx+,Dnx-) = „((d1,...,dp),(d'1,...,d'p)) 

= ^ ( c - ' - - - ' e " ) . ( e i , . . . , e p ) ) = / i x + ( - - 0 , 
as i/ is a p-symmetric bi-capacity. • 
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Corollary 3. Let v be a p-symmetric bi-capacity with respect to the indiffer­
ence partition {Ai,... ,Ap} and consider A + C X. Define X~ = A'\A'+ . Then, 
the number of possible paths from (0 , . . . ,0), (0 , . . . ,0)) to ((|-4i fl A + | , . . . , \AP n 
A + | ) , (|Ai fl X~\,... , \AP fl X~\)) is the multinomial number 

n 

\AX n x+ | , . . . , \AP n x+\, \AX n A - | , . . . , \AP n x-\J' 

P r o o f . The proof is straightforward from Lemmas 5 and 2. • 

Now, let us turn to the Choquet decomposition. As a consequence of Lemma 5, 
we can decompose Choquet integral as it is done in Proposition 1. 

Proposition 3. Let v be ap-symmetric bi-capacity with respect to the indifference 
partition {A\,... , Ap} and / : X -> E. Define Bi = A{ n X+, Ct = A{ fl A'~, i = 
1 , . . . ,p. Then, the expression for Choquet integral is 

w ) = E <vBi(i/i) + E c^(i/i) 
lLx+(Bi)>0 ' / i v + ( C i ) < 0 

+ E ™*+(£) A i/K )̂- (--) 
D£Bi,Ci x{eD 

where \J1B{ ,fi'c. : V(X) —r [0,1] are defined by 

ti'Di(D):=is(BinD,®), n'Ci(D):=vW,CinD), VDCX. (23) 

Moreover, if Vx+(Bi),fix+(Ci) ^ 0,Vi, then, 

Fv{f) = J2»x+(Bi)C»Bi{\f\) + E>*+(W/.c.(l/l) 
1 = 1 1 = 1 

+ E ™*+(o) A i/i(^)> (24) 
D£Bi,Ci Xi&D 

where /I-B,-,/xc, : 7>P0 -> [0,1] are defined by 

i / ( i ? inD, i ) , jv(0,(7inD) w n r - v , „ , , 

^ ( Z 3 ) : = , (^,0) ' m ( D ) : = =
 y(0,co ' V j D g x (25) 

Proof . As iix+ is a 2p-symmetric fuzzy measure w.r.t. (B\,... , BP,C\,... , Cp) 
(Lemma 5), we can apply Proposition 1, thus obtaining as Choquet integral 

fy»x+{Bi)cllBi{\f\)+iix+{ci)ctlCi{\f\)}+ E m^+(/J) A i/io*), 
i= l DgBi.d x{eD 
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with \iBi,VCi defined as in (25). 
On the other hand, /x'B. > 0,/z'c. < 0, whence (24) holds. The first part of the 

proposition is straightforward; it just suffices to introduce fix+ (Bi) 1n the definitions 
of \iB{ and Hd respectively. The second part of the proposition is also straightfor­
ward; it just suffices to normalize the set functions [i'B . , / i ' c . . • 

Remark 3. When dealing with symmetric bi-capacities, we have just one subset 
of indifference (X itself). Then, we have just one J3; and one Ciy namely X+ and 
Ar_, respectively, and (22) turns into 

Fv(f) = v(X+Wl>>x+(\f\) + v(^X-)C»>x_(\f\)+ _T mx+(D) f\ \f\{Xi), 
D£X + ,X- XieD 

with / i ' x + , ^ ' x _ : V(X) -r [0,1] defined by 

fi'x+(D) : = i I ( X + n D , D ) , Hx-iP) : = K 0 , - O n X - ) , V D C I . 

Even more, for \±Bi, [id the following can be proved: 

Lemma 6. The set functions /iB^/xC^ : V(X) -» [0,1] defined by 

v(BinD,H) v^CjOD) w n r v 

^{D):= „(B<I0) ' ^{D)'= v(<b,Ci) ' yDQX> 

are indeed fuzzy measures. 

P r o o f . Let us prove the result for /XB;. 

„„ «n\ - "(flnBi.fl) _ "(0-fl) - n 

— /-B.(0) - K(B.,0) - HBj) - U-

„„ m - HXnBjfi) _ v(Bi,1>) _ . 

— If D C ._, then 

i/(£>nB<>0) i/(JgnBi ,0) _ , 

^ ' ( D ) = u(BtJ) ~ HBu<t» ~ ^BiiE)- ( 2 6 ) 

For /iCi, the proof is similar. In this case, it must be noted that i/(0,D n Ci) > 
i/(0, E n Ci) whenever D C E but this inequality reverses because v($,C.) < 0 as 
"(0> C.) ^ 0 and the conditions of Definition 13. ---
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7. p-SYMMETRIC fc-ARY CAPACITIES 

Capacities can be extended to more than two dimensions through the so-called fc-ary 
capacities, defined by Grabisch and Labreuche in [11]. Roughly speaking, while a 
bi-capacity is a function v on the lattice 3'xl (criteria with positive evaluation and 
criteria with negative evaluation), a k-ary capacity is a function on the lattice klxl 
representing the overall score of some fc-ary alternative ( a i , . . . ,a^) representing 
reference levels of interest. 

The corresponding concept of p-symmetry in this situation lays again on the 
concept of indifferent elements and subsets of indifference. 

If we consider the vector representation, it comes out that in this case the possible 
values are not S = { — 1,0,1} but S = { a i , . . . ,afc}. However, the concepts of 
indifferent elements and subset of indifference remain the same. 

Definition 20. Let v be a &-ary capacity and consider Xi,Xj G X. We say that Xi 
and Xj are indifferent elements \i\/yi,yj 

/ ^ ( y 1 , . . . , 2 / i , . . - , 2 / j , . " , 2 / n ) = f i ( y i > - - - > 2 / 7 T ( i ) , " - , 2 / 7 r ( j ) , . . . , 2 / n ) , 

Vj/i , . . . , j/t_i,T/i+i , . . . ,2/j_i, t / j+ i , . . . ,yn , (27) 

with n : {i,j} —> {i,j} any permutation. 

Definition 21. Let v be a A:-ary capacity and consider A C X. We say that A is 
a subset of indifference if V yA 

v(yA,y-A) = v{yn(A),y-A), Vy_>i, (28) 

for any 7r permutation on A 

From these definitions, p-symmetry can be defined the same way as before: 

Definition 22. Given a A:-ary capacity v, we say that v is a p-symmetric k-ary 
capacity if and only if the coarsest partition of the universal set X in subsets of 
indifference is {A\,... ,AP},A{ ^ 0, Vi G { 1 , . . . ,p}. 

As a consequence of Lemma 4 with S = {a\,... , a^} , we have 

Corollary 4. Given a A>ary capacity v, there exists a unique coarsest partition of 
X in subsets of indifference. 

Then, the concept of p-symmetric A;-ary capacity is well defined. Finally, it can be 
easily checked that all properties for p-symmetric fuzzy measures and p-symmetric 
bi-capacities also hold for general A:-ary capacities. 
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8. CONCLUSIONS 

In this paper we have presented the concept of p-symmetric bi-capacities. The 
definition follows the line s tar ted with p-symmetric fuzzy measures; therefore, p-
symmetric bi-capacities t ry to reflect the fact tha t some criteria may be equivalent 
for the decision maker. 

We have also introduced a new notat ion related to &-ary capacities from which it 
is possible to define the concepts of indifferent elements and subsets of indifference 
in terms of permutat ions. This notat ion allows a simple way to prove some results 
on bi-capacities. 

We have proved tha t p-symmetric bi-capacities provide a reduction in the number 
of necessary values to completely define the bi-capacity. Moreover, we have shown 
that they can be represented in a p-dimensional matr ix, in a way similar to p-
symmetric fuzzy measures. 

We have proved tha t we can t ranslate the properties regarding Choquet integral; 
first, we have proved tha t Choquet integral can be computed through a path in the 
matrix representation; then, we have obtained a decomposition of Choquet integral 
as a weighted sum of Choquet integrals w.r.t. fuzzy measures and an error term. This 
last result is especially interesting, as we have obtained a decomposition in terms of 
fuzzy measures while Choquet integral for a bi-capacity is usually a Choquet integral 
w.r.t. a set function, not necessarily monotone. 

Finally, we have proposed a definition of p-symmetric k-ary capacities. It must 
be remarked here tha t using the definitions in terms of permutat ions, no change is 
needed. 

(Received October 2, 2003.) 

REFERENCES 

[1] A. Chateauneuf and J.-Y. Jaffray: Some characterizations of lower probabilities and 
other monotone capacities through the use of Mobius inversion. Math. Social Sci. 17 
(1989), 263-283. 

[2] G. Choquet: Theory of capacities. Annales de lTnstitut Fourier 5 (1953), 131-295. 
[3] D. Denneberg: Non-additive Measures and Integral. Kluwer, Dordrecht 1994. 
[4] D. Dubois and H. Prade: A class of fuzzy measures based on triangular norms. Inter-

nat. J. Gen. Systems 8 (1982), 43-61. 
[5] M. Grabisch: Pattern classification and feature extraction by fuzzy integral. In: 3rd 

European Congress on Intelligent Techniques and Soft Computing (EUFIT, Aachen, 
Germany, August 1995), pp. 1465-1469. 

[6] M. Grabisch: Fuzzy measures and integrals: A survey of applications and recent issues. 
In: Fuzzy Sets Methods in Information Engineering: A Guide Tour of Applications 
(D. Dubois, H. Prade, and R. Yager, eds.), Wiley, New York 1997, pp. 507-530. 

[7] M. Grabisch: k-order additive discrete fuzzy measures. In: Proc 6th Internat. Confer­
ence on Information Processing and Management of Uncertainty in Knowledge-based 
Systems (IPMU), Granada (Spain), 1996, pp. 1345-1350, 

[8] M. Grabisch: k-order additive discrete fuzzy measures and their representation. Fuzzy 
Sets and Systems 92 (1997), 167-189. 

[9] M. Grabisch and C. Labreuche: Bi-capacities. In: Proc. First Internat. Conference on 
Soft Computing and Intelligent Systems (SCIC), Tsukuba (Japan), 2002. 



440 P. MIRANDA AND M. GRABISCH 

[10] M. Grabisch and C. Labreuche: Bi-capacities for decision making on bipolar scales. In: 
Proc Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE) 
Varenna (Italy), September 2002, pp. 185-190. 

[11] M. Grabisch and Ch. Labreuche: Capacities on lattices and k-ary capacities. In: 
3rd Internat. Conference of the European Society for Fuzzy Logic and Technology 
(EUSFLAT 2003), Zittau, Germany, September 2003, pp. 304-307. 

[12] P. L. Hammer and R. Holzman: On approximations of pseudo-boolean functions. Z. 
Oper. Res. - Math. Methods Oper. Res. 36 (1992), 3-21. 

[13] T.W. Hungerford: Algebra. Springer-Verlag, Berlin 1980. 
[14] R. Mesiar: k-order additive measures. Internat. J. Uncertainty, Fuzziness and 

Knowledge-based Systems 7(1999), 423-428. 
[15] P. Miranda and M. Grabisch: p-symmetric fuzzy measures. In: Proc. Ninth Internat. 

Conference of Information Processing and Management of Uncertainty in Knowledge-
based Systems (IPMU), Annecy (France), July 2002, pp. 545-552. 

[16] P. Miranda, M. Grabisch, and P. Gil: p-symmetric fuzzy measures. Internat. J. Un­
certainty, Fuzziness and Knowledge-based Systems 10 (2002), 105-123. Supplement. 

[17] P. Miranda and E. F. Combarro, and P. Gil: p-symmetric bi-capacities. In: Proc. 
Second Internat. Summer School on Aggregation Operators and Their Applications 
(AGOP), Alcala de Henares (Spain), 2003, pp. 123-128. 

[18] G. C. Rota: On the foundations of combinatorial theory I. Theory of Mobius functions. 
Z. Wahrschein. und Verwandte Gebiete 2 (1964), 340-368. 

[19] M. Sugeno: Theory of Fuzzy Integrals and Its Applications. PhD Thesis, Tokyo Insti­
tute of Technology, 1974. 

[20] M. Sugeno, K. Fujimoto, and T. Murofushi: A hierarchical decomposition of Choquet 
integral model. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 1 
(1995), 1-15. 

[21] M. Sugeno and T. Terano: A model of learning based on fuzzy information. Kybernetes 
6 (1977), 157-166. 

[22] A. Tversky and D. Kahneman: Advances in prospect theory: cumulative representa­
tion of uncertainty. J. Risk and Uncertainty 5 (1992), 297-323. 

[23] J. Sipos: Integral with respect to a pre-measure. Math. Slovaca 29 (1979), 141-155. 
[24] S. Weber: J_-decomposable measures and integrals for archimedean t-conorms _L. J. 

Math. Anal. Appl. 101 (1984), 114-138. 
[25] R. R. Yager: On ordered weighted averaging aggregation operators in multicriteria 

decision making. IEEE Trans. Systems Man Cybernet. 18 (1988), 183-190. 

Pedro Miranda, Department of Statistics and O.R., Faculty of Mathematical Sciences -
Complutense University of Madrid, Plaza de Ciencias 3, 280Ą0 Madrid. Spain. 
e-mail: pmirandaúmat.ucm.es 

Michel Grabisch, University Paris I - Panthéon-Sorbonne - LIP6, 8, rue du Capitaine 
Scott, 75015 Paris. France. 
e-mail: Michel. GrabischШipб.fr 


		webmaster@dml.cz
	2015-03-23T13:55:05+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




