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CENTRAL LIMIT THEOREM FOR RANDOM 
MEASURES GENERATED BY STATIONARY 
PROCESSES OF COMPACT SETS 

ZBYNEK PAWLAS 

Random measures derived from a stationary process of compact subsets of the Euclidean 
space are introduced and the corresponding central limit theorem is formulated. The result 
does not require the Poisson assumption on the process. Approximate confidence intervals 
for the intensity of the corresponding random measure are constructed in the case of fibre 
processes. 
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1. INTRODUCTION 

Stochastic geometry is a part of mathematics which deals with random geometrical 
structures. Point processes play a fundamental role in stochastic geometry. Replac­
ing ordinary points by compact sets, we obtain processes of compact sets. Random 
patterns of more complicated geometrical objects can be studied in this way. It is 
possible to associate a measure with compact sets. The sum of contributions of this 
measure of all observable sets defines a random measure. 

Only stationary processes are considered in this paper. A process is stationary 
if its characteristics are invariant under translations. The simplest parameter of the 
random measure derived from the stationary point process is its intensity. We men­
tion two unbiased estimators of the intensity and study their asymptotic properties 
as the observation window expands to the whole space. 

A central limit theorem was established in the case of the stationary Poisson 
process of compact sets in [8]. The aim of this work is to formulate a similar 
theorem, which does not require the Poisson assumption. It is shown that the central 
limit theorem for a stationary process of compact sets follows from the asymptotic 
normality of the underlying point process of reference points. 

A suitable tool for establishing the central limit theorem for the number of points 
of a point process is provided by verifying mixing conditions and using a central 
limit theorem for stationary mixing random fields (see [5], [6], [7]). 
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Statistical applications of the main theorem are discussed at the end of the paper. 
In the special case of a stationary fibre process, asymptotic approximate confidence 
intervals are constructed. 

2. STATIONARY INDEPENDENTLY MARKED POINT PROCESSES 

In this section we summarize basic definitions from the theory of point processes 
and random measures, for more details see [1] and [10]. 

By (Rd ,Bd) denote the d-dimensional Euclidean space with Borel cr-algebra. We 
write BQ for a family of bounded Borel sets in Rd. Let M be the space of locally 
finite Borel measures \x on Rd (i.e. fi(B) < oo for every B e BQ) and let 9JI be the 
smallest cr-algebra on M making the mappings // »-» n(B) measurable for all B e Bd. 
A random measure on Rd is a random element in (yVf, OT), i.e. a measurable mapping 
* : (fi, A, P) -» (M, OT), where (fi, A, P) is an abstract probability space. Note that 
^(B) is a random variable for each fixed B G Bd. The distribution Q = P * _ 1 of 
the random measure \I> is the induced probability measure on (M,9Jl) such that 
Q(U) = F ( * e U). The intensity measure of * is a Borel measure on Rd defined as 
A(J5) = E*(B) . 

Further, let 
Af = {fieM :fi(B) GNU{0,oo}, B e Bd} 

be the space of locally finite counting measures equipped with cr-algebra W which is 
defined as the trace of 9JZ, i.e. <H = {TlDAf : DJl G W}. A random element $ in the 
space (JV, 9t) is called a point process. Obviously, the point process is a special case 
of the random measure. A point process is called simple if P($ G J\f*) = 1, where 

N* = {v e M : v({x}) <\Mxe Rd}. 

The moment measures of higher orders for point processes can be introduced as 
follows. The fcth-order factorial moment measure of the point process <I> is defined 
by 

M <*>(B) = E*fe({(xi; ...,xk)eB:xi?Xifori? j}), B 6 (Bd)k. 

Further, the A;th-order factorial cumulant measures are given by (see (5.5.15) in [1]) 

k j 

^(A, x..-xAk) = ^(-ly-'U - 1)! Y, IIM ( | 5 < ( r ) l )(^,i x • • • x Alftmi), 
3=1 TeVjk i=l 

where T G Vjk is the partition of the set { 1 , . . . , &} into j sets 5 i ( T ) , . . . , Sj(T). The 
first-order factorial moment measure and the first-order factorial cumulant measure 
coincide with the intensity measure. The second-order factorial cumulant measure 
is called the factorial covariance measure. 

For x e Rd let tx be the shift operator on M: 

txfi(B) = fi(B -x), B eBd. 

A random measure is stationary if its distribution Q is translation invariant, i.e. 
Qt~l = Q for all x G Rd. If the intensity measure of a stationary random measure is 
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locally finite then it is a multiple of cf-dimensional Lebesgue measure. This multiple 
is called the intensity of the random measure. 

For a stationary point process $ with intensity A, the A:th-order reduced factorial 
cumulant measure j r e d is defined by the desintegration (see [1], Lemma 10.4.Ill) 

/ f{xi,... ,xk)j
w{dxi,... ,dxk) = 

J(Rd)k 

f{x, x + t / i , . . . , x + yk-ihl^dy!,..., dyk-i) dx, 
(R<-)l»-l -XII 

where / is an arbitrary bounded measurable function with bounded support. The 
total variation of the signed measure j r e d is denoted by \%ed\-

Let {K', dn) be the space of non-empty compact subsets of Rd endowed with the 
Hausdorff metric 

dn{K,L) = max < sup d{x,L), supd{y,K) > , K,L £ K', 
U G K yeL ) 

where d{x, L) = infZ^L \\X — z\\ is the distance from the point x to the set L. Further, 
let K0 be the space of sets from K' which have the lexicographic minimum point at 
the origin, K'0 is the closed subset of K1. Throughout the paper, by a stationary 
process of compact sets we will mean the marked point process (see Chapter 4.2 in 
[10]) 

i:i>l 

such that the corresponding process of unmarked points $ = zCi:i>i $xi 1s a simple 
stationary point process with a finite intensity A$ > 0 and the marks {Ki,i > 1} 
are independent identically distributed copies of a random compact set K0 (random 
element in the space K0), independent of the process $. The distribution of K0 will 
be denoted by A0 (called a distribution of the typical mark). For notational simplic­
ity, we write EA 0 / ( .KO) = fK, f{K0) A0{dK0), where / is an arbitrary measurable 
function. 

Let C be an arbitrary translation invariant Borel measure on Rd such that K \-+ 
C{K) is a measurable mapping from K!. 

Put 

* ( f l ) = ^ C ( ( ^ i + ^i)nJB)> BZB$. (1) 
i:i>l 

Assume that EA0C(-f-rj) < oo. Then * is a stationary random measure on Rd 

with the intensity 

A* = A* J C{K0) A0{dK0) = \zEAo({K0). (2) 

This formula can be easily deduced from Campbell's theorem for marked point pro­
cesses (see (4.2.4) in [10]) together with the translation invariance of C and Fubini's 
theorem. 
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3. CENTRAL LIMIT THEOREMS FOR RANDOM SUMS 

Let £1, f2, • • • be independent identically distributed random variables with the mean 
H and the finite variance a2. Denote Sn = Yl2=i &> n £N. 

The well-known Levy-Lindeberg central limit theorem states that 

r-— nJl^P JV(0,cr2) in distribution. 
y/n 

When the number Nn of summands is random such that Nn
 n—^ oo in proba­

bility, the convergence to a Gaussian limit was first considered in the classical work 
of H. Robbins [9], More general versions of limit theorems for normalized random 
variables SNn can be found in [3]. We will use the central limit theorem for random 
sums in the following form: 

T h e o r e m 1. Let Nn be integer positive random variables independent of the se­
quence & for every n G N. Let an be a sequence of real numbers such that an

 n—¥ oo 
and 

—n n—oo Q j n probability, and — —- n—3? N(0,a%) in distribution, 

where 6 > 0 is a real constant. Then 

SNn -fiENn n^oo N ^ 6a2 + / i 2 ^ ) . n d i s t r i b u t i Q n 

4. THE CENTRAL LIMIT THEOREM 

We are now in the position to formulate and to prove the main result of this work. 
Let * be a random measure generated by a stationary process of compact sets 
$ m . The unbiased estimator of the intensity \y is SWJ, where \W\ denotes the d-
dimensional Lebesgue measure of W. The asymptotic normality of this estimator is 
guaranteed by the central limit theorem for the unmarked point process $ together 
with conditions on second-order properties of the marked process $ m , which ensure 
the existence of the variance of the estimator. 

We consider that the window W expands to the whole space in a regular way. 
The sequence of bounded sampling windows Wn G BQ is a convex averaging sequence 
if it satisfies the following three conditions (see Definition 10.2.1 in [1]): 

1. Wn are convex, 

2. WnCWn+l, 

3. sup{r : Wn contains a ball of radius r} n—3? oo. 
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Theorem 2. Let Wn C Rd be the convex averaging sequence. Assume that 

E A 0 C ( ^ O ) 2 = / C(#o)2 Ao(cJJfo) < oo (3) 
JK'0 

and the reduced factorial covariance measure *ylJd has bounded total variation, i.e. 

hildm
d) < 00. (4) 

if 

V\Wn~\ ( ^ r ¥ - A*) " ^ N(0,4) in distribution, (5) 

where a\ = A$(l + 7 r^(Md)), then we have 

x/iWJ ( - T ^ - p - A*) "-±3° N(0, a%) in distribution, 

where a% = A* ( E A ^ O ) 2 + ( E A o C ( ^ o ) ) 2 7 S ( ^ ) ) • 

P r o o f . From the definition of moment measures we get 

var$(Wn) = A*|Wn| + 7
(2)(Wn x Wn) = A*|Wn| + A* / -y™d(Wn - x) dx 

Jw„ 
< A*|Wn |(l + | 7 Sl (K d ) ) -

Applying Chebyshev's inequality it is easily shown that y ^ y " - ^ A$, in proba­
bility. Thus, using Theorem 1 we obtain 

j M W n ) 
,V-T^J , T / ~ /v in d i s tr ibut ion, 

, j*(W«) \ 
-Á== E CTO - A*|Wn| ™ iV(0,4), " 
VTO ^ tťl J 

where 4 = A* var C(K0) + ( E C ( K 0 ) ) 2 4 = A*(EC(K0)
2 + (EC(K 0 )) 2 7 r S 

By Slutzky's theorem it remains to show that 

- 7 = J2 (C((*. + •*-".) O Wn) - l iv. (xi)C(Ri)) n----f 0, in probability. 

The left-hand side can be rewritten as 

-7 fL= Yl - ^ (^)C((^+^)nWn)--7=^ X) iw.(^)C((a:i+^)nw.?) = xn-Yn. 
vlWil i>! Vl^nl i > x 



724 Z. PAWLAS 

The expectation of the difference Xn — Yn is equal to zero. In order to accomplish 
the proof, it suffices to verify that var Xn + varYj —¥ 0. Campbell's theorem and 
the definition of reduced factorial cumulant measures yields 

varX n = -=L= V C((xi + Ki)nWn) 
V\Wn\ xf^wc 

= mn(E E c((xi + Ki)nwn)
2 

>^ n | V xitw; 

+E Yl <(& + Ri) n Wn)C((Xj + Kj) n Wn) 
Xi^Xj&W^ 

- p E C((xi + Ki)nwn)) j 
V Xi€W£ ' J 

= I ^ 1 E A O / C((x + ^ o ) n W n ) 2 d x 
l^nl y !1V„= 

+ E A 0 fwJwz-x C((x + K0) n Wn)EAoC((x + y + Kx) n W n ) -y^i(d-/) dx j 

< A*EAo / / 1 ^ ( ^ ) 1 ^ ^ ) l ^ n ( w n - ^ ) n ( w „ - , 2 ) l ^ ^ ^ ^ 

+A*EAoEAo / / / 1 ^ ) 1 * . (y,) l ^ ^ - p W - » - » - > l ^ ( d y ) c ( d y i ) c ( d p a ) 

Making use of the assumptions (3) and (4) and the fact that (see [2]) 

\wnn(wn-x)\ n ^ o o i d 
J r—-—: —> 1 for any fixed x G l , 

I •'MI| 
an immediate consequence of Lebesgue dominated convergence theorem is that 
varX n

 n—-? 0. Quite similar arguments lead to varYn n—->° 0. This completes 
the proof. • 

The assumption (5) is fulfilled for the stationary Poisson point process <J> (random 
variables $(Wn) have the Poisson distribution). For general stationary point process 
$, the validity of the central limit theorem (5) is ensured if $ satisfies strong mixing 
conditions (e.g. /3-mixing [5], [6] or Brillinger-mixing [7]). Under mild additional as­
sumptions it is known that this is the case for quite a few classes of point processes 
- processes derived from Poisson point process, Gibbs point processes under Do-
brushin's uniqueness condition, point processes generated by a Voronoi tesselation 
(e.g. vertices or midpoints of edges). 

We will consider a doubly stochastic Poisson process (Cox process). Let A be 
a random measure on Rd with a distribution Q on (M, DJl) and P^ be a distribution 
of the Poisson process with the intensity measure //. Then the Cox process $ with 
driving random measure A has distribution (see Chapter 5.2 in [10]) 

Q*(U) = Jpß(U)Q(dџ), C/ЄN. 
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The intensity measure of Cox process and the intensity measure of A are equal. If 
A is stationary, $ is stationary as well. 

The following theorem shows that the condition (5) follows from the central limit 
theorem for a driving measure A, see [3] and [4] for a one-dimensional version. 

T h e o r e m 3. Let $ be a stationary Cox process controlled by a random measure 
A with intensity AA. Assume that 

A ( W n ) - A A | W n | n_>oo A r , n 2N • j - x -u 4r- ra\ 

— ' —> JV(0,OA), in distribution. (6) 
V\Wn\ 

Then 

Wn)-±A\Wn\ n_^o 4 ) . n d i s t d b u t i 0 

where o% = o\ + AA . 

P r o o f . The proof is based on the formula for the characteristic function of 
Poisson process (see (6.4.6) and (7.4.10) in [1]) 

feitv(W) p ^ d l / ) = e x p { / x ( W ) ( e « _ i)} ? W G Bd. 

Then, for the Cox process we have 

Eeit*(Wn) = feitv(Wn) g^( d l / ) = J feitHWn) p ^ d l / ) g ( d / i ) 

Eexp{A(PV n )(e^-l)} = ( P n

/ e 1 ' " 1 

i 

where (pn is the characteristic function of A(TVn). From (6) it follows that 
/ + \ z 2^ 2 

I \ n-»oo _ °A •^^Ы1"-^ 
Consequently, 

exp{-AA |Wn | ( e ^ _ i ^ n

 e ' ^ 1 j tz!fj° e -

Next, we use a Taylor expansion of exp I ,'* > and get 

e - « A * V ^ T V l l

 e ^ * "2? e x p { - ^ 2 [a\ + AA)}. 

This completes the proof because the term on left-hand side is equal to 

E e x p { z i * ^ " > Z ^ F " l } . • 



726 Z. PAWLAS 

5. FIBRE PROCESS 

If $ m = V \ ; i > 1 8(XuKi) is a marked point process with a mark space K,'0, the corre­
sponding set-theoretic union 

S = (J(xi + Ki) 
i:i>\ 

is called a germ-grain model (see Chapter 6.4 in [10]). The points x\ are called germs 
and the compact sets Ki are called grains. If the point process of germs is Poisson, 
the germ-grain model is the well-known Boolean model. A central limit theorem for 
the random measure associated with the Boolean model is derived in [8]. 

For this statistical analysis, only an observation of the germ-grain model in a sam­
pling window is available. Typically, grains overlap and it is not possible to evaluate 
the associated random measure * defined by (1). Therefore, we restrict our consid­
erations to lower-dimensional grains. The most usual examples are fibre and surface 
processes (see [10], Chapter 9). 

In what follows we consider fibre processes. The measure £ is taken to be the 
one-dimensional Hausdorff measure H1. By a fibre K we mean a compact connected 
set K such that Hl(K) < oo. Suppose that $ m is a stationary fibre process and 
\t is the associated random measure. Then \I> is the total sum of lengths of fibres 
observable in the sampling window. The intersection of any two different shifted 
grains (fibres) has ("-measure zero. Thus, * can be evaluated. From Theorem 2 we 
know that ^(B) is asymptotically normal distributed. 

Fig. 1. An example of a realization of a stationary fibre process 
in a planar window W with denoted reference points. 

The intensity A* of * is called the length intensity of a stationary fibre process. 
Recall that by (2) A* = X^E^H1^) is the product of the intensity of the process 
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and the mean length of fibre. The usual unbiased estimator of the length intensity 

Ul) _ *(Wn ) 

* ' n " \Wn\ " 

Under the assumptions of Theorem 2 it follows 

VWn~\ ( A ^ n - A *) n-±¥ 7V(0, a2), in distribution, (7) 

where o\ = A* v a x j f f 1 ^ ) + (EAoH
l(K0))

2al. 
If EA0H

1(jK'o) is known, it suffices to estimate A$. Then we can define another 
unbiased estimator of A# which is based on the number of germs (reference points) 
lying in the sampling window 

c(2) _ W ) F A HUK\ 

Since we assume (5), we have 

VWn~\ ( A ? n " A *) ^ ^ ( 0 , ~l\ in distribution, (8) 

w h e r e a - l - o - K E A ^ U ^ o ) ) 2 . 

6. STATISTICAL APPLICATIONS 

Central limit theorems enable the construction of the asymptotic confidence intervals 
or the testing of hypotheses. These require the asymptotic variances to be known. In 
(7) and (8), asymptotic variances of the estimators A^ n(i = 1,2) are unknown. Our 
aim is to construct asymptotically unbiased and consistent estimators for cr2, i = 1,2. 

We assume in this section that sampling windows have the form Wn = [—n,n]d. 
Let G : Rd —> E1 be a symmetric non-negative bounded function with the support 
in W\ and lim||a.||_>0 G{x) = G(0) = 1. Assume that bn is a sequence of positive 
numbers (bandwidths) such that bi = 1, bn \ 0, nbn —•> oo and nd~1bd -» 0. Put 

Gn = (nbn)
d f G(x)dx = [ G (^-) dx. 

jRd JRd \nbnJ 

In addition to (4), assume that the reduced factorial cumulant measures jlJd and 

%ed a r e a^S0 °^ bounded variation. 
The sequence of estimators of the variance G% was introduced in [5], namely 

X-V\ r / T / T T r X \ 2 

-2 V - G W ) , L M Í ~ , . A ( W M \ 

'*••=. .JL, m^úw^m ~inK) LGix)dx- ( w ) 
It was shown that under the above assumptions these estimators are asymptotically 
unbiased and 

E ( a | > n - a | ) 2 n - ^ ? 0 . 
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Using the same idea, we can construct the sequence of estimators of the asymp­
totic variance a\ 

a 2 - V S ^ ) 1 ^ * * ) 1 ^ * - ) - r i , - f n T - , m i , - f n n - x r (*(Wn) 
x'n^j£„*\w»-x^w»-*>)\ ( n) (^n W n )~GniWnT 

A lengthy calculation yields tha t <7i,n are again asymptotically unbiased and 

T? ^ 2 ^ 2 \ 2 n -»oo n 
M a l , n - ^ l j • 0 -

Since a\n a n d c r ^ = a% n{E^QHl{Ko))2 are consistent est imators for a\ and a2, 
respectively, we obtain from (7) and (8) 

J ^ T (^S!n - A * ) n - ^ ° N(°> ! ) . i n distribution, i = 1, 2. 

This yields the approximate 100(1 — a)% confidence intervals for the unknown in­
tensity A# 

( \(i) &i,n C( i ) . &i,n \ - i n 

where the quantile ua/2 is determined such tha t -P(|-X"| < ua/2) = 1 — a and X has 
s tandard Gaussian distribution iV(0,1). 

A C K N O W L E D G E M E N T 

I would like to thank Professor Lothar Heinrich for his help and useful suggestions. The 
research was supported by the Grant Agency of the Academy of Sciences of the Czech 
Republic under Grant IAA 1075201 "Asymptotics of Spatial Random Processes" and by 
the Ministry of Education, Youth and Sports of the Czech Republic under Grant MSM 
113200008 "Mathematical Methods in Stochastics". 

(Received April 24, 2003.) 

REFERENCES 

[1] D. J. Daley and D. Vere-Jones: An Introduction to the Theory of Point Processes. 
Springer-Verlag, New York 1988. 

[2] J. Fritz: Generalization of McMillan's theorem to random set functions. Studia Sci. 
Math. Hungar. 5 (1970), 369-394. 

[3] B. V. Gnedenko and V. Y. Korolev: Random Summation: Limit Theorems and Appli­
cations. CRC Press, Boca Raton 1996. 

[4] J. Grandell: Doubly Stochastic Poisson Processes. (Lecture Notes in Mathematics 
529.) Springer-Verlag, Berlin 1976. 

[5] L. Heinrich: Normal approximation for some mean-value estimates of absolutely reg­
ular tessellations. Math. Methods Statist. 3 (1994), 1-24. 

I 



Central Limit Theorem for Random Measures . . . 729 

[6] L. Heinrich and I. S. Molchanov: Central limit theorem for a class of random measures 
associated with germ-grain models. Adv. in Appl. Probab. 31 (1999), 283-314. 

[7] L. Heinrich and V. Schmidt: Normal convergence of multidimensional shot noise and 
rates of this convergence. Adv. in Appl. Probab. 17(1985), 709-730. 

[8] Z. Pawlas and V. Benes: On the central limit theorem for the stationary Poisson 
process of compact sets. Math. Nachr. (2003), to appear. 

[9] H. Robbins: The asymptotic distribution of the sum of a random number of random 
variables. Bull. Amer. Math. Soc 54 (1948), 1151-1161. 

[10] D. Stoyan, W. S. Kendall, and J. Mecke: Stochastic Geometry and Its Applications. 
Second edition. Wiley, New York, 1995. 

Mgr. Zbyněk Pawlas, Department of Probability and Mathematical Statistics, Faculty 
of Mathematics and Physics - Charles University, Sokolovská 83, 186 75 Praha 8, and 
Institute of Information Theory and Automation - Academy of Sciences of the Czech 
Republic, Pod Vodárenskou věží 4, 182 08 Praha 8. Czech Republic. 
e-mail: pawlas@karlin.mff.cuni.cz 


		webmaster@dml.cz
	2015-03-24T07:31:44+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




