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KYBERNETIKA — VOLUME 39 (2003), NUMBER 3, PAGES 341-346

NONPARAMETRIC ESTIMATIONS OF NON-NEGATIVE
RANDOM VARIABLES DISTRIBUTIONS!

FRANTISEK VAVRA, PAVEL Novy, HANA MASKOVA, MicHALA KOTLiKOVA
AND DAVID ZMRHAL

The problem of estimation of distribution functions or fractiles of non-negative random
variables often occurs in the tasks of risk evaluation. There are many parametric models,
however sometimes we need to know also some information about the shape and the type
of the distribution. Unfortunately, classical approaches based on kernel approximations
with a symmetric kernel do not give any guarantee of non-negativity for the low number of
observations. In this note a heuristic approach, based on the assumption that non-negative
distributions can be also approximated by means of kernels which are defined only on the
positive real numbers, is discussed.
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1. INTRODUCTION

The problem of estimation of distribution functions or fractiles of non-negative ran-
dom variables often occurs in the tasks of risk evaluation. For example an estimation
of period between events, duration of power equipment outage, claims and others.
There are many parametric models, however sometimes we need to know also some
information about the shape and the type of the distribution. This information can
be used sometimes as a starting point, another time as a final result. At present clas-
sical processes based on kernel approximations with a symmetric kernel do not give
any guarantee of non-negativity for the low number of observations. It means that
an estimation can have a part of its definition domain even on the negative part of
R; (where R; denotes one-dimensional space of real numbers). Therefore we bring
forward to discussion one possible approach based on heuristic that non-negative
distributions can be also approximated by means of kernels which are defined only
on the positive part of R;. In this note we give rather an impulse to discussion than
a collection of our knowledge.

IPresented at the Workshop “Perspectives in Modern Statistical Inference II” held in Brno on
August 14-17, 2002.
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2. ASSUMPTIONS

Let K (x) be some function with the following features:
K(z)=0 Vz<0,

K(z)>0 VYz>0,

K (z) is increasing and differentiable for Vz > 0,
lim, o K(z) =1,

Let [*° (1 - K(z))dz = m exists,

Let 2 [ z(1 — K(z))dz = m; exists

and let k(z) be its derivation.

RN S o

Let us have n independent observations zi, ..., z, of a non-negative random
variable X with the distribution function F(z) and the density f(z). Further let
a > 0 be a real number (we permit dependence upon n and upon the observations
Zy, ..., ZTn). Then:

Z K (——l) ¢ > is the distribution function (1)
and
fn(z) = ! En K —( ) is the corresponding density (2)
n IT ndin .
a a p &

Our work aims at some connections between these estimations and the original
distribution F'(z) and the density f(z).
As an example of kernels mentioned above, the following one can be used:

K(z)=(1—-e®)" forz >0 and k(z)=r(l—e®)""le™® forz >0

=0 otherwise =0 otherwise

where r>1 and

r—1 r—1 . .
1 1
= — My = — I, where I; = - L1 — — s I = —1.
3. FEATURES

Let us denote:

B{Fa(@)} = = }: / k("2 ) f(ai) da,
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where z; is the ith observation of a random variable with non-negative definition do-
main and with the density f(z). Of course, we suppose that individual observations
are independent and identically distributed. Then we get:

E{Fn(x)}=K<m+g) -F(z+%(m—§)), (4)

where F(z) is the distribution function of the observed values and £ € (0,m + %z).

If the limit lim, 0 2 = oo is satisfied for any observed data, the estimation of the
distribution function (1) will be asymptotically unbiased, i.e. E{F,(z)} - F(z).
Moreover the following trivial inequality:

0 < E{F,(2)} < K(m+ g) .F<x+m%>

is satisfied from one side. Further we denote:
Bn{z} = / (1 Fo(z)) da
0

the mean value of a random variable z, which holds the distribution (1). After short
computation we get: E,{z} = £ > " | z;. Therefore the estimation of the distribu-
tion function (1) has the same mean value as the sampling average of observations.

For En{z?} =2 [;° z(1 — Fa(z)) dz we can infer:

1< 2
En{([;2} = E Z.’E? + 2my (%)
=1

using quite simple rearrangement and for the variance computed for the estimation
of the distribution function (1) (and thereby, in our case, also for the estimation of
the density):

n =1

o2 {z} = li(xi—En{x})2+2m2<%)2. (5)

If we require the sample variance s2 = -5 >0 | (z; — En{z})? to be equal to
the variance (5), we will get the formula for determining the parameter a:

n—1
=1

a= \/ﬁsn\/ﬁ. (6)

Comparing with the classical parameter of smoothing h used for non-parametric
estimations [2] of densities (2), we get:

hooo [ L /5
n 2mo V n’

We get:
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We can look at asymptotically unbiased estimation also in another way. We can
easily see that the following holds true:

/0 ” (Fn(z) - F(x)) de = /0 N ((Fn(a:) -1+ (1- F(a:))) dz = E{z} — En{z}.

Of course, if E{z} exists. Also, if both mean value and variance exist for an
observed variable, it holds: Prob (limp—oo En{z} = E{z}) = 1 (see the strong law
of large numbers [5]). With the assumptions mentioned above it holds:

Prob( lim /0 * (Fu(z) — F(z)) dz = o) —1. 1)

n—oo
Using analogous method, it is possible to prove the validity of the formula:

Prob (nll’n;o /00 z(Fp(z) — F(z))dz = 0) =1. (8)

0

Validity of the formula (7) is independent of the choice of the parameter a, validity
of the formula (8) is contingent on the selection of (6). Because it holds:

n 2mon
. 2
a s2

for the selection of (6), the condition of asymptotically unbiased estimation (1) is
satisfied. However it is the statement, which is inaccurate: s2 is a random variable,
which, in a sense of probability, tends to o2{z}. Thus, again and more at large, the
probability that the estimation of the distribution function tends to be unbiased will
be 1.

4. EXPERIMENTS AND SIMULATION

We have verified the features resulting from the previous theory using the ker-
nels (3) by data simulation with the following blending distribution 0.8 R(5;20) +
0.2R(45;50). This distribution is one of possible analogy to distributions of outage
duration caused by power equipment failures (high probability of short-time outages
caused by minor failures and low probability of long-time outages caused by major
failures). The proposed model considerably simplifies the real situation but it pre-
serves the fact that outage times are separated by fairly “large interval”. Bounds
of such interval are unfortunately difficult to determine. In the following Figures 1
and 2 there is a simulation for 30 observed values, where the parameter of the kernel
function r = 2.

Figure 3 represents the influence of the kernel choice. All parameters are the
same as in the previous simulation apart from the parameter of the kernel function
r = 20.

The smoothing and accuracy process of the estimation improves with the increas-
ing number of observed values. This can be seen in Figure 4.

(Received November 26, 2002.)
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Fig. 1. Simulation for 30 observed values, 7 = 2, “relatively successful”.
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Fig. 2. Simulation for 30 observed values, r = 2, “relatively unsuccessful”.
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Fig. 3. Simulation for 30 observed values, r = 20.
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Fig. 4. Simulation for 200 observed values, r = 2.
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