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ON CONTINUOUS CONVERGENCE 
AND EPI-CONVERGENCE OF RANDOM FUNCTIONS 

Part II: Sufficient Conditions and Applications 

SILVIA VOGEL1 AND PETR LACHOUT2 

Part II of the paper aims at providing conditions which may serve as a bridge between 
existing stability assertions and asymptotic results in probability theory and statistics. Spe­
cial emphasis is put on functions that are expectations with respect to random probability 
measures. Discontinuous integrands are also taken into account. The results are illustrated 
applying them to functions that represent probabilities. 

Keywords: continuous convergence, epi-convergence, stochastic programming, stability, 
estimates 
AMS Subject Classification: 90C15, 90C31, 60B10, 62G05 

1. INTRODUCTION 

When considering general stability statements, one observes that there are two kinds 
of assumptions: conditions on the true (or limit) problem and conditions which 
assume continuous convergence or epi-convergence a.s. or in the deterministic sense 
for the objective functions and/or continuous convergence a.s. or in the deterministic 
sense for the constraint functions. The functions are in many problems of the same 
form, e.g. functions that are integrals with respect to random or deterministic 
probability measures. Hence, sufficient conditions for continuous convergence and 
epi-convergence a.s. of such functions would be useful tools for the derivation of 
stability statements for diverse applications. 

Convergence in probability comes into play, if one has weakly consistent estimates 
only or dependent samples for which conditions that imply a.s. convergence cannot 
be verified. Stability statements in the "in probability" setting, which are similar 
to those in the a.s. case, are available, see Part I of our paper, i.e. [15], Chap.4, 
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or [27] for details. In short, the assumptions on the true problem are the same as 
in the a.s. case, and convergence of the approximating functions is now required in 
probability. Sufficient conditions for this case are investigated only in a few papers, 
mostly in form of large deviations results (cf. [10, 12, 26]). 

The present paper aims at providing general approaches for the verification of 
continuous convergence and epi-convergence a.s. and in probability. We prove results 
which pave the way for the direct exploitation of asymptotic results in probability 
theory and statistics. Hence new consistency results for estimates or new laws of 
large numbers for dependent samples, for instance, may immediately be utilized for 
stability statements without further inspection of complicated proofs. 

Firstly, we investigate the so-called case of estimated parameters. We consider 
random functions having the form /n(x,cO) = f(x,An(u)) and give convergence 
statements which require convergence a.s. or in probability of the estimates An and 
semicontinuity properties of / . The main part of the paper deals with approxi­
mations of a deterministic function which is the expectation of a random function. 
Such functions occur above all in stochastic programming and in Markovian decision 
processes, when the distribution function is approximated. Several problems of sta­
tistical decision theory fit into this framework, too (cf. [6]). We allow for integrands 
that are discontinuous, thus functions representing probabilities may also be treated 
within this setting. 

We investigate two general approaches for this case. The first one, called "direct 
approach", is in the line of "Portmanteau-Theorem like" results (cf. [1, 6, 9, 18, 30, 
31]), which are mostly formulated for sequences of deterministic functions, but can 
be extended to the a.s. case. We prove a statement which replaces usually imposed 
equitightness conditions by a weaker lower equiintegrability assumption and allows 
for a relaxation of semicontinuity properties of the integrands. 

The second approach, which seems to offer a broader range of applications, is the 
so-called "pointwise approach". It reduces convergence considerations for random 
functions to convergence investigations for random variables with values in Rn and 
is applicable to convergence almost surely and convergence in probability as well. 
Furthermore, large deviations results may be derived in this way. 

The paper is organized as follows. Definitions, notation and theory are placed 
in Part I, i.e. [15], and here, in Part II, we present sufficient conditions and appli­
cations. Section 2 deals with the case of estimated parameters. Section 3 contains 
statements on the approximation of a deterministic function which is the expecta­
tion of a random function and presents the direct and the pointwise approach with 
applications. Section 4 demonstrates how the results of Section 3 can be applied to 
functions that represent probabilities and, eventually, probabilistic constraints. 

For convenience, let us repeat general setting of the problem considered in the 
paper. We assume a complete probability space [fi, A, P] be given and suppose that 
a random optimization problem 

(JPo) min f0(x,u) 
xer0(t->) 

is approximated by a sequence of surrogate problems 
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(Pn) min fn(x,u), n G N, u G fž, 
xern(u) xern(u) 

where r n | ft -» 2RP, n £ No : - -NU{0} , denotes a multifunction with measurable 
graph, i.e. Graph r n G A ® S p , and the function fn \ W x ft -> E, n G N0, is 
supposed to be (Ep <g> ,4, E)-measurable. Here E denotes the cr-field of Borel sets 
of E and E is the cr-field of Borel sets of E, i.e. generated by E and {+00}, {-co}. 
Consequently, Ep denotes the cr-field of Borel sets of Ep . 

In the sequel, we present conditions for appropriate "convergence" of objective 
functions fn to / 0 and constraint sets Tn to r 0 provided particular cases. Sections 2,3 
consider objective functions and Section 4 deals with probabilistic constraints. 

2. FUNCTIONS DEPENDING ON A RANDOM VARIABLE 

In this section we shall investigate random functions fn of a particular shape 
fn(x,u>) = / (x , An(o;)), n G N0, where /1 W> x Ru -> E is (E*> ® E u , E)-measurable 
and An | ft —> Ew, n G N0, is a random variable, i. e. (A, Eu)-measurable. 

The special case of A0(u;) = A0 Vo; G ft often occurs in practical problems. The 
value A0 may be interpreted as an unknown parameter which is approximated by 
estimates An, therefore the case considered in this section is usually called "case of 
estimated parameters". Of course the following propositions also apply to the case 
that one has a sequence of random processes which is determined by a sequence of 
random vectors (An)n G^. 

Let us recall definitions we shall use in the text. 

Definition 3 .1 . Let X C Ep and Y C Ru. A function h | W x Ru -> E is said to 
be 

i) lower semicontinuous (l.s.c) at X x Y if for each x0 G X, A0 G Y 

liminf h(x,\) > /i(x0,A0). 
A->A0 

ii) epi-upper semicontinuous (epi-u.s.c) at X x Y if for each x0 G X, A0 G Y 

sup inf sup inf h(x,X) < /z(x0,A0). 
veM(xo) w<EN(A0) \ewx^v 

Our definition of the epi-upper semicontinuity of a function coincides with the 
definition in [21]. 

Proposition 2.1. Let / be l.s.c. a t l x F and A0 G Y a.s. Then 

i) ( A ^ J ^ A o ^ / n - ^ / o ) , 
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ii) ( A n - ^ > A 0 ) ^ ( / n - ^ / o ) . 

P r o o f , i) Let CJ be such that An(u) -> A0(cO") G Y. Furthermore, let x0 G 
-X"? (^n)nGN with xn —r x0 be fixed. Since / is l.s.c at {x0} x A0(cO), to each e > 0 
there is a S > 0 such that 

f(x,X)>f(x0,A0(u))-e VxeUs{x0}, V\ e Ud{A0(u)}. 

Consequently there is an n0(e,c<;) with 

f(xn,An(v)) > f(xo,A0(u)) -e Vn > n0(e,cO), 

which implies 
l iminf/(x n , An(cO)) > f(x0,A0(u)) 
n—>+oo 

and hence fn - 4 f0. 

x 

i) Let (fn)nefr be an arbitrary subsequence of (/n)nGN-

As An
 pr° > Ao, the set N contains a subset {n&, k G N} with Anfc - ^ ^ A0. 

Using (i), fnje — ^ 4 /o, and by Lemma 4.1 in [15] we obtain fn —pr° > / 0 . • 
A X 

Proposition 2.2. Let / be epi-u.s.c a t l x F and A0 G Y a.s. Then 

i) ( A n - ^ A 0 ) ^ ( / n - f E ! ^ ± , / 0 ) ) 

ii) (An -E---* Ao) =» (/„ ep i'7r°b) /o) • 

P r o o f , i) We consider an cO G ft with An(cO) —> A0(u) G F . Then, by the 
epi-upper semicontinuity, for each neighborhood V G Af(x0) we have 

limsup inf f(x, An(u)) < f(x0,A0(u>)). 

n-^+oo ^ V 

TT r epi-u-a.s. -

Hence fn > f0. 
X 

ii) The second assertion can be proved via Lemma 4.3 in [15] using a similar idea 
as in the proof of Proposition 2.1. • 

If the estimates (An)nGN converge to Ao in probability with a given convergence 
rate, similar asseitions may be proved, which show that the convergence rate carries 
over to the convergence of the random functions and further - under additional 
assumptions - to the optimal values and solution sets of the surrogate problem. 
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3. EXPECTATIONS WITH RESPECT TO DETERMINISTIC 
OR RANDOM DISTRIBUTION FUNCTIONS 

We are going to investigate functions /o which can be regarded as the expectation of 
a function (p0 depending on a random variable Z|[fi,.4,P] -» [E m ,E m ] . Such func­
tions play an important role in stochastic programming, cf. [30], and in Markovian 
decision processes, cf. [16], where mostly the expected reward or the expected costs 
are to be optimized. 

Firstly, we consider the case that the probability distribution P0 of Z is approxi­
mated by a sequence CPn)neN of (deterministic) probability measures on [E m , S m ] . 
This case occurs for instance if a well-known but complicated distribution is approx­
imated by simpler ones, especially for numerical reasons. Often, we also allow that 
the integrand ipo is approximated by a sequence of cpn. Then we have to deal with 
the deterministic functions 

7n,D(z) := / ipn(x,z)dPn(z), n G N0, (3.1) 
jRm 

where <pn\M.p x E m -> US, n G No, are supposed to be integrable with respect to the 
second variable. 

Of course statements for this case can be used to derive assertions for the almost-
surely-setting, too. 

Results on the continuous or epi- convergence of (/n,D)neN have been obtained 
by [1, 6, 9, 11, 18], and [30]. The results by [16], which are formulated in a somewhat 
different manner, should be mentioned too. The authors employ modifications of 
the Portmanteau Theorem. With exception of [1] (semi)continuity of (pofaor) 1s 

supposed. There are, however, several applications, where this assumption is a 
serious obstacle. This restriction is overcome in [1], allowing for functions which 
are discontinuous on a set of measure zero. We will contribute to this approach by 
weakening the conditions imposed in [1]. 

Another approach for the verification of /n,L> > /o,D> which will be suggested 
{x0} 

here, makes use of the convergence of JRm infxeUe{Xoy ipn(x, z) dPn(z) if n tends to 
infinity. This approach seems to be useful especially in the random setting, when 
an unknown probability measure Po is estimated, e.g. by the empirical measure. 
We shall give an assertion which may serve as a bridge to the vast literature on 
asymptotic results in probability theory and statistics, such as laws of large numbers, 
statements on the asymptotic behavior of density estimators and so on. Using this 
approach, it is possible to see how weaker conditions, for instance new dependence 
assumptions' in laws of large numbers, immediately imply corresponding stability 
results. Note that also large deviations results may be employed in this way, thus 
yielding assertions on the convergence rate for convergence in probability, see [26]. 

We start with the "Portmanteau-Theorem-like" approach and quote the result 
obtained by [1]. In [1] random variables with values in a complete separable metric 
space are considered. We confine ourselves - according to our framework - to E n . 
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Definition 3.1. By lc/i we denote the lower closure of a function h\Rm —> E, i.e. 
lch(zo) := liminf h(z) for each z0 G E m . 

z—>zo 

Theorem 3.5 in [1] says: Let the following assumptions be satisfied at xo G Ep: 

(AW1) (Pn)neN converges weakly to P0 . 

(AW2) (po(xor) 1s l-s-c- Po-almost everywhere. 

(AW3) Vz G E m V(:rn)nGN with xn -» #0 V(zn)n(EN with zn -» z 

liminf (/?n(xn,zn) > lc ((^o(-^o5-)(^) (episublimit condition). 
n—>-+oo 

(AW4) The family PV = {(</?n(xn, -) ,Pn) ,n G No} is equitight for all sequences 
(xn)nen with x n -» x0, i. e. Ve > 0 3KE G C m 3b£ > 0 V(v?n(xn, •), Pn) G TV : 

(AW4a) P n ( E m \ J Q < e, 

(AW4b) \ipn(xn,z)\ < b£ for Pn-almost all z G if,-, 

(AW4c) fRm\Ke \(pn(xn,z)\dPn(z) < £ (equitightness). 

Then fn,D > fo,D-
{x0} 

This result may be weakened replacing the equitightness condition by a weaker 
assumption. 

Definition 3.2. The family { ( / n , P n ) , n G N} is said to be lower equiintegrable if 

Alir? ^ t / fn(z)X{fn(z)<-A} dPn(z) = 0. 
A-»+oo nGN JRm 

Theorem 3 .1 . Let for each n G N the function (pn be written in the form (pn(x, z) = 
tpn(x,z) -F £n(x,z), where the following conditions are fulfilled at x0 G Ep for each 
sequence (xn)ne^ with xn —•> xo: 

(VI) (Pn)neN converges weakly to Po. 

(V2) liminf il)n(xn,zn) > (po(xo,z) for Po-almost all z and 
all sequences (zn)neN with zn -» z. 

(V3) The functions <£n(xn, •) are Pn-integrable for each n G No, 
and the family {(^ n(x n , -),Pn)/ri G N} is lower equiintegrable, 

(V4) i n f / R m f n ( x n , z ) d P n ( z ) > - c o and liminf /R m £n(xn,z) dPn(z) > 0. 
7i£N n ^-f-oo 
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Then /n>£> > /0,L> 
{x0} 

P r o o f . If fRm <po(xo,z) dP0(z) = - co , we have nothing to prove. Assume, there­
fore, this integral greater than - c o and consider 

/ ipn(xn,z)dPn(z) = / ijjn(xn,z)dPn(z) + / £n(xn,z)dPn(z). 
JRm JRm JRm 

The second summand is non-negative if n —> +00 and needs no further investigation. 
In order to estimate the first integral we take an arbitrary but fixed e > 0. Since 

{(ipn(xn, ')>Pn),n £ N} is lower equiintegrable, there is A > 0 such that 

/ (ipn(xn,z) + A)x{^n(Xn,z)<-A} dPn(z) > -e 
JRm 

for each n G N. 

Hence, we can estimate the integral 

/ ipn(xn,z)dPn(z) 
JRm 

= / max{-A, '0 n (x n ,z )}dP n (z ) + / (ipn(xn,z) + &)X{rpn(xnyz)<-A} dPn(z) 
JRm JRm 

> / max{-A, ipn(xn , z)} dPn(z) - e > / max{-A, inf ipj(xj,z)}dPn(z) - < 
JRm JRm J>k 

> / max < —A, cl inf ipj(xj, -)(z) > dPn(z) — e for each n > k, n,k G N. 
JRm I 3>k ) 

The function max < —A, cl inf ipj(xji') \ ls --s-c- a n d bounded from below. That 
I 3>k } 

together with (VI) is giving 

liminf / i/jn(xn,z) dPn(z) > / max < - A , clinf ipj(xj, -)(z) > dP0(z) - e 

n->+oo JRm JRm [ j>k ) 

for each k G N. 

The assumption liminf ipn(xn,zn) > (/?0(x0,z) whenever zn -> z for P0-almost 
n—>-+oo 

all z G E m is giving lim clinf ipj(xj,-)(z) > (po(%o,z) for P0-almost all z G IRm. 
k->+oo j>k 

Hence, letting k tend to infinity and using monotone convergence lemma, we 
obtain 

l iminf/ ipn(xn,z) dPn(z) > / max{-A,<po(x0,z)} dP0(z) - e 
n->+oo JRm JRm 

> / (po(xo,z)}dPo(z) -e. 
JRm 
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That concludes our proof since the inequality is fulfilled for each e > 0. • 

If the assumptions (AW2) and (AW3) are satisfied, the condition (V2) is fulfilled 
for ((^n)neN. hence one can choose £n(x,z) = 0 for all x e Rp and all z G E m . 
(AW4) implies (V3). Thus Theorem 3.1 generalizes the result derived by [1]. The 
introduction of the functions £n allows for a relaxation of the "lower semicontinuous" 
behavior of (<pn)nGN, 

Example 3 .1 . Let p = m = 1, ft = [0,1], A = S[o,i] the cr-field of Borel subsets 
of [0,1] and PQ(A) = Pn(A) = XAf) [0,1] .where A e A and A denotes the Lebesgue 
measure. Furthermore, suppose that <po(x, z) = 0 \/x e E Vz G [0,1], 
and for n = 2l + jfe, I G N0, k G { 0 , 1 , . . . , 2l - 1}, 

f 2k i f , G [ ^ , ^ 1 ] 
<pn(x,z) := < 

[ 0 otherwise. 

Then fn,D(x) — 2~^ and /o,D(x) = 0 Mx G E Vn G N. Hence (fn,D)n£N converges 
continuously to /O,D on E. However, (AW4) is violated. 

In order to show /n ,r; ^/o,D5 making use of Theorem 3.1, one can take 
{x0} 

£n(x,z) = 0 and xpn(x,z) = <pn(x,z) Vx Vz Vn. The choice £n(x,z) = <pn(x,z) 
and ipn(x, z) = 0 Vx Vz Vn is also convenient. In order to show /n>£> r /o,D5 one 

cannot take £n(x,z) = 0 and ipn(x,z) = —<pn(x,z) Vx Vz Vn. The choice does not 
fulfill (V2) because liminf ipn(xn,z) = — oo Vz G [0,1]. Nevertheless, the choice 

n->+oo 
c^n(x,z) = —<pn(x,z) and ipn(x,z) = 0 Vx Vz Vn is convenient. 

We now turn to the pointwise approach which was already considered in [28]. It 
may also be used to derive assertions in the deterministic sense. But as it is directly 
applicable to random problems too, it will be formulated in the random setting. Let 
fn(x,cj) = fRrn (pn(x,z)dPn(z,u), n G N, and let /O.D be defined as before. Thus, 
dealing with a deterministic "limit function" /0,£> we can employ the results in [27], 
section V, which are repeated in [15], Chap. 5. 

It is well known that pointwise convergence implies the upper part of epi-conver-
gence, hence Proposition 3.1 is obvious. 

Proposition 3.1. If (xn)ne^ is a sequence with xn —> xo then 

(i) ( /„(*„, •) - ^ > /o,Z>(*o)) =* (fne-^^f0,D) , 

(n) ( /„(*„, .) ^ ^ f0tD(xoj) => ( /» e p i ; u ; ; }
r o b) / o . * ) . 

In order to prove a similar result for the lower semicontinuous approximation we 
introduce for each e > 0 the auxiliary quantities 
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Hn(x,u) := /R m inf <pn(x,z) dPn(z,u), 
xeue{x} 

HO,D(X) '•= /Rm i?f <po(x,z)dP0(z). 
xeu£{x} 

Here we shall also indicate how large deviations results may be obtained. 

Theo rem 3.2. Let the following assumptions be satisfied for a given io E P : 

(V5) The function <po(-,z) is l.s.c at the point xo for Fb-almost all z. 

(V6) There is e > 0 such that H^D(x0) > - c o and Hn(x0, •)> H^D(xo) exist for 
each 0 < e < e and each n G N. 

Then 

(i) (Hn(x0, •) - ^ H^D(x0) Ve < e) = > (fn - ^ ^ /0,D), 
\ / {x0} 

(ii) (Hn{xo, •) - ^ > H^D(x0) Ve < e) = > (fn J±E=*> f0>D). 
\ / {x0} 

(hi) ( P {a; : Hn(x0,u>) < H^D(x0) - e} = o(C„) Ve < e) = > 

( t o > 0 3U{a;o} G C P : P L : inf / n (x ,u / ) < /o,D(*o) - 4 = °(Cn) J , 
V ^ xGt/{z0} J / 

where (Cn)neN is a given sequence tending to zero, the so-called convergence 
rate. 

P r o o f . 

i) According to monotone convergence lemma we have supLIo D(xo) = /o,D(#o) 
£>0 

since HQD(XO) > — oo and (V5) are assumed. 

Let e > 0 be fixed and choose a 5 with 0 < S < e and H$D($o) > /o,D(-^o) - §• 
Now let u be such that liminf Jnf fn(x,w) < /o,D(-^o) - £• 

Because of 

Jnf fn(x,u)= Jnf / ^ n ( x , z ) d P n ( ^ ^ ) 
ze(/,5{.To} xGfI5{a;o} JRm 

> / Jnf (pn(x,z)dPn(z,u) = Hn(xo,u) 
JRm xGC/5{ico} 

we obtain liminf Hn(x0,u) < -ffn D(XO) - §• 
n - > + o o • 

ii) As in part (i) we choose e > 0 and to e a 5 > 0. Then we have 

Plu: jnf fn(x,uf) < foMxo) - e ( < 
I z€£1s{zo} 

1 < P {w : Я*Ы w) < #O,ÐЫ - | } 
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hence the assertion follows. 

iii) The assertion immediately follows from (ii), taking into account a convergence 
rate and choosing 5 < §. • 

In [14] a similar approach, named scalarization, is suggested. The authors con­
sider functions which are defined in complete separable metric spaces. However, 
consideration is restricted to convergence a.s. 

In the rest of the paper we shall show, how Theorem 3.2 can be used in several 
applications. The assertions will be formulated for general functions /in |Rm -> R, 
n G No- One can plug in hn = (pn(xn, •) m order to derive epi-upper semicontinuous 
approximation applying Proposition 3.1 or hn = l^xeuesXo\ <Pn(x, •) deducing lower 
semicontinuous approximation from Theorem 3.2. 

We distinguish three cases for the approximation of Po, namely 

a) approximation by a sequence (Pn)neN of deterministic probability measures, 

b) approximation by the empirical measure, 

c) approximation by means of density estimators. 

a) We can employ Theorem 5.5 in [3] and ideas of the proof of Theorem 5.2 in [4] 
to obtain Proposition 3.2. 

Proposition 3.2. Let (VI) be satisfied and suppose that the following assumptions 
are satisfied: 

(V7) P0{z:hn • f i 0 } = l-

{*} 

(V8) 3C> 0 Vz G Rm Vn G N0 : \K(z)\ < C. 

Then 
lim / hn(z)dPn(z)= [ h0(z)dP0(z). 

n->+oo JRm JRm 

For the special case that only the probability measure is approximated and 
(pn(x,z) = tp(x,z) Vn G No, by stability theory of parametric programming, the 
continuity of tp at U£{xo} x {zo} is sufficient for the continuity of inf^^ r , (p(x, •) 
at z0 G Rm (e > 0). 

The condition (V8) can be weakened, if the sequence (Pn)neN of probability mea­
sures fulfills strongei conditions. For instance, if (Pn)neN converges in a Wasserstein 
metric Wp defined by 

WP(P,Q) := ( inf / \\z-zTdv(z,z')Y , 

where p G N, P, Q are probability measures on [Rm, Sm] and D(P,Q) denotes 
the class of all probability measures on [R2m, S2m] having P and Q as marginal 
measures. 
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Proposi t ion 3.3. Let lim Wp(Pn,P0) = 0 for a fixed p G N. Furthermore, 
n—5>+oo 

suppose that (V7) is satisfied and |/in(z)| < | |z | |p Vn G N0. Then 

lim / hn(z)dPn(z)= [ h0(z)dP0(z). 
n->+oo JRm JRrn 

P r o o f . According to a result by [20] (see also [23]) the convergence of (Pn)neN 
to Po in the metric Wp is equivalent to the weak convergence of (Pn)neN to Po and 
the condition Jm^ JRm \\z\\r dPn(z) = /R m ||s||Pd.P0(*)-
In order to show the statement, we can proceed as follows: 

Let e > 0 be given. 
Then there is a K G E such that /R m (||;z||p - min{||z | |^I(.}) dP0(z) < f. 
AsnUmTO/Rm (mm{\\z\\*>,K}) dPn(z) = /R m (min{||z| |*-lO) dP0(z) by the weak 

convergence of (Pn)n6N to P0 we find an n0 = n0(e) such that 

[ (\hn(z)\-mm{\hn(z)\,K})dPn(z) <6- Vn>n0. 
JRm I 

Hence the assertion follows from the equality 

/ hn(z) dPrl(z) = / hn(z)-max {mm {hn(z),K} ,-K} dPn(z) 
JRm

 JR™ 

+ / max {min {hn(z),K} , -K} - max {min {h0(z),K} , -K} dPn(z) 

+ / max {min {h0(z),K} ,-K} dPn(z) 
JRm 

and from the fact that a function z i-> max {min {h0(z),K} , —K} is Po-a.s. contin­
uous because h0 is P0-a.s. continuous, according to (V7). D 

b) Let P n be the empirical measure, i. e. 

Pn(A,u) = P*(A,u) := I txA(Zi(u;)), A G S"1, 
i=l 

where (Zn)ne^ is a sequence of random variables Zn | [fi,.4,P] -> [Em, S m ] . 
n 

We have /R m (pn(x,z)dPn(z) = \ J2 (pn(x,Zi(u)), thus, in the general case, 
2 = 1 

laws of large numbers for triangular arrays are required. For such results see for 
instance [17]. An overview on results for the case Vn G N <pn = <p0 is given in [7]. 

Epi-convergence a.s. of (/n)neN to f0 is investigated in [13], assuming that Vn G N 
(pn = (p is a convex normal integrand. 

Since in the case under consideration the equations 

\ n \ n 
fn(x,u>) = -Y,ip0(x,Zi(u)) and Hn(x,u) = - £ inf <p0(x,Zi(u)) 

ni=1 n i=ixeu£{x} 
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hold, the assumptions of Propositions 3.2 and 3.3 require laws of large numbers for 
sequences of random variables, namely for 

((po(xo,Zn((j))nen and _inf <po(x,Zn(u))\ 

If the (Zn)n€N are independent and identically distributed according to Fo, the 
condition fRm inf^-j.r 0\ <Po(x,z) dP0(z) < oo, e > 0, is sufficient for the con­
vergence assumptions by Kolmogorov's law of large numbers. This special result 
was proved in [25]. For more general cases we refer the reader to [8]. Note that, in 
general, convexity is not required. Furthermore, we can deal with dependent sam­
ples assuming ergodicity. Uniform convergence of functions obtained via empirical 
measures is investigated in [19]. According to Proposition 3.2 in [15] the results 
obtained here may also be used to ensure uniform convergence if the limit function 
is continuous. 

c) Eventually we consider approximations of P0 via density estimators. 
Suppose that P0 has the density p 0 and that Pn(-,u) is generated by a density 

estimator pn(-,cO). Consistency results for density estimators are given in several 
forms (cf [5], [17], [24]). Conditions ensuring that 

/ \pn(z,-)-po(z)\dz-*±>0 (3.2) 
JRm 

are investigated in [5]. 
The following simple proposition shows how (3.2) can be employed for our aims, 

especially for functions originating from chance constraints. Let hn stand either for 
<pn(x0,-) or for _inf <pn(x, •), £ > 0. 

x£U£{xo} 

Proposition 3.4. Let (V8) be satisfied and suppose that the following assumptions 
hold true. 

(i) P0{z : lim hn(z) = h0(z)} = 1. 
n—>--foo 

(ii) /Rm \pn(z,-)-p0(z)\dz-*±>0. 

Then fRm hn(z)pn(z,-)dz -±±^JRmhQ(z) p0(z)dz. 

Proof . We have 

/ hn(z)pn(z,-)dz- h0(z)p0(z)dz\ 

< \f hn(z)(pn(z,-)- p0(z))dz + f \K(z)-hQ(z)\p0(z)dz, 
|JRm I JRm 
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hence the first summand tends to zero because of (V8) and the Li-convergence of 
the density estimator, the second because of (V8) and the Lebesgue Convergence 
Theorem. • 

A similar assertion holds for convergence in probability. 

R e m a r k 3 .1 . Kernel and histogram estimators of the density fulfill (3.2). 

(i) Suppose that pn is a kernel estimator, i.e. 

/ 1 A* (z-Zi(uj)\ 

where t is a Borel function with t(z) > 0, /R m t(z) dz = 1; 

K > 0, n € N; lira hn = 0, and Zn |[fi, A,P] -> [Em, ETO1. 
n—>-+oo 

Theorem 3.1 in [5] showed that (3.2) holds almost surely if the Zi are i.i.d. 
and 

lim n(hn)
m = oo. (3.3) 

n—>-foo 

If (Zn)ne^ is a (strictly) stationary sequence the results in [8] may be used. 
For instance, each of the following two conditions is shown to be sufficient for 
(3.2): 

(Al) (Z; ) ; G N is (^-mixing and (3.3) holds. 

(A2) (Zi)ieN is a-mixing, 
oo 

for some oA > 0 the inequality ^ i 5 l c ^ < oo holds and 
i=l 

for some 0*2 > t *' the condition lim n • (hn)
S2'm = 00 is satisfied. 

0 1 n—>+oo 
(Theorem 4.2.1 in [8]). 

(ii) If pn is a so-called recursive kernel estimator, i.e. 

pn(z,u) = i g r ^ p f i ( Z "^ . ( a ; ) ) ? where ft, /ii? Z{ are as in (i), 

similar assertions are available. For instance the condition 
lim xo%\o^n = °° i m P l i e s (3-2) provided Z{ to be i.i.d., cf. [8]. 

(hi) Finally, we will have a look at histogram estimators. 

Let fJ\n = {Anji, -An>2,...} be a sequence of partitions such that 
0 < C(Anj) for n = 1,2 . . . and j = 1,2. . . , where £ denotes the Lebesgue-
measure. The histogram estimator is defined by 

pn(z,uf) := £(^'1.) if z G Anii denoting by Pn the empirical probability. 

Then the following two conditions (together) imply (3.2) in the i.i.d. case (see 

[8]): 
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(A3) For each set A of positive and finite Lebesgue-measure and for each e > 0 
there is an no such that for all n > no there is 
Anea(9ln) with C(AAAn) < e 

(<j(fHn) denotes the cr-field generated by !*Hn and A the symmetric dif­
ference). 

(A4) For all M > 0 and for all spheres S 

l imsup£ ( (J AnJnS J = 0 . 
„_>+oo \j:C(AntjnS)<M- ' / 

For the dependent case see also [8]. 

Further assertions that replace the uniform boundedness condition by integrabil-
ity conditions may be derived using results obtained by [17]. 

4. FUNCTIONS REPRESENTING PROBABILITIES 

We shall now show how probabilistic functions can be investigated within the pro­
vided framework. The derivation will be based on the second approach, i. e. The­
orem 3.2, because - in our opinion - the conditions are slightly easier to check. 
However, for the deterministic case, the first approach may be employed in a similar 
way, making use of Lemma 4.1 and Lemma 4.2 below. 

We shall investigate functions hn,D with 

hn,D(x)=Pn{zeRm:jl(x, z)<0, / = l , . . . , g } , n G N0, (4.1) 

where the functions 7/ | Rp x E m —•> E are supposed to be measurable with respect 
to the second variable. 

In stochastic programming problems functions of the form hUjD can occur among 
the objective functions. More often, however, one has to deal with probabilistic 
constraints, that means, the constraint set r n , D is specified by 

rn ,D = {xeRp\ glD(x) < 0, j G J} , (4.2) 

where gn D(x) = rjj - Pn{z e E m : 7jf(x, z) < 0, / = 1 , . . . ,qj} and rjj, j G J, are 
given probability levels. 

The functions hn,D (and in the same way gn D) will be rewritten as 

hnMx) = /Rm XM(x)(z) dPn(z) with 

M(x) := {zG E m :7/(x, z) < 0 , / = l , . . . , g } and 

XA(Z) := { ( A G E m ) . 
0 otherwise 
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Consequently, we shall investigate functions (fi(x,z) := XM(X)(Z)
 o r 

y?2(x,z) := r\i —XMJ(X)(Z)I where M J is defined analogously to M. (The superscript 
j at (f2 will be omitted if no misunderstandings are possible.) 

Lemma 4.1 and Lemma 4.2 yield conditions that ensure condition (V5) of The­
orem 3.2 and allow for conclusions on the continuity of Jnf <pn(x,-), which are 

xeu£{xo} 
useful for the verification of (V7) in the deterministic case. 

Note that the denotation concerning upper semicontinuity of multifunctions is 
not unique in the literature. The definition used in sequel corresponds to that of 
closedness in [2]. 

L e m m a 4 .1 . Let the multifunction * | Rp -> 2Rm be upper semicontinuous at x0 

(i.e. for all sequences (xn)neN and (zn)n€N with xn -> x0, zn G ̂ (xn) and zn -> z0 

it follows that z0 G \P(xo))- Then x^ 1s u.s.c. at {x0} x E m . 

P r o o f . Let z0 G E m be given.. 
If Xv(x0)(

zo) = 1 we have nothing to show. 
Therefore, assume Xv(x0)(

zo) — 0. 
To zo there is a compact neighborhood K C E m . We consider the multifunction 

^x with ^K(X) := ty(x) C\K. * ^ is upper semicontinuous in the sense of Hausdorff 
at x0, i. e. for all e > 0 there exists a 5 > 0 such that *^ (x ) C U£(^ ^(x0)) Vx G 
Us{x0}. 

This also implies closedness of ^^(x0). Since z0 does not belong to the set 
* ^ ( x 0 ) , there is an e > 0 with U£{z0} n U£(^^(x0)) = 0 and U£{z0} C K, hence 
we find a S > 0 such that U£{z0} n *^ (x ) = 0 Vx G Us{x0}. 

Thus, no z G U£{z0} belongs to *(x), consequently Xv(x)(z) = 0 V(x,z) € 

L e m m a 4.2. Let * | W -r 2Rm be a multifunction. Suppose that there is a 
multifunction *° | Ep -> 2Rm with *°(x) C *(x) C clo*°(x) Vx G C/{x0} which is 
strongly Ls.c at x0 (i. e. Vz G *°(x0) 3 ^ > 0 3 5 > 0 V x G U5{x0} : U£{z} C *°(x)). 

Then dV(x0) = d$°(x0) and x* is Ls.c. at {x0} x (E m \9*(x 0 ) ) , where <9A 
denotes the boundary of A C E m 

P r o o f . The strong lower semicontinuity of *° implies that ^°(x0) is an open 
set. 

Hence clo*°(o:0) = clo#(x0) , i n t * 0 ^ ) = int*(x0) and d$°(x0) = d^(x0) 
Let z0 G E m be given. If x*(x0)(

zo) = 0 there is nothing to show. 
Otherwise we distinguish the cases z0 G d$°(x0) and zo G ^°(x0). 
In the first case we cannot expect that xv 1s 1-s.c. at (zo,zo)-
However, if z0 € ^°(x0) we find an e > 0 and a 5 > 0 such that U£(z0) C $°(x) C 

*(a?) VxG l/tf{a;o}nCI{a;o}. 
This entails x ^ f c ) = 1 Vz G C/e{^0} Vx G Us{x0} n U{x0}. D 

The strong lower semicontinuity of *° cannot be replaced by the lower semicon­
tinuity of \P° in the sense of Berge, consider the following example. 
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Example 4.1. Let p = m = 1. Furthermore put 

yTl( , f Qn[o,i] i fx#0, 
* ( x ) = \ [0 , l ] if* = 0. a n d X° = °-

Then for each open set 3JI with 971 fl \I>(0) ^ 0 there exists a S > 0 such that 
\I>(x) fl Wl ^ 0 Vx G [^{.rn}, hence * is l.s.c. in the sense of Berge at x0. 

However, for z0 € (0, 1), xn = ±, zn e [0, 1]\Q we obtain x*(xn)(zn) = 0 < 1 
= Xv(o)(zo)> 

R e m a r k 4 .1 . The following sufficient conditions for the continuity assumptions 
on the multifunction M are well known from parametric programming, see [2]: 

(i) The multifunction M is upper semicontinuous at x0 if the functions 7/, I = 
1 , . . . , q, are l.s.c. at {x0} x E m . 

(ii) Let the functions 7/, / = 1 , . . . ,r/, be u.s.c. at {x0} x M(x0). 
Furthermore, suppose that M(x) C clo {z G E m : ji(x, z) < 0, I = 1... q 
Vx G U{x0}. 
Then the multifunction M° with M°(x) = {z G E m : 7/(x, z) < 0, / = 
1 , . . . , q} is strongly l.s.c. at x0 and we have M°(x) C M(x) C clo M°(x) Vx G 
t /{x0}. 

Combining Theorem 4.2, Proposition 4.2, Theorem 9 from [27], and the above 
considerations, we obtain immediately the following assertions. 

Proposition 4.1. Let the functions 7/, I = 1 , . . . , g, be l.s.c. on {x0} x E m and 

suppose that (VI) is satisfied. Then gn^ D > 9o, D and /in> D ——> h0> D-
{zo} ' ' {xo} 

Proposition 4.2. Let, additionally to (VI), the following assumptions be satisfied: 

(V9) The functions 7/, I = 1 , . . . , g, are continuous at {x0} x E m . 

(V10) M(x) C c l o { z G E m :ji(x,z) < 0, Z = l , . . . , r /} Vx G U{x0}. 

(Vll) P0 (dM(x0)) = 0. 

Then #n>£> r </0, D and /in?JD • h0i /> 
{xo} {xo} 

Under the assumptions of Proposition 4.2, continuity of #n>£> and hUiD is ensured 
by Proposition 5 in [26]. Assertions on the a.s. and "in probability" sense can be 
derived in a similar way. 

Since gn D r-> gJ
0 D Vx0 G E m Vj G J implies lim sup Tn^D C r0,D 

{xo} ' n->-|-oo ' 

(cf. Theorem 3.1 in [27]), using the above considerations one can weaken the as­
sumptions of the corresponding results given by [29]. 
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When considering nonrandom objective functions and their modifications 

7 , , I UMX) ifzern ,D , 
fnMx) : = 1 , xu • (4-3) 

I -foo otherwise, 

we need assertions ensuring that fn,D > /o, D only, instead of /n,£> ——* /o, £>• 
{zo} {zo} 

For instance, according to Theorem 4.2 in [27], /njJp
 epi U> /o,D Vxo G E m ensures 

{x0} 
that the optimal values of the programming problems min fn D(X) behave "upper 

xe^p ' 
semiconvergent". 

Let us denote an indicator of the constraint set by 

Q ( \ J ° ilxeTn,D, (AA. 
#rn,D(x) ~< _, . (4.4) 

I +oo otherwise. 
As in the closely related parametric case, considered by [22] and [9], 

/n,D > /o, D and i?rw D
 epi"">i?r0 D together imply fnjD

 epi""> /o, D- Further, 
{zo} ' {zo} 

To D C lim inf Tn £> entails #r„ D
 P1 U> $r0 n • Note that these relations hold for 

' n—»+oo ' 

arbitrary constraint sets Tnj£> which are not necessarily governed by probabilistic 
constraints. 

Concerning the "lower semicontinuous" behavior of (rnj£>)nGN, Theorem 3.1.5. in 
[2] yields Proposition 4.3 below, which is also closely related to assertions obtained 
by [29]. 

Proposition 4.3. Let the assumptions of Proposition 4.2 be satisfied at all xo G 
r0,£) and for all functions 7/. Furthermore, assume that J is a finite set and that 

(V12) r 0 ) D C clo {xEW : gJ
0j D(x) < 0 Mj G J} is fulfilled. 

Then r0,r> C liminf Tn n. 
n—>+oo 

Sufficient conditions for assumption (V12) are considered in [26] and (in a some­
what different form) in [29]. 

Finally, we consider another approach, which was already used in [30]. Proposi­
tion 4.4 is inspired by Proposition 6.3 in [30]. 

Proposition 4.4. Suppose that, additionally to (VI), the following assumption is 
satisfied: 

(V13) There exists a sequence (xn)ne^ such that xn -> xo, 

< D ( ^ n ) < 0 V n G N VjG { l , . . . , j o} and 

P0 (dM'(xn)) = 0 for all n G N0, j G { 1 , . . . , jo}-
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Thentfr„,D-^>tfr„,D. 
{zo} 

P r o o f . We consider a sequence with the properties required in (V13). Because 

of g^ D(xn) < 0 we have P0(M^(xn)) > rf Vj G { 1 , . . . ,j0}. 

Mj(xn) being a Po~continuity set, to each n G No we find a kn such tha t 

Ph(Ml(xn))>r? Vk>kn V j G { l , . . . , j 0 } . 

Hence g3^ D(xn) < 0 Vk > kn Vj G { 1 , . . . ,j0}. 

Now, let k\ := 1 and kn is defined recursively by kn := max{fcn_i + l,kn}. 
Furthermore, xk ~ %n for all & with kn < k < kn+\. 

The sequence (xfc)fceN constructed in this way has the properties a;*. -> x0 and 
tfrfciD(*/fe) = 0 VA: G N, hence l imsup tfrKD(xk) = 0 < ^ r 0 , p (^o ) . ° 

fc—>+oo 

Sufficient conditions for (V13) in the case of probabilistic constraints are given in 
[27]. 

In the random setting similar relations may be proved. 
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