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K Y B E R N E T I K A — V O L U M E 39 ( 2 0 0 3 ) , N U M B E R 1, P A G E S 4 3 - 5 4 

BLENDED ^-DIVERGENCES WITH EXAMPLES 

VÁCLAV KŮS 

Several new examples of divergences emerged in the recent literature called blended 
divergences. Mostly these examples are constructed by the modification or parametrization 
of the old well-known 0-divergences. Newly introduced parameter is often called blending 
parameter. In this paper we present compact theory of blended divergences which provides 
us with a generally applicable method for finding new classes of divergences containing any 
two divergences Do and D\ given in advance. Several examples of blends of well-known 
divergences are given. 

Keywords: divergences of probability distributions, blended divergences, statistical appli­
cations 
AMS Subject Classification: 62B10, 62F35, 62G35 

1. INTRODUCTION AND BASIC CONCEPTS 

Lindsay [5] introduced a new class of divergences by the modification of weights 
inside the integral expression of Pearson's x2-divergence. He called this divergence 
"blended weight chi-squared disparity", BWCS(/3), and the weight parameter (3 G 
[0 1] called blending parameter. Similarly, he obtained "blended weight Hellinger 
disparity" BWHD(/3). Lindsay used these blended classes of disparities to achieve 
better efficiency and robustness of estimators based on BWCS or BWHD. 

Park and Basu [8] deal with two further modifications of blended Hellinger dispar­
ity and they called it "combined" and "penalized" variant of the Hellinger distance. 
They presented computer simulation study for the corresponding estimators and 
tests in case of some discrete models, in particular for the Poisson and geometric 
distributions and their mixtures. 

Kus [3] introduced several examples of new classes of divergences based on a 
method of normalization of a convex or concave functions. Some of these divergences 
were shown to have a blend interpretation if we use a reparametrization by means 
of blending parameter /3. 

In general, all these new classes of disparities have the following common property. 
If the blending parameter is equal to the limiting values /3 = 0 or /? = 1, then the 
two original divergences, on which the blend was based, are achieved in this class of 
blended divergences. 
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Menendez et al [6] introduced a general method for obtaining such blended di­
vergences and they stated some theoretical results concerning these blends without 
proofs. They also proposed to use blends as new disparity statistics for grouped 
data on which the goodness of fit testing procedures are based. Moreover, asymp­
totic distribution for appropriately scaled 0-disparity statistic was proved to be the 
Xm-f-i distribution, where m + 1 denotes the number of intervals for a given partition 
of R. 

In this paper, which is based on Menendez et al [6], we present a compact theory 
of blended divergences which provides us with a generally applicable method for 
finding new classes of divergences connecting any two divergences Do and D\ given 
in advance. We use this method to obtain blended divergences originated from the 
family of Ia-divergences. 

First let us define 0-divergences with its basic properties. For a systematic theory 
of 0-divergences we refer to Vajda [10] and, for some additional recent results on 
0-divergences, also to Kus [3]. 

Definition 1. Let V be the set of all probability measures on a measurable space 
(X, A). We define (^-divergence of two measures P and Q from V by 

IAÍÌ D^P,Q) = Jq4>\^jdti, (1) 

where p, is a cr-finite measure on (X,A) such that {P, Q} <C /i, and p — dP/dp, 
q = dQ/dp denote the Radon-Nikodym derivative of P, Q with respect to p. We 
assume that divergence function 0 : (0, oo) —> K is convex on (0, oo) and strictly 
convex at t = 1, with 0(1) = 0. On the boundary of the open domain p, q > 0 
we extend the definition by qcf>(p/q) = q<p(0) if p = 0 and qcj)(p/q) = p0(oo)/oo if 
q — 0, where 0(0) = lim^->o+ 4>(t) and 0(oo)/oo = lim^oo (j)(t)/t with the convention 
" 0 - 0 0 = 0" . 

Divergences (1) are all reflexive and the range of D(f)(P,Q) is 

0 < D^P,Q) < 0(0) + 0(oo)/oo, P,QeV, 

where the upper bound is achieved if P, Q are two singular measures. The values of 
D<t>(Pi Q) do not depend on a linear term of the form c(t — 1) added to, or extracted 
from, divergence function 0. It means that every 0 has its nonnegative version 

$(t) = 4>(t)-<t>'+(i)(t-i), te(o.oo). (2) 

equivalent to 0 with respect to the same values of D^ divergence. (0+(l) denotes 
the derivatives of 0 at t = 1 from the right.) 

In this paper we make use of a conjugated divergence functions 0* which usually 
results in reversed 0-divergences. 
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Propos i t ion 1. Let 0 be a divergence function. Then the conjugated function 
(f)*(t) = t<f)(l/t), t e (0,oo), is also a divergence function, (l>*(0) = </>(oo)/oo, 
</>*(oo)/oo = (f)(0), and D^(P,Q) = F^(<2,P) for all P,Q G V. Moreover, the 
divergence D^ is symmetric if and only if there exists a real constant c such that 
<$>(t) - - f ( t ) + c ( t - l ) 5 t E (0,oo). 

The examples of blended divergences, presented in Section 3, are taken mostly 
from the class of power Ia-divergences 

Ia{p'Q) = ~~r~~){Ipaql~adfl~1)' p>QeV> 
defined for a ^ 0,1 by means of the divergence function 

, , . ta - a(t - 1) - 1 ,n . 
a(a — 1) 

with 
1 / ( 1 - a ) if a < 1, . , v / l / a i f a > 0 , a ^ l , , ( w / 

^ ( 0 ) = \ o o i f a < 0 , . ^a(oo)/oo = | co if a > 1. 

Note that the class of Ja-divergences contains twice Hellinger divergence H2(P, Q) for 
a = 1/2, half of the Pearson's x2(P, Q) divergence for a = 2, and half of the Neyman's 
X2(Q,P) divergence for a = — 1. The limits of Ia at a = 1 and a = 0 provide us 
with the Kullback-Leibler divergence Io(P, Q) = I(P, Q) and the reversed Kullback-
Leibler divergence I\(P,Q) = I(Q,P). The conjugated function of Proposition 1 is 
cj)a(t) = cf)i-a(t), a ^ 0,1. Further properties and applications of Ia-divergences can 
be found, for example, in Vajda [10], Lindsay [5], Cressie and Read [1], and Read 
and Cressie [9]. 

2. BLENDS OF DIVERGENCES 

T h e o r e m 1. Let L : [0,oo) -» [0, oo) be a linear function (L ~t 0) with L^ := 
lim L(t)/t > 0 and (f)(y) be a divergence function strictly convex at y = L(l) . The 

t—>-oo 

function (f>L(t) : (0,oo) -> R, defined by 

H(t) = <l>(L(t))-<j>(L(l)), t 6 (0 , oo), 

is a divergence function, (f)L(0) = (f)(L(0)) - (/>(L(1)), (j)L(oo)/oo = L^ • (f>(oo)/oo, 
and 

DH(P,Q) = D^LooP + L(0)Q,Q) - <j>(L(l)), P,QeV. 

P r o o f . It is clear that <j>L : R + -> K and <f>L(l) = 0. Since for all a G (0,1) and 

h,t2eR+ 

<t>L(ah + (1 - a) t2) = cj>(L(ah + ( - - « ) h)) - <i>(L(l)) 
< a4>(L(h)) + (1 - a) (j>(L(t2)) - (f>(L(l)) = a<t>L(h) + (1 - a) <j>L(t2) 
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then <f>L is a convex function on (0, oo). Further, strict convexity of </>(y) at y = L(l) 
implies strict convexity of <£L(£) at £ = 1. The two assertions concerning limits </>L(0) 

and 0L,(oo)/oo are trivial consequences of the definition of (pi. To prove the last 
assertion, assume first that L(0) ^ 0 and Loo 7̂  0. Then 

D,(LooP + L(0)Q,Q)= J ^ ^ o o P + L ( 0 ) ^ dfi 

A+n{g>o} 

+<f>(0) qdp, + (f)(oo)/oo / (Loo p + L(0) fj) dtx (3) 

Ao *• {q=0} 

where 

A+ = {Loop + L(0)q>0} and A0 = {LooP +L(0) q = 0}. 

Let us denote the first integral in (3) by Ii, the second integral by I2, and the third 
one by I3. Then 

h = 0, 

I3 = L00(f)(oo)/oo / pdj.1 = (f)L(oo)/oo / pdfi, 

{q=0} {q=0} 

I g ^ W + L(0)gXd/i+ I ^ (L(0))d^ 

<7>0} {p=0,9>0} 

y 90 ( L ( ^ ) ) dii + 4>(L[0)) I qd/i 
{pq>o} {P=o} 

l q 0 ^ L ( ^ - 0 ( L ( 1 ) ) ] dџ 
{pq>o} 

+ 0(L(O)) - 0(L(1))] I qdfi + <f>(L(l)) J qd,i 
{p=0} {p>0} 

= / 9 0 L ( ? ) d / i + 0 L ( O ) / 9d/JL + tl>(L(l)). 
{pq>0} {p=0} 

Thus we obtain from (3) that 

D*(Loo P + L(0) Q, Q) = D^ (P, Q) + <P(L(\)). 

If Loo = 0 then 0/,(O = 0(L(O)) - 0(L(1)) and D^L(P,Q) = 0(L(O)) - 0(L(1)). 
Further, 

D0(Loo E + L(0) Q, Q) - <j>(L(\)) = D*(L(0) Q, Q) - 0(L(1)) = 0(L(O)) - 4>(L(\)). 
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If L(0) = 0 then 

DH(P, Q) = J q U (Leo ?\ - (t>(L(l)) dfi = D^Lvo P, Q) - cj>(L(l)). 

Thus all assertions of the theorem are proved. • 

Note that if L(0) = 0 then D^L is bounded iff F>0 is bounded. If L(0) ^ 0 
then D<j>L is bounded iff <f)(oo)/oo < oo. Thus D$L can be bounded while D^ is 
not bounded. It means that if we apply suitable linear transformation y — L(t) on 
(p(y), we can obtain bounded divergence in spite of the fact that the original D^ was 
unbounded in the sense that ^(0) = oo and 0(oo)/oo < oo. 

Corollary 1. Let 0 be a divergence function and </>*(£) is conjugated to (p. If we 
define for all (3 G [0,1] the functions (j>s,p(t) by 

<t>s,p(t) = 0(1 -P + pt) = (1 -p + pt)p (1_p + l3t
>) , * e (o,oo), 

then all 4>s,p are divergence functions, (j)s,p(0) = (f)(l — (3), 0S,/3(oo)/oo = ,/3 0(oo)/co, 
and 

D*sAP,Q) = D<t>(flP + (l - /?)Q,Q), ^ 0 ^ -

If (j)(oo)/oo < oo and /? ^ 0 then A/>5i/3 are bounded. 

Corollary 2. Let 0 be a divergence function. If we define for all /? G [0,1] the 
functions (j)R^(t) by 

4>RAt) = (l-0 + ^t)<t>[1_p + /3t)> t€(0,oo), 

then all ^fl i /3 are divergence functions, <fo,/?(0) = (1 - P)<j)(0), (j>RAoo)/oo = 
P4>(l/P) (where we take P<p(l/P) = </>(oo)/oo if D = 0), and 

D**JP,Q) = D4>(P,pP + (i-P)Q), P,QeV. 

If 0(0) < oo and 0 / 0 then D^RAp,Q) a r e bounded. 

F r o o f . Observe that the following relation exists between <f>R and <j>s of Corol­

laries 1 and 2, 

ФnAt) = tФ*{^^)=tФ*(ß + (i-ß)\ 

= (*'(/* + (1 -ß)t))\t) = ((Ф*)sл-ß)\t) 
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Thus, Proposition 1 and Corollary 1 with L(t) = 0 + (1 — /3)t imply that the function 
<t>R,tf(t) is a divergence function and further 

D4>R.*(P,Q) = D{**)s.i-AQ>p) (Proposition 1) 

= D;(0P + (1-0)Q,P) (Corollary 1) 

= D<p(P,0P + (1 - /?) Q) (Proposition 1) 

The same reasoning can be applied to prove the remaining assertions of Corollary 2. 
• 

Corollaries 1 and 2 can serve to construct a new, possibly bounded, (/>syp or 
0I*,/3-divergences. Both the corollaries also justify the correctness of the following 
definition of blended divergences. 

Definition 2. Let 0o and 0i be divergence functions and 0 G [0,1]. The function 

4>0(t) = (l - /3 + 01) 0o L_f!l_{_pt) +Mi-P + Pt), te (0, oo), 

is said to be blended divergence function and the corresponding 0^-divergence 

D0(P,Q):=D<i)0(P,Q) = D4>o(P,pP + (\-p)Q) + D<l>1(pP + (\-P)Q,Q) 

is called blended divergence, more precisely 0-blend of D$0 — D0 and D(pl — D\. 

Corollary 1 and 2 imply that 

00(0) = ( l - / 3 ) 0 o ( O ) - F 0 1 ( l - / 3 ) , 

4>0(oo)/oo = /3 0o(l//3) + 00i(oo)/oo, 

where we take 0<f)O(l/0) = 0o(oo)/oo if 0 = 0. The order of blended divergences 
D<p0 and D$l is substantial, i. e. the blend of D(p1 and D^0 can differ from the blend 
of Definition 2 (see Examples 1 and 2 in the next section). 

Specification 1. For a given 0, if we take into account the special case (f>o(t) = 0(f) 
and 0i (t) = 0*(£), then we get from Definition 2 

4>0(t) = (\-p + pt)<f>(-—±——\+(\-p + pt)<i>f * 
\-p + ptj v ^ ^ '^ V1-/^/^ 

= *</>'(/? + ( l - / 3 ) ^ + < / > * ( l - / 3 + /3i) 

with the corresponding blended divergence 

Dfl(P, Q) = D+(P, pP + (\- p) Q) + D*(Q, PP + (\- P) Q). 
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Thus, we obtain the blend of D^(P,Q) .and reversed D^(P,Q) = Ify(Q,P). The 
order of blending is again substantial. Further, 

^ ( 0 ) = (1 - P) <t>(0) + (1 - P) </> (j^jj , 

<f>p(oo)/oo = P4>(1/P)+P<I>(0), 

where we take P<j)(l/f3) = (j)(oo)/oo if (3 = 0. Therefore, if (f)(0) = oo then for all 
0 G [0,1] the blended divergences Dp(P, Q) are unbounded. However, provided that 
(j)(0) < oo and /3 G (0,1), we get bounded blended divergences Dp irrespectively of 
the value of (/>(oo)/oo. 

Theorem 2. Let 0 be a divergence function, (j)0(t) = </>(£) and (j>i(t) = </>*(£). 
Then for all /? G [0,1] the blends Dp of D(p(P,Q) and reversed D<f>(Q,P) are skew 
symmetric about (3 = 1/2 

Dp(P,Q) = D1_p(Q,P), 0 G [0,1], P , Q e P , 

with the symmetric blend 

Dh (P, Q) = D, (p, £ ± - - ) +D*(Q, - - ± 5 ) . 

P r o o f . By direct computation it can be verified that (/>p(t) = (f>i-p(t), te (0,oo) 
which proves the skew symmetry. The symmetry of Di/2(P, Q) follows immediately 

)m Pronosition 1, since 6* ,„(t) = </H /o(t). D 
VV 11X^X1 p U V V / U U l i ^ UIVV/ VV UJ I H H I ^ U I J . J_ AIVy OJ 111J 

from Proposition 1, since <t>\/2(t) = ^ / 2 ( t ) . 

If we intend to construct blended divergence, we can use either the given 4>(t) 
or (f)(t) or another similar variant of (j)(t) with the same divergence. However, the 
Dp(P, Q) blend of reversed divergences does not depend on the variant used since 

(V) (t)=фß(t)-(l-2ß)ф'+(l)(t-l) 

and thus D/r. (P,Q) = Dcf>p(P,Q) = Dp(P,Q). Furthermore, provided <f> is twice 
differentiate at t = 1, the symmetric blend of Theorem 2 for /? = 1/2 is always 
based on nonnegative divergence function (j)p, since (j)'p(l) = (1 - 2/?) (j)'(l). 

The natural question arises whether a certain power D^,2(PyQ)y a > 0, of the 
reflexive and symmetric blend D\/2 of Theorem 2 can represent a metric distance 
on V. Kafka, Osterreicher and Vincze [2] proved that a certain power D^(P,Q) 
of the symmetric ^-divergence satisfies the triangle inequality if the function (1 — 
t01)1/**/(j)(t) is nonincreasing in the domain 0 < t < 1. Unfortunately, to verify this 
sufficient condition for a given blended metric divergence .D1/2 of Theorem 2 can be 
quite difficult (see Osterreicher [7]). 
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3. EXAMPLES OF BLENDED DIVERGENCES 

To illustrate the presented theory of blended divergences we give several examples 
taken from the family of Ia-divergences. However, two arbitrary (^-divergences or 
even blends, given in advance, can be blended to achieve required statistical proper­
ties of estimators or tests based on the corresponding blend. The best way, how to 
apply the theory of blends, would be to design a blend fitted to the real statistical 
application. 

a-iy 

Example 1. (Pearson-Neyman blend) If we choose 

4>0(t) = <f>(t) = (t- l)2 a n d </>! (t) = <t>*(t) = 

then, applying Specification 1, we come to the blend of Pearson's D0(P,Q) — 
\2(P,Q) and Neyman's D\(P,Q) — x2(Q^P) divergences defined by means of 
blended divergence function 

Фß(t) (ì-ß+ßt) 
t 

= [(i-ßf+ß* 

i-ß+ßt 

(t-if 

- i + i-ß+ßt 
- i 

1 — Z3-4-/3*' 

for all P G [0,1]. We restrict ourselves to a normalized blended divergence function 
4>3 with 00(a) = 1, i.e. 

Фß(t) = Õ 
2 l - 0 + 0t' 

with the corresponding blended divergence 

ť Є ( 0 , c o ) , / З є [ 0 , l ] , 

Dø(P,Q) 
1 f (P- ) 
2 J ßp+(l- ß)q 

dџ, P,QeV. 

This blend Dp coincides with the generalized Le Cam divergence LCp investigated 
in Kiis [3]. This blend was found also by Lindsay [5] by the modification of weights 
inside the integral expression for Pearson's x2-divergence, BWCS(/3), mentioned 
already in Section 1. Thus, the present example shows that blended divergences 
developed earlier in the literature remain to be ^-divergences. Symmetric blend of 
Theorem 2, D\(P,Q), corresponds to the squared LeCam distance LC2(P,Q). 

Example 2. (Neyman-Pearson blend) On the other side, if we exchange (f>o(t) 
with 0i(t) in Example 1 we get a blend of Neyman's D0{P,Q) — X2(Q»-P) a n d 
Pearson's DX(P,Q) = X 2 ( ^ Q ) , with 

Mt) =t(/? + ( l -/J)y- l ) +(l-p + (Jt-l)2 

= [( i .^ + ̂ j^ i ) ! =(i-ßfф*(t)+ßгф(t). 
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Consequently, 
D(3(P,Q) = (l-(3fx\Q,P)+px->(P,Q). 

The symmetric divergence of Theorem 2 

(p + q)(p-q)2 

Dh(P,Q) = \ (x2(P,Q)+x2(Q,P)) = \f 
pq 

d/i 

coincides with the symmetrized divergence J2(P,Q)/2 defined in Vajda [11]. Note 
that (/>/? of Example 1 differs from </>p of Example 2 since for all /J G (0,1) there is 
0/3(0) < oo but (j)p(0) = +oo. It means that the Neyman-Pearson blend produces 
unbounded divergences for all /? G [0,1], while the Pearson-Neyman blends are 
bounded for all /3 E (0,1). 

Example 3. (Blended power divergences - variant A) Both Examples 1 and 2 are 
the special cases (for a = 2 and a = -1) of blended Ia(P, Q) and h-a(P, Q) power 
divergences. For aGM—{0,1} and 

Фa(t) 
ť -1 

a(a-l)' 

we obtain by Specification 1 

ф*a(t) = ф^a(t) 
t-1 

a(a — 1) 

Фa,ß(t) = 
a(a — 1) 

í° + l 
[(l-ß + ßt)"-1 2ß(t-l)-2 aф 0,1, 

where the linear term 2 (3(t — 1) can be omitted as it does not alter the value of the 
0a,/?-divergence 

h,ß(P,Q) a(a - 1) \J 
pa + qa 

(ßp+(l-ß)q) 
— dџ - 2 j , a ф 0,1, 

as the blend of Ia$(P>Q) = h{P,Q) and Ja.i(-P,Q) = DK(P,Q) = h-a(P,Q). 
Note that the reversed order of blending h-a and Ia divergences is also included in 
the expressions for all a ^ 0,1. If we use the following limits of </>a(t) as a -+ 0 and 
a -+ 1, 

cf>o(t) =-Int, 0i(t) = 0S(*) = *lnt, 

then we get 

<fotP(t) = 2(1 - /3 + (3t) ln(l - 0 + /Jt) - (1 - /?) Int - /Jtlni 

with the corresponding reversed Kullback-Kullback blend 

h,ß(P,Q) = -J(ßp+(l-ß)q)[ln p 

= 2j(ßp+(l-ß)Ф^+^-^ 

ßp+(l-ß)q ^ ыßp+.(l-ß)q-
d / i 

àџ + (l-ß)I(Q,P)-ßI(P,Q) 
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where the last equality holds if the expression on the right hand side is meaningful. 
However, all the blended divergences Io,/3(-P, Q) are unbounded since for all /3 G [0,1) 
there is </>o,,3(0) = oo and for (5 — 1 it is 0oA(oo)/oo = oo. 

On the other side, the interchanging of the order of the functions (f>o and </>i results 
in the Kullback-reversed Kullback blend 

0if/j(t) = t\nt-(t + l)\n(l-(3 + pt), 

hAP,Q) = [ (P^O ^ n m +«lnR __.M m ) d^ J V Pp + (i-P)q Pp + (i-P)qJ 

= I(P,Q)-f(P + q)xJP+{l-^U, 
J q 

provided the last expression is meaningful. For all (3 G (0,1) the Kullback-reversed 
Kullback blend I\$ is bounded since 0i,/3(O) = — ln(l—/?) and (f>i}p(oo)/oo = — ln/3. 
The symmetric blend of Theorem 2, 

•hk(P,Q) = l(p,^)+l(QP-±Q) 

coincides with the /a-divergence of Osterreicher [7] for a = 1 which has been proved 
to be a squared metric distance. 

E x a m p l e 4. (Blended power divergences - variant B) To blend Ia and I-a diver­

gences we set, for 0 < \a\ < 1, 

ta - 1 t~a - 1 
0a,o(*) = ——f-7 TTT and (j)a,i(t) -sign[a(a — 1)] ' sign[a(a + 1)] 

in place of <fio and 4>\ in Definition 2, respectively. Then for all (3 G [0,1] 

4>a,p(t) = - s i g n ^ ) ^ ^ ^ ^ " 1 , t e (0,oo), 0 < |a| < 1, 

where we have already omitted the linear term /3 (t — I) which has no influence on 
the corresponding blended divergence 

r[0p+(l-f3)q )pa-qa+l 

DaAP, Q) = ~ signfa) / 7 -â dAi, 0 < \a\ < 1. 

If a G (0,1) then these blended divergences are bounded for all /? G (0,1). Note that 
the blend 

D^P.Q) = -signer- / ' " ^ r V 
given by 

i , i ( « ) = - s i g n ( a ) 2 Q - 1 ^ (
(

1 ^ )
) a " 2 , t € (O.oo), 0 < |a| < 1 

is bounded for all a G (0,1), but it is not symmetric (Theorem 2 is applicable only 
to the blends of mutually reversed divergences). Another variant of "blended" Ia 

and I-a divergences was presented in Kus [3]. 
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Example 5. (Self-blended power divergences) If we put 

<l>a,0(t) = <t>a,l(t) = f " ^ , a ^ 0 , 1 , 
a[a — 1) 

then we obtain from Definition 2 self-blended Ia-divergence defined by the blended 
divergence function 

Фa,ß(t) = 
a(a — 1) 

ť + (l-ß + ßť)2a-1 

(ì-ß+ßt)"-1 , a ф 0,1, ß Є [0,1], 

where we have omitted the linear term j5 (t - 1) again. For example, the parameter 
a = 1/2 defines a self-blended Hellinger divergence 

H$(P,Q) := Dhp(P,Q) =4(2- f(Vp + Jq)y/0p+(l-0)qd^ 

given by means of divergence function (j)i^(t) = 4 (2 - (y/i + 1)>/1 - (3 + /3t), t G 
(0,oo), 0 G [0,1]. The blends HjH are bounded divergences for all /? G [0,1]. The 
symmetric divergence in this class is 

Hf(P,Q)=4U-^J(^p + ^q)Vp + qdfi). 

Similarly, for a = 2 we obtain a self-blended Pearson divergence and a = — 1 leads 
to a self-blended Neyman divergence. The limiting case (j)o,o(t) = —Int defines a 
self-blended reversed Kullback divergence KLp(P,Q) using the blended divergence 
function 

(f>o,(3(t) ={3(t-l)ln(l -(3 + (3t)-(l-P)\nt-(3tlnt 

with corresponding divergences 

KLP(P, Q) = KL(P, /3P + (1- P)Q) + KL((3P + (1- 0)Q, Q) 

= p J(p--q)ln^P+{1

q'
P)qdfi + (l-f3)I(Q,P)-pi(PJQ), 

provided the last expression is meaningful. If we consider the second limit (/>iyo(t) = 
tint, we get a self-blended Kullback divergence Ip(P,Q) defined by means of 

<j>i^(t) = tint - (1 - (3)(t - l ) ln( l -P + (3t), (3 G [0,1], 

as follows 

ЫP,Q) = i(P,ßP + (i-ß)Q) + i(ßP + (i-ß)Q>Q) 
ßp+(l-ß)q 

= I(P,Q)-(l-ß)J(p-q)h d/i. 
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